首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Concentrations of the trace elements Mg, Al, Ca, Ti, V, Fe, Sr, Y, Zr, Ba and Ce were determined by ion microprobe mass spectrometry in 60 individual silicon carbide (SiC) grains (in addition, Nb and Nd were determined in 20 of them), from separate KJH (size range 3.4–5.9 μm) of the Murchison carbonaceous meteorite, whose C-, N- and Si-isotopic compositions have been measured before (Hoppe et al., 1994) and provide evidence that these grains are of stellar origin. The selected SiC grains represent all previously recognized subgroups: mainstream (20 < 12C/13C < 120; 200 < 14N/15N; Si isotopes on slope 1.34 line), grains A (12C/13C < 3.5), grains B (3.5 < 12C/13C < 10), grains X (15N excesses, large 28Si excesses) and grains Y (150 < 12C/13C < 260; Si isotopes on slope 0.35 line). Data on these grains are compared with measurements on fine-grained SiC fractions. Trace-element patterns reflect both the condensation behavior of individual elements and the source composition of the stellar atmospheres. A detailed discussion of the condensation of trace elements in SiC from C-rich stellar atmospheres is given in a companion paper by Lodders and Fegley (1995). Elements such as Mg, Al, Ca, Fe and Sr are depleted because their compounds are more volatile than SiC. Elements whose compounds are believed to be more refractory than SiC can also be depleted due to condensation and removal prior to SiC condensation. Among the refractory elements, however, the heavy elements from Y to Ce (and Nd) are systematically enriched relative to Ti and V, indicating enrichments by up to a factor of 14 of the s-process elements relative to elements lighter than Fe. Such enrichments are expected if N-type carbon stars (thermally pulsing AGB stars) are the main source of circumstellar SiC grains. Large grains are less enriched than small grains, possibly because they are from different AGB stars. The trace-element patterns of subgroups such as groups A and B and grains X can at least qualitatively be understood if grains A and B come from J-type carbon stars (known to be lacking in s-process enhancements shown by N-type carbon stars) or carbon stars that had not experienced much dredge-up of He-shell material and if grains X come from supernovae. However, a remaining puzzle is how stars become carbon stars without much accompanying dredge-up of s-process elements.  相似文献   

2.
Abstract— We report isotopic abundances for C, N, Mg‐Al, Si, Ca‐Ti, and Fe in 99 presolar silicon carbide (SiC) grains of type X (84 grains from this work and 15 grains from previous studies) from the Murchison CM2 meteorite, ranging in size from 0.5 to 1.5 μm. Carbon was measured in 41 X grains, n in 37 grains, Mg‐Al in 18 grains, Si in 87 grains, Ca‐Ti in 25 grains, and Fe in 8 grains. These X grains have 12C/13C ratios between 18 and 6800, 14N/15n ratios from 13 to 200, δ29Si/28Si between ?750 and +60%0, δ30Si/28Si from ?770 to ?10%0, and 54Fe/56Fe ratios that are compatible with solar within the analytical uncertainties of several tens of percent. Many X grains carry large amounts of radiogenic 26Mg (from the radioactive decay of 26Al, half‐life ? 7 times 105 years) and radiogenic 44Ca (from the radioactive decay of 44Ti, half‐life = 60 years). While all X grains but one have radiogenic 26Mg, only ~20% of them have detectable amounts of radiogenic 44Ca. Initial 26Al/27Al ratios of up to 0.36 and initial 44Ti/48Ti ratios of up to 0.56 can be inferred. The isotopic data are compared with those expected from the potential stellar sources of SiC dust. Carbon stars, Wolf‐Rayet stars, and novae are ruled out as stellar sources of the X grains. The isotopic compositions of C and Fe and abundances of extinct 44Ti are well explained both by type Ia and type II supernova (SN) models. The same holds for 26Al/27Al ratios, except for the highest 26Al/27Al ratios of >0.2 in some X grains. Silicon agrees qualitatively with SN model predictions, but the observed 29Si/30Si ratios in the X grains are in most cases too high, pointing to deficiencies in the current understanding of the production of Si in SN environments. The measured 14n/15n ratios are lower than those expected from SN mixing models. This problem can be overcome in a 15 Modot; type II SN if rotational mixing, preferential trapping of N, or both from 15n‐rich regions in the ejecta are considered. The isotopic characteristics of C, N, Si, and initial 26Al/27Al ratios in small X grains are remarkably similar to those of large X grains (2–10 μm). Titanium‐44 concentrations are generally much higher in smaller grains, indicative of the presence of Ti‐bearing subgrains that might have served as condensation nuclei for SiC. The fraction of X grains among presolar SiC is largely independent of grain size. This implies similar grain‐size distributions for SiC from carbon stars (mainstream grains) and supernovae (X grains), a surprising conclusion in view of the different conditions for dust formation in these two types of stellar sources.  相似文献   

