首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A slab of the Willamette ungrouped iron contains elongated troilite nodules (up to ~2 × 10 cm) that were crushed and penetrated by wedges of crushed metal during a major impact event. What makes this sample unique is the contrast between the large amount of shock damage and the very small (~1%) amounts of shock melting in the large troilite nodules. The postshock temperature was low, probably ?960 °C. The Widmanstätten pattern has been largely obscured by an episode of postshock annealing that caused recrystallization of the kamacite. The shock and thermal history of Willamette includes (1) initial crystallization and formation of multicentimeter‐size troilite nodules from trapped melt, (2) impact‐induced melting of metal‐sulfide assemblages to form lobate taenite masses a few hundred micrometers in size, (3) impact‐crushing of the nodules and jamming of metal wedges into them, (4) simultaneous crushing of metal grains adjacent to sulfide throughout the meteorite, (5) postshock annealing causing minor recrystallization of metal and troilite, and (6) a late‐stage shock event (and additional annealing) producing Neumann lines in the kamacite.  相似文献   

2.
Hypervelocity impacts occur on bodies throughout our solar system, and play an important role in altering the mineralogy, texture, and magnetic properties in target rocks at nanometer to planetary scales. Here we present the results of hypervelocity impact experiments conducted using a two-stage light-gas gun with 5 mm spherical copper projectiles accelerated toward basalt targets with ~6 km s−1 impact velocities. Four different types of magnetite- and titanomagnetite-bearing basalts were used as targets for seven independent experiments. These laboratory impacts resulted in the formation of agglutinate-like particles similar in texture to lunar agglutinates, which are an important fraction of lunar soil. Materials recovered from the impacts were examined using a suite of complementary techniques, including optical and scanning electron microscopy, micro-Raman spectroscopy, and high- and low-temperature magnetometry, to investigate the texture, chemistry, and magnetic properties of newly formed agglutinate-like particles and were compared to unshocked basaltic parent materials. The use of Cu-projectiles, rather than Fe- and Ni-projectiles, avoids magnetic contamination in the final shock products and enables a clearer view of the magnetic properties of impact-generated agglutinates. Agglutinate-like particles show shock features, such as melting and planar deformation features, and demonstrate shock-induced magnetic hardening (two- to seven-fold increases in the coercivity of remanence Bcr compared to the initial target materials) and decreases in low-field magnetic susceptibility and saturation magnetization.  相似文献   

3.
Ostryakov  V.M.  Stovpyuk  M.F. 《Solar physics》1999,189(2):357-372
The energy and charge spectra of Fe ions accelerated in gradual events are calculated numerically. Our results are compared with the available observations. Stripping of Fe ions by thermal electrons and protons during ion acceleration in the solar corona results in the dependence of mean charge barq Feon energy. We consider the influence of varying plasma parameters (temperature T, number density N, and spectral index of turbulence S) on the charge distribution of iron. Our calculations indicate T106 K and N(0.5–1)×1010 cm–3at the accelerating site, provided the characteristic acceleration time is about 1 s. The calculated charge spectra for S>2 and S<2 turn out to be different, but some theoretical and experimental uncertainties do not yet allow this parameter to be extracted from observational data. The theoretically obtained charge distributions of Fe could be important in the light of ACE spacecraft data which are currently available for analysis.  相似文献   

4.
Electron microscopy has confirmed the existence of both body centered cubic (BBC)-α metal and face centered cubic (FCC)-γ metal in lunar fines and breccia samples. Under appropriate conditions of composition, size, and other constraints iron-nickel alloys can exist as FCC phases over the entire range from 0 to 100% nickel. Lunar rock magnetism research has not generally considered the implications of structures, mechanisms, crystallography, and possible interaction effects in fine particle metal. FCC metal is antiferromagnetic (? 30 wt % nickel) and would be measured in the paramagnetic component, showing a cryogenic temperature Neel point; only BCC metal would figure in the estimation of the free iron content based on saturation magnetization measurements. Evidence is presented for changes in saturation magnetization, magnetic remanence, and coercivity, and for the introduction of magnetic anisotropy when FCC metal transforms to BCC metal. From the results in the published metallurgical literature it is inferred that the induced magnetic anisotropy observed during plastic deformation of fine FCC iron precipitates in a copper matrix is associated with uniaxial development of BCC plates in the FCC precipitate. Directional impulse or any uniaxial deformation may produce magnetic anisotropy if FCC metal is made to transform to BCC metal (theγα M transformation), and there will be an angular dependence for remanence acquisition, because of shape, which must be considered in paleointensity determinations. It should be noted that the transformation can be activated at any temperature below the Curie point of the BCC metal High field rotational hysteresis (Wr) has been measured in lunar fines and rocks, indicating that exchange anisotropy and/or ferromagnetic minerals with large uniaxial anisotropy exist in the lunar samples. The following are possible sources of the hysteresis:
  1. Fine intergrowths of spinels or other nonequilibrium phase intergrowths developed during subsolidus reduction;
  2. Fine particle intergrowths of iron and iron sulfide;
  3. Iron and wustite or magnetite due to fine particle oxidation;
  4. Ferromagnetic (BCC) and antiferromagnetic (FCC) metallic intergrowths.
  相似文献   

5.
David Stevenson 《Icarus》1974,22(4):403-415
The origin and maintenance of planetary magnetic fields are discussed. The discussion is not limited to dynamo theories although these are almost universally favored. Thermoelectric currents are found to be a possible alternative for Jupiter. Two energy sources for dynamos are considered: convection and precessionally induced fluid flow. The earth is the most favorabl planet for a precessionally driven dynamo, although Neptune is a possibility. Jupiter is likely to have a convectionally driven dynamo, as may Saturn, but the relevant properties of Saturn are not yet well known. Conclusions for each planet are given.  相似文献   

6.
During the past decade, significant advances in thein situ measurements of planetary magnetic fields have been made. The U.S.A. and U.S.S.R. have conducted spacecraft investigations of all the planets, from innermost Mercury out to Jupiter. Unexpectedly, Mercury was found to possess a global magnetic field but neither the Moon nor Venus do. The results at Mars are incomplete butif a global field exists, it is clearly quite weak. The main magnetic field of Jupiter has been measured directly for the first time and confirms, as well as augments appreciably, the past 2 decades of groundbased radio astronomical studies which provided indirect evidence of the field. Progress in developing analytically complete models of the dynamo process suggests a possible common origin for Mercury, Earth and Jupiter.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May, 1978.  相似文献   

7.
Lunar rock magnetism   总被引:2,自引:0,他引:2  
The relationship between the magnetization and temperature in a high constant magnetic field for a temperature range between 5 K and 1100 K was examined for Apollo 11, 12 and 14 lunar materials. The average value of Curie point temperature is (768.2 ± 3.5)°C for the lunar igneous rocks and (762.5 ± 3.4)°C for the lunar fines and breccias. A tentative conclusion about the ferromagnetic substance in the lunar materials would be that Fe is absolutely dominant with a slight association of Ni and Co, and probably Si also, in the lunar native irons.The antiferromagnetic phase of ilmenite and the paramagnetic phase of pyroxenes are considerably abundant in all lunar materials. However, a discrepancy of observed magnetization from a simulated value based on known magnetic elements for the temperature range between 10 and 40 K suggests that pyroxene phase represented by (M x Fe1-x ) SiO3 (whereM = Ca2+, Mg2+, etc and 0 x 1/4) also may behave antiferromagnetically.Magnetic hysteresis curves are obtained at 5 K and 300 K, and the viscous magnetic properties also are examined for a number of lunar materials. The superparamagnetically viscous magnetization has been experimentally proven as due to fine grains of metallic iron less than 200 Å in mean diameter. The viscous magnetization is dominant in the lunar fines and breccias which is classified into Type II, while it is much smaller than the stable magnetic component in lunar igneous rocks (Type I). The superparamagnetically fine particles of metallic iron are mostly blocked at 5 K in temperature; thus coercive force (H c ) and saturation remanent magnetization (I R ) become much large at 5 K as compared with the corresponding values at 300 K.Strongly impact-metamorphosed parts of lunar breccias have an extremely stable NRM which could be attributed to TRM. NRM of the lunar igneous rocks and majority of breccias (or clastic rocks) are intermediately stable, but their stability is considerably higher than that of IRM of the same intensity. This result may imply that some mechanism which causes an appreciable magnitude of NRM and the higher stability, such as the shock effect, may take place on the lunar surface in addition to TRM mechanism for special cases.A particular igneous rock (Sample 14053) is found to have an unusually strong magnetism owing to a high content of metallic iron (about 1 weight percent), and its NRM amounts to 2 × 10–3 emu/g. The abundance of such highly magnetic rocks is not known as yet but it seems that the observed magnetic anomalies on the lunar surface could be related to such highly magnetized rock masses.  相似文献   