3.
Abstract— –We present data from TEM and NanoSIMS investigations of Murchison (CM2) KFC1 presolar graphites. TEM examinations of graphite ultramicrotome sections reveal varying degrees of graphite disorder, leading to distinctions between well‐graphitized onions, more turbostratic platy graphites, and the most disordered cauliflower graphites. Aside from their larger size, platy graphites are roughly similar in isotopic composition and in internal grain properties to the well‐graphitized onions. Most carbide‐containing platy graphites exhibit large s‐process element enrichments (∼200× solar Mo/Ti ratios), suggesting origins predominantly in AGB carbon stars. The C isotopic distribution of platy graphites is similar to onions, with representatives in both 12C‐depleted (5 < 12C/13C < 40) and 12C‐enriched groups (100 < 12C/13C < 350) and a pronounced gap in the 40 < 12C/13C < 75 region that contains 75% of mainstream SiCs. The large 12C enrichments combined with the extreme s‐process element enrichments suggest formation in an environment inhomogeneously enriched in the nucleosynthetic products of thermal pulses in AGB stars. In contrast, numerous scaly cauliflower graphites show 18O enrichments and lack s‐process‐enriched carbides, suggesting a SN origin, as was the case for many Murchison KE3 SN graphites. The more turbostratic graphites (platy and scaly) are on average larger than onions, likely resulting from formation in a gas with higher C number density. Oxygen content increases progressively with increasing degree of graphite disorder, which can stabilize these grains against further graphitization and may be a reflection of higher O/C ratios in their formation environments.  相似文献   

4.
Abstract— We have studied 74 single presolar silicon carbide grains with sizes between 0.2 and 2.6 μm from the Murchison and Murray meteorites for Ba isotopic compositions using NanoSIMS. We also analyzed 7 SiC particles either consisting of sub‐micron‐size SiC grains or representing a morphologically and isotopically distinct subgroup. Of the 55 (likely) mainstream grains, originating from asymptotic giant branch (AGB) stars, 32 had high enough Ba contents for isotopic analysis. For 26 of them, CsHx interferences were either negligible or could be corrected with confidence. They exhibit typical s‐process Ba isotopic patterns with slightly higher than solar 134Ba/136Ba and lower than solar 135,137,138Ba/136Ba ratios. Results are generally well explained in the context of neutron capture nucleosynthesis in low mass (1–3 M) AGB stars and provide constraints on AGB models, by reducing the needed 13C spread from factor of ~20 down to 2. Out of the 19 supernova X grains, three had sufficient concentrations for isotopic analysis. They tend to exhibit higher than solar 134Ba/136Ba and 138Ba/136Ba ratios, close to solar 137Ba/136Ba, and 135Ba/136Ba lower than solar but higher than in mainstream grains. This signature could indicate a mixture of n‐burst type Ba with either “normal Ba” more s‐process‐rich than solar, or normal Ba plus weak s‐process Ba. In the n‐burst component Cs may have to be separated from Ba at ~10 years after the SN explosion. Depending on predictions for its composition, another possibility is early separation (at ~1 year) coupled with addition of some unfractionated n‐burst matter. Abundances of trace elements (Sr, Zr, Cs, La, and Ce) analyzed along with Ba signify that implantation may have been an important process for their introduction.  相似文献   

5.
Abstract— Presolar SiC from the Indarch (EH4) meteorite was studied by scanning electron microscopy (SEM), by ion probe analysis for C and Si isotopic compositions, and by static source mass spectrometry for noble gas and C isotopic compositions. The data obtained are compared to SiC data from other meteorites, especially from Murchison (CM2), for which there is the most information available. The isotopic compositions of the major elements in SiC from Indarch and Murchison are similar. Stepped combustion data suggest a mean δ13C for SiC from both meteorites of ~+1430%o. Silicon isotopes in Indarch and Murchison SiC also compare well. In some other important respects, however, SiC in the two meteorites are different. Morphologically, SiC from Indarch appears finer grained than SiC from Murchison and is entirely composed of submicron grains. The finer-grained nature of Indarch SiC is confirmed by its noble gas characteristics. The mean Ne-E/Xe-S ratio for bulk Indarch SiC is significantly lower than the same ratio in Murchison (625 ± 47 vs. ~3500) but is similar to that of the finest grain-size fractions (<1 μm) in Murchison. A comparison of noble gas data from SiC from several different meteorites suggests that it might be Murchison SiC, rather than Indarch SiC, that is unusual. The grain-size disparities in SiC between meteorites are difficult to explain by residue processing differences or differing parent body processing. Instead, we speculate that a grain-size sorting mechanism for SiC may have operated in the solar nebula.  相似文献   

6.
We studied 14 presolar SiC mainstream grains for C‐, Si‐, and S‐isotopic compositions and S elemental abundances. Ten grains have low levels of S contamination and CI chondrite‐normalized S/Si ratios between 2 × 10?5 and 2 × 10?4. All grains have S‐isotopic compositions compatible within 2σ of solar values. Their mean S isotope composition deviates from solar by at most a few percent, and is consistent with values observed for the carbon star IRC+10216, believed to be a representative source star of the grains, and the interstellar medium. The isotopic data are also consistent with stellar model predictions of low‐mass asymptotic giant branch (AGB) stars. In a δ33S versus δ34S plot the data fit along a line with a slope of 1.8 ± 0.7, suggesting imprints from galactic chemical evolution. The observed S abundances are lower than expected from equilibrium condensation of CaS in solid solution with SiC under pressure and temperature conditions inferred from the abundances of more refractory elements in SiC. Calcium to S abundance ratios are generally above unity, contrary to expectations for stoichiometric CaS solution in the grains, possibly due to condensation of CaC2 into SiC. We observed a correlation between Mg and S abundances suggesting solid solution of MgS in SiC. The low abundances of S in mainstream grains support the view that the significantly higher abundances of excess 32S found in some Type AB SiC grains are the result of in situ decay of radioactive 32Si from born‐again AGB stars that condensed into AB grains.  相似文献   

7.
Abstract– We have analyzed eleven presolar SiC grains from the Murchison meteorite using time‐of‐flight secondary ion mass spectrometry. The Si isotopic compositions of the grains indicate that they are probably of an AGB star origin. The average abundances of Mg, Fe, Ca, Al, Ti, and V are strongly influenced by their condensation behavior into SiC in circumstellar environments. Depth profiles of Li, B, Mg, Al, K, Ca, Ti, V, Cr, and Fe in the SiC grains show that trace elements are not always homogenously distributed. In approximately half of the SiC grains studied here, the trace element distributions can be explained by condensation processes around the grains’ parent stars. These grains appear to have experienced only minimal processing before their arrival in the presolar molecular cloud, possibly due to short residence times in the interstellar medium. The remaining SiC grains contained elevated abundances of several elements within their outer 200 nm, which is attributed to the implantation of energetic ions accelerated by shockwaves in the interstellar medium. These grains may have spent a longer period of time in this region, hence increasing the probability of them passing through a shockfront. Distinct groups of presolar SiC grains whose residence times in the interstellar medium differ are consistent with previous findings based on noble gas studies, although some grains may also have been shielded from secondary alteration by protective outer mantles.  相似文献   

8.
Abstract— Because the path of the Murchison meteorite fortuitously intersected the Earth's path at an angle of only a few degrees, the visual observations establish the entry velocity to be within 2 km/s of 13 km/s and determine the nature of its orbit with a precision quite unusual for visually sighted falls.  相似文献   