8.
Viscous resistance to differential rotation causes a current whose magnetic field is proportional to the vorticity of the medium. The magnetic fields of stars and galaxies could arise in this manner, provided that the time scale for development of the field is reasonable. The latter condition (assuming Ohmic rather than synchroton dissipation) requires that the scale length for a galactic field be less than 3×1013 cm. It is suggested that there may be continual generation of field within the core of a vortex of this dimension in the galactic nucleus, the field lines then being carried outwards by expanding plasma. The main observational evidence in connection with solar, stellar and galactic magnetic fields is appraised in the context of the above theory.  相似文献   

9.
10.
Various lines of evidence indicate that permanent magnetization of lunar rocks, acquired during the early history of the Moon, is responsible for the weak (tens of gammas) and patchy magnetic field found at the surface of the Moon. It would be necessary to invoke a core dynamo (with all its important implications) in order to account for the inducing fieldB of not less than 103 in which lunar rocks acquired their stable permanent magnetization if no other source ofB can be found. In this connection we point out that the magnetic effects of high-velocity meteoroid impacts have not yet been ruled out. Indeed, according to rough calculations these effects might not be negligible and detailed studies would be worth carrying out. Shock waves followed by rarefaction waves would spread out into the body of the Moon from the area of impact, first demagnetizing any material shock-heated above the Curie temperature and then, as the material cools rapidly during the passage of the rarefaction wave, re-magnetizing the material to an intensity determined by the background fieldB. The main source ofB would be the pulse of electric current generated by magneto-hydrodynamic interaction between the electrically-conducting ejecta from the explosion and the weak ambient interplanetary magnetic field.This impact dynamo hypothesis also has possible implications concerning the magnetism of meteorites.  相似文献   

11.
Vandas  M.  Karlický  M. 《Solar physics》2000,197(1):85-99
It is commonly believed that solar type II bursts are caused by accelerated electrons at a shock front. Holman and Pesses (1983) suggested that electrons creating type II bursts are accelerated by the shock drift mechanism. Zlobec et al. (1993) dealt with a fine structure of type II bursts (herringbones) and suggested a qualitative model where electrons are accelerated by a nearly perpendicular wavy shock front. Using this idea, we developed a model of electron acceleration by such a wavy shock front. Electrons are accelerated by the drift mechanism in the shock layer. Under simplifying assumptions it is possible to obtain an analytical solution of electron motion in the wavy shock front. The calculations show that electrons are rarely reflected more than once at the wavy shock front and that their final energy is mostly 1–3 times the initial one. Their acceleration does not depend significantly on shock spatial parameters. In the present model all electrons are eventually transmitted downstream where they form two downstream beams. Resulting spectral and angular distributions of accelerated electrons are presented and the relevance of the model to the herringbone beams is discussed.  相似文献   

12.
Der erste Teil dieser einführenden Übersicht behandelt die Konzentration magnetichen Flusses zu kleinen Elementen, die hohe elektrische Leitfähigkeit und die überadiabatische Schichtung als Hauptursachen dafür, die Beziehung dieser „Flußröhren”︁ zum mittleren Feld, und die Beobachtung des letzteren. Im zweiten werden Näherungen und Erfolge der kinematischen Dynamotheorie mittlerer Felder diskutiert. In der Form des αω-Dynamos kann dieser Theorie Umpolungen, Zonenwanderung, Dipolsymmetrie und andere Eigenschaften des mittleren Sonnenfeldes erklären. Im dritten Teil wird der Aufstieg magnetischen Flusses aus der solaren Konvektionszone besprochen. Der tiefste Teil dieser Zone, oder eine Übergangsschicht unter ihr, kommt als Scherungszone des Dynamos am ehesten in Frage. Weitere dynamische Eigenschaften des solaren Magnetismus werden im vierten Teil diskutiert, insbesondere Modelle von Grenzyklen und chaotische Modelle, und im Zusammenhang damit die Frage der Phasentabilität des Sonnenzyklus.  相似文献   

13.
The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.  相似文献   

14.
Partial thermal remanence experiments on lunar igneous rocks indicate that the magnetization of lunar rocks is not a normal single component thermoremanent magnetization. The magnetization therefore may not have been acquired at the time of initial cooling of the rock and thus should be used cautiously in making estimates of the intensity of the ancient lunar magnetic field.Contribution No. 201, Geosciences Division, The University of Texas at Dallas.  相似文献   