9.
Abstract— Through freeze-thaw disaggregation of the Murchison meteorite, we have recovered a refractory inclusion, HIB-11, that is unique in terms of its texture, mineral compositions, and bulk composition. It consists of anhedral, Y-rich (1.6 wt% Y2O3) perovskite and lathlike spinel grains enclosed in a matrix of fine-grained, Sc-rich (10.5 wt% SC2O3 avg.), Ti-rich (12.6 wt% TiO2 avg., reporting all Ti as TiO2) clinopyroxene. The chondrite-normalized rare earth element (REE) pattern is complex, with light REE (LREE) at ~10× C1, abundances increasing from Gd through Ho (the latter at ~104× C1), decreasing through Yb at 200× C1, and Lu at ~400× C1. The pattern reflects several stages of high-temperature volatility fractionation. Removal of Lu and Er from the source gas in the first condensation event was followed by partial to complete removal of the somewhat less refractory heavy REE, Gd through Ho, in the HIB-11 precursors by condensation from the fractionated residual gas in a second event. Both of these events probably reflect condensation of REE into ZrO2 or a mixed Zr-, Sc-, Ti-, Y-oxide at temperatures too high for hibonite stability. A second, lower-temperature component, which was subsequently added, had fractionated (Nd-poor, Ce-rich) LREE abundances that resulted from condensation from a gas that had undergone prior removal of the more refractory LREE, resulting in enrichment in Ce and the most volatile REE, Eu and Yb. The aggregate was then melted and quickly cooled, forming a fine-grained spherule. This is the first reported inclusion in which the two most refractory REE, Lu and Er, are strongly fractionated from the other REE. An absence of mass fractionation among the Ti isotopes indicates that HIB-11 is not an evaporative residue, implying that volatility fractionation of trace elements took place during condensation. The fact that the two most refractory heavy REE could be separated from the other, only slightly less refractory heavy REE suggests that a wide variety of REE patterns is possible, and that ultrarefractory inclusions with other unusual REE patterns, important recorders of nebular condensation, may yet be discovered.  相似文献   

10.
Compound‐specific carbon isotope analysis (δ13C) of meteoritic organic compounds can be used to elucidate the abiotic chemical reactions involved in their synthesis. The soluble organic content of the Murchison carbonaceous chondrite has been extensively investigated over the years, with a focus on the origins of amino acids and the potential role of Strecker‐cyanohydrin synthesis in the early solar system. Previous δ13C investigations have targeted α‐amino acid and α‐hydroxy acid Strecker products and reactant HCN; however, δ13C values for meteoritic aldehydes and ketones (Strecker precursors) have not yet been reported. As such, the distribution of aldehydes and ketones in the cosmos and their role in prebiotic reactions have not been fully investigated. Here, we have applied an optimized O‐(2,3,4,5,6‐pentafluorobenzyl)hydroxylamine (PFBHA) derivatization procedure to the extraction, identification, and δ13C analysis of carbonyl compounds in the Murchison meteorite. A suite of aldehydes and ketones, dominated by acetaldehyde, propionaldehyde, and acetone, were detected in the sample. δ13C values, ranging from ?10.0‰ to +66.4‰, were more 13C‐depleted than would be expected for aldehydes and ketones derived from the interstellar medium, based on interstellar 12C/13C ratios. These relatively 13C‐depleted values suggest that chemical processes taking place in asteroid parent bodies (e.g., oxidation of the IOM) may provide a secondary source of aldehydes and ketones in the solar system. Comparisons between δ13C compositions of meteoritic aldehydes and ketones and other organic compound classes were used to evaluate potential structural relationships and associated reactions, including Strecker synthesis and alteration‐driven chemical pathways.  相似文献   

11.
Abstract— The Murchison meteorite is a carbonaceous chondrite containing a small amount of chondrules, various inclusions, and matrix with occasional porphyroblasts of olivine and/or pyroxene. It also contains amino acids that may have served as the necessary components for the origin of life. Magnetic analyses of Murchison identify an ultrasoft magnetic component due to superparamagnetism as a significant part of the magnetic remanence. The rest of the remanence may be due to electric discharge in the form of lightning bolts that may have formed the amino acids. The level of magnetic remanence does not support this possibility and points to a minimum ambient field of the remanence acquisition. We support our observation by showing that normalized mineral magnetic acquisition properties establish a calibration curve suitable for rough paleofield determination. When using this approach, 1–2% of the natural remanence left in terrestrial rocks with TRM and/or CRM determines the geomagnetic field intensity irrespective of grain size or type of magnetic mineral (with the exception of hematite). The same method is applied to the Murchison meteorite where the measured meteorite remanence determines the paleofield minimum intensity of 200–2000 nT during and/or after the formation of the parent body.  相似文献   

12.
Abstract— One hundred forty-three carbon grains, ranging in size from 2 to 8 μm, from two chemical and physical separates from the Murchison CM2 chondrite, were analyzed by ion microprobe mass spectrometry for their C- and N-isotopic compositions. Both separates are enriched in the exotic noble gas component Ne-E(L). Ninety grains were also analyzed for their H and O contents and 118, for Si. Thirteen grains were analyzed by micro-sampling laser Raman spectroscopy. Round grains have large C-isotopic anomalies with 12C/13C ratios ranging from 7 to 4500 (terrestrial ratio = 89). Nitrogen in these grains is also anomalous but shows much smaller deviations from the terrestrial composition, 14N/15N ratios ranging from 193 to 680 (terrestrial ratio = 272). Spherulitic aggregates and non-round compact grains have normal C-isotopic ratios but 15N excesses (up to 35%). Raman spectra of the analyzed grains indicate varying degrees of crystalline disorder of graphite with estimated in-plane crystallite dimensions varying from 18 Å (highly disordered, similar to terrestrial kerogen) to ~750 Å (well-crystallized graphite). Element contents of H, O, and Si are correlated with one another, and H and O are probably present in the form of organic molecules. On the basis of morphology, the round grains fall into two groups: grains with smooth, shell-like surfaces (“onions”) and grains that appear to be dense aggregates of small scales (“cauliflowers”). “Onions” tend to have lower trace element contents, isotopically light C (12C/13C > 89) and a high degree of crystalline order, whereas “cauliflowers” have a larger spread in trace element contents and C-isotopic ratios (they range from isotopically light to heavy) but tend to have a low degree of crystalline order. However, these differences exist only on average, and no clear distinction can be made for individual grains. A few limited conclusions can be drawn about the astrophysical origin of the carbon grains of this study. The 15N excesses in spherulitic aggregates and non-round grains can be explained as the result of ion-molecule reactions in molecular clouds. The round grains, on the other hand, must have formed in stellar atmospheres (circumstellar grains). Grains with isotopically light C must have formed in stellar environments characterized by He-burning, either in the atmosphere of Wolf-Rayet stars during the WC phase or in the He-burning, 12C-rich zone of a massive star, ejected by a supernova explosion. Isotopically heavy C is produced by H-burning in the CNO cycle. Possible sources for grains with heavy C are carbon stars (AGB stars during the thermally pulsing phase) or novae, but the detailed distribution of 12C/13C ratios agree neither with the distribution observed in carbon stars nor with theoretical predictions for these two types of stellar sources.  相似文献   

13.
Abstract– The molecular structure of the insoluble organic matter (IOM) from Murchison meteorite has been investigated by our group for several years using a large set of analytical methods including various spectroscopies (Fourier transform infrared spectroscopy, nuclear magnetic resonance, electron paramagnetic resonance, X‐ray absorption near‐edge spectroscopy), high resolution electron microscopy, and thermal (pyrolyses in the presence or not of tetramethylammonium hydroxide) and chemical (RuO4 oxidation) degradations. Taken together, these techniques provided a wealth of qualitative and quantitative information, from which we derived 11 elemental and molecular parameters on the same IOM residue. In addition to the basic elemental composition, these parameters describe the distribution of the different types of carbon, nitrogen, and sulfur atoms as well as the size of the polyaromatic units. For this molecular structure, we therefore propose a model which fits with these 11 molecular quantitative parameters. Several cosmochemical implications are derived from this structure. Based on the fact that aromatic moieties are highly substituted and aliphatic chains highly branched, it can be anticipated that the synthesis of this IOM occurred through successive additions of single carbon units in the gas‐phase ending by a spontaneous cyclization for chain length ≥7 C. As a whole, these observations favor an organosynthesis in the solar T‐Tauri disk.  相似文献   

14.
Abstract— Visual reports of the fall of the Murchison meteorite constrain the time of arrival to within approximately one minute of 00:58 UT 28 September 1969 and indicate an azimuth close to south east. On the basis of recent orbital and radiant determinations, reference is made to the apparent similarities with the theoretical radiant for meteors associated with Comet P/Finlay and orbital similarities with Apollo asteroid 1979 VA.  相似文献   