15.
Neutron star inner cores with several charged baryonic components are likely to be analogues of the two-gap superconductor which is of current interest in condensed-matter physics. Consequently, type I superconductivity is less probable than type II but may nevertheless be present in some intervals of matter density. The intermediate-state structure formed at finite magnetic flux densities after the superconducting transitions is subject to buoyancy, frictional and neutron vortex interaction forces. These are estimated and it is shown that the most important frictional force is that produced by the stable stratification of neutron star matter, the irreversible process being diffusion in the normal, finite magnetic flux density, parts of the structure. The length-scale of the structure, in directions perpendicular to the local magnetic field is of crucial importance. For small scales, the flux comoves with the neutron vortices, as do the proton vortices of a type II superconductor. But for much larger length-scales, flux movement tends to that expected for normal charged Fermi systems.  相似文献   

16.
It is well known that adiabatic shocks in ordinary gases are stable to both tranverse and longitudinal perturbations, but this need not be true if there are significant thermal effects due to chemical reactions or cooling processes. For example, detonation waves in gases are observed to form cellular structures if the chemical reaction is sufficiently temperature sensitive and a similar instability occurs in radiative shocks in the ISM if their speed exceeds 150 km s–1. This means that interstellar shocks will be subject to this radiative instability in many cases. The temperature sensitivity of the nuclear reactions in Type I supernovae is also such that we would expect detonation waves in these objects to have a cellular structure.  相似文献   

17.
A self-consistent statistical approach to the problem of planetary and stellar magnetism is suggested. The mechanism of magnetic field generation in the astronomical objects, where the existence of fields is associated with the axial rotation of objects, is discussed. In the general case the light pressure, the centrifugal, gravitational and other forces produce partial -separation of the charges. As a result of the system rotation, the magnetic fields of the currents of these charges are not compensated. The influence of various factors on the magnetic field of some object is analysed.  相似文献   

18.
Rekha Jain  B. Roberts 《Solar physics》1994,152(1):261-266
The effect onp-mode frequencies of a horizontal chromospheric canopy field is studied theoretically and the results compared with Libbrecht and Woodard's observations of frequency changes. Combined changes in field strength and chromospheric temperature cause frequency shifts that are similar in form to those observed. Frequency shifts inp-modes offer the possibility of signatures of solar activity cycles distinct from sunspot numbers and butterfly diagrams.  相似文献   

19.
Shock surfing acceleration   总被引:1,自引:0,他引:1  
Analytical and numerical analysis identify shock surfing acceleration as an ideal pre-energization mechanism for the slow pick-up ions at quasiperpendicular shocks. After gaining sufficient energy by shock surfing, pick-up ions undergo diffusive acceleration to reach their observed energies. Energetic ions upstream of the cometary bow shock, acceleration of solar energetic particles by magnetosonic waves in corona, ion enhancement in interplanetary shocks, generation of anomalous cosmic rays from interstellar pick-up ions at the termination shock are some of the cases where shock surfing acceleration apply. Inclusion of the lower-hybrid wave turbulence into the laminar model of shock surfing can explain the preferential acceleration of heavier particles as observed by Voyager at the termination shock. At relativistic energies, unlimited acceleration of ions is theoretically possible; because for sufficiently strong shocks main limitation of the mechanism, caused by the escape of accelerated particles downstream of the shock during acceleration no longer exists.  相似文献   

20.
This study aims at investigating surface magnetic flux participation among different types of magnetic features during solar cycle 24. State-of-the-art observations from SDO/HMI and Hinode/SOT are combined to form a unique database in the interval from April 2010 to October 2015. Unlike previous studies, the statistics presented in this paper are feature-detection-based. More than 20 million magnetic features with relatively large scale, such as sunspot/pore, enhanced and quiet networks, are automatically detected and categorized from HMI observations, and the internetwork features are identified from SOT/SP observations. The total flux from these magnetic features reaches 5.9×1022 Mx during solar minimum and2.4 × 1023 Mx in solar maximum. Flux occupation from the sunspot/pore region is 29% in solar maximum.Enhanced and quiet networks contribute 18% and 21% flux during the solar minimum, and 50% and 9% flux in the solar maximum respectively. The internetwork field contributes over 55% of flux in the solar minimum, and its flux contribution exceeds that of sunspot/pore features in the solar maximum. During the solar active condition, the sunspot field increases its area but keeps constant flux density of about 150 G,while the enhanced network follows the sunspot number variation showing increasing flux density and area,but the quiet network displays decreasing area and somewhat increasing flux density of about 6%. The origin of the quiet network is not known exactly, but is suggestive of representing the interplay between mean-field and local dynamos. The source, magnitude and possible importance of ‘hidden flux' are discussed in some detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号