15.
Spectra of objects which lie along several lines of sight through the diffuse interstellar medium (DISM) reveal an absorption feature near 3.4 micrometers, which has been attributed to saturated aliphatic hydrocarbons on interstellar grains. The similarity of the absorption bands near 3.4 micrometers (2950 cm-1) along different lines of sight indicates that the carrier of this band lies in the diffuse dust. Several materials have been proposed as "fits" to the 3.4 micrometers feature over the years. A comparison of these identifications is presented. These comparisons illustrate the need for high resolution, high signal-to-noise observational data as a means of distinguishing between laboratory organics as matches to the interstellar material. Although any material containing hydrocarbons will produce features in the 3.4 micrometers region, the proposed "matches" to the DISM do differ in detail. These differences may help in the analyses of the chemical composition and physical processes which led to the production of the DISM organics, although ISO Observations through the 5-8 micrometers spectral region are essential for a definitive identification. A remarkable similarity between the spectrum of the diffuse dust and an organic extract from the Murchison meteorite suggests that some of the interstellar organic material may be preserved in primitive solar system bodies. The 3.4 micrometers absorption feature (in the rest frame) has recently been detected in external galaxies, indicating the widespread availability of organic material for incorporation into planetary systems.  相似文献   

16.
This work applies the well-known supernova-trigger hypothesis for solar system formation to explain in detail many properties of the Allende meteorite. The Allende carbonaceous chondrite meteorite is an assemblage of millimetre- to centimetre-sized Ca-Al-rich inclusions (CAI's), fine-grained alkali-rich spinel aggregates, amoeboid olivine aggregates, olivine chondrules and sulfide chondrules set in an extremely fine-grained black matrix. Detailed isotopic, chemical and textural properties show that these components formed in the above order as independent cosmic grains. Some CAI's containmicron-sized metal nuggets in which the normally incompatible refractory (Mo, Re, W) and platinum group (Pt, Os, Ir, Ru) metals are alloyed together in approximately cosmic proportions, suggesting that these nuggets also condensed as cosmic grains.From the consistent pattern of enclosure of earlier components on the above list within later ones, it appears that in the environment where these materials formed, condensation moved inexorably in the direction of increasing olivine and decreasing refractory element and16O content (from 4% excess16O to normal terrestrial oxygen isotopic composition). Condensation sequences are all short and incomplete, from which it is concluded that condensing materials were soon separated from the condensing environment and isolated until all were brought together in a final snowstorm of fine-grained, olivine crystals constituting the meteorite matrix.These major properties can be accounted for in a model in which a supernova remnant (SNR) in the snowplow phase, whose oxygen was initially pure16O, pushes into a dark interstellar cloud. In the model, condensation of CAI's begins in the SNR shell when it has been diluted with 2500 times its mass of matter from the cloud, which also in part explains the rarity of observed isotopic anomalies in CAI's. The retardation of the SNR by the cloud propels condensed grains ahead toward the cloud under their own momentum. Continuing dilution by the cloud and continuing removal of the most refractory elements in grains can explain the evolving patterns of fractionation and depletion of refractory elements, including REE's, in successive condensates. Features such as rims on CAI's and concentric zonation of fine-grained aggregates can also be satisfied in the model. A presolar origin and a short ( 10 000 years) formation time for inclusions in carbonaceous chondrites are major implications of the model.Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

17.
Abstract— We performed shock‐recovery experiments on insoluble organic matter (IOM) purified from the Murchison meteorite, and determined the abundances and isotope ratios of hydrogen and carbon in the shocked IOM sample. We also performed shock experiments on type III kerogen and compared the results of these experiments with the experimental results regarding IOM. The shock selectively released D and 13C from the IOM, while it preferably released H and 12C from the kerogen. The release of these elements from IOM cannot be explained in terms of the isotope effect, whereas their release from kerogen can be explained by this effect. The selective release of heavier isotopes from IOM would be due to its structure, in which D and 13C‐enriched parts are present as an inhomogeneity and are weakly attached to the main network. Shock gave rise to a high release of D even at a lower degree of dehydrogenation compared with the stepwise heating of IOM. This effective release of D is probably an inherent result of shock, in which a dynamic high‐pressure and high‐temperature condition prevails. Thus, shock would effectively control the hydrogen isotope behavior of extraterrestrial organic matter during the evolution of the solar nebula.  相似文献   

18.
Abstract— Low molecular weight monocarboxylic acids, including acetic acid, are some of the most abundant organic compounds in carbonaceous chondrites. So far, the 13C‐ and D‐enriched signature of water‐extractable carboxylic acids has implied an interstellar contribution to their origin. However, it also has been proposed that monocarboxylic acids could be formed by aqueous reaction on the meteorite parent body. In this study, we conducted hydrous pyrolysis of macromolecular organic matter purified from the Murchison meteorite (CM2) to examine the generation of monocarboxylic acids with their stable carbon isotope measurement. During hydrous pyrolysis of macromolecular organic matter at 270–330 °C, monocarboxylic acids with carbon numbers ranging from 2 (C2) to 5 (C5) were detected, acetic acid (CH3COOH; C2) being the most abundant. The concentration of the generated acetic acid increased with increasing reaction temperature; up to 0.48 mmol acetic acid/g macromolecular organic matter at 330 °C. This result indicates that the Murchison macromolecule has a potential to generate at least ?0.4 mg acetic acid/g meteorite, which is about four times higher than the amount of water‐extractable acetic acid reported from Murchison. The carbon isotopic composition of acetic acid generated by hydrous pyrolysis of macromolecular organic matter is ?‐27‰ (versus PDB), which is much more depleted in 13C than the water‐extractable acetic acid reported from Murchison. Intramolecular carbon isotope distribution shows that methyl (CH3‐)‐C is more enriched in 13C relative to carboxyl (‐COOH)‐C, indicating a kinetic process for this formation. Although the experimental condition of this study (i.e., 270–330 °C for 72 h) may not simulate a reaction condition on parent bodies of carbonaceous chondrite, it may be possible to generate monocarboxylic acids at lower temperatures for a longer period of time.  相似文献   

19.
Abstract— The radicals in the insoluble organic matter (IOM) from the Tagish Lake meteorite were studied by electron paramagnetic resonance and compared to those existing in the Orgueil and Murchison meteorites. As in the Orgueil and Murchison meteorites, the radicals in the Tagish Lake meteorite are heterogeneously distributed and comprise a substantial amount (?42%) of species with a thermally accessible triplet state and with the same singlet‐triplet gap, ΔE ?0.1 eV, as in the Orgueil and Murchison meteorites. These species were identified as diradicaloid moieties. The existence of similar diradicaloid moieties in three different carbonaceous chondrites but not in terrestrial IOM strongly suggests that these moieties could be “fingerprints” of the extraterrestrial origin of meteoritic IOM and markers of its synthetic pathway before its inclusion into a parent body.  相似文献   

20.
Abstract— We investigate heterogeneous nucleation and growth of graphite on precondensed TiC grains in the gas outflows from carbon‐rich asymptotic giant branch (AGB) stars employing a newly‐derived heterogeneous nucleation rate taking into account of the chemical reactions at condensation. Competition between heterogeneous and homogeneous nucleations and growths of graphite is investigated to reveal the formation conditions of the TiC core‐graphite mantle spherules found in the Murchison meteorite. It is shown that no homogeneous graphite grain condenses whenever TiC condenses prior to graphite in the plausible ranges of the stellar parameters. Heterogeneous condensation of graphite occurs on the surfaces of growing TiC grains, and prevents the TiC cores from reaching the sizes realized if all available Ti atoms were incorporated into TiC grains. The physical conditions at the formation sites of the TiC core‐graphite mantle spherules observed in the Murchison meteorite are expressed by the relation 0.2 < n?0.1 (M5/ζ)?1/2L41/4 < 0.7, where v0.1 is the gas outflow velocity at the formation site in units of 0.1 km s?1, M5 the mass loss rate in 10?5 M⊙ year?1, L4 the stellar luminosity in 104 L⊙, and M/ζ is the effective mass loss rate taking account of non‐spherical symmetry of the gas outflows. The total gas pressures Pc at the formation sites for the effective mass loss rates M/ζ = 10?5‐10?3 M⊙ year?1 correspond to 0.01 < Pc < 0.9 dyn cm?2, implying that the observed TiC core‐graphite mantle spherules are formed not only at the superwind stage but also at the earlier stage of low mass loss rates. The constraint on the C/O abundance ratio, 1 < ? ? 1.03, is imposed to reproduce the observed sizes of the TiC cores. The derived upper limit of the C/O ratio is lower than the values estimated from the calculations without taking into account of heterogeneous condensation of graphite, and is close to the lower end of the C/O ratios inferred from the astronomical observations of carbon‐rich AGB stars. Brief discussion is given on other types of graphite spherules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号