首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Detailed analysis of cumulate and melt inclusion assemblages in the chassignites provide important constraints on the nature of the melt trapped as inclusions in cumulus olivine (and, by extension, parental magma compositions), the pressures of crystallization, and magmatic volatile contents. These mineral assemblages show strong similarities to the experimental fractionation assemblages that produce the sodic silica‐saturated alkalic lavas on Earth (e.g., Ascension Island, Azores, the Nandewar volcano of Australia). The experimental assemblages were produced from silica‐saturated hawaiite at pressures above 4.3 kbar with dissolved water contents above 0.5 wt%. Such pressures are consistent with Ti:Al ratios of the melt‐inclusion pyroxenes in the Chassigny meteorite. Pyroxene compositions suggest early high crystallization temperatures and thus relatively low initial water and F contents. Feldspars indicate that melt evolution proceeded to rhyolite compositions both within the interstices of the cumulate olivine and within the melt inclusions, even though rhyolitic glass is only found within olivine‐hosted polyphase melt inclusions. The observed rhyolite glass is compositionally similar to the alkali‐rich rhyolite of Ascension Island which is produced experimentally by crystallization of hawaiite. It is proposed that the melt trapped in cumulus olivine of the Chassigny dunite was similar to a terrestrial silica‐saturated hawaiite, while that trapped in olivine of the Northwest Africa (NWA) 2727 dunite was less evolved, perhaps mildly alkalic basalt. Melts similar to terrestrial intra‐plate tholeiite could be parental to the cumulus minerals and evolve upon crystallization at pressures above 4.3 kbar and water contents above ?0.4 wt% to mildly alkalic basalt, silica‐saturated hawaiite, and alkali‐rich rhyolite. The melt inclusion assemblages are inconsistent with either crystallization of a low‐Al, high‐Fe basalt, or low‐pressure crystallization of a terrestrial‐like tholeiite.  相似文献   

2.
Glass‐bearing inclusions hosted by different mineral phases in SNC meteorites provide important information on the conditions that prevailed during formation of early phases and/or on the composition of the primary trapped liquids/melts of these rocks. Although extensive previous work has been reported on such inclusions, several questions are still unresolved. We performed a chemical and petrographic study of the constituents (glasses and mineral assemblage) of glassy and multiphase inclusions in Shergotty and Chassigny. We focused on obtaining accurate trace element contents of glasses and co‐existing minerals and discussing their highly variable REE contents. Our results reveal an unusual geochemistry of trace element contents that appear to be independent of their major element compositions. Chemical equilibrium between phases inside inclusions as well as between glasses and host minerals could not be established. The LREE contents of glasses in glass inclusions can vary by up to two orders of magnitude. The depletion in trace element abundances shown by glasses seem to be inconsistent with these phases being residual melts. The light lithophile element contents of glasses are highly variable with enrichment in incompatible elements (e.g., Be, Sr, Ba, and LREE) indicating some processes involving percolation of fluids. All of these features are incompatible with glass‐bearing inclusions in the host minerals acting as closed systems preserving unmodified primary liquids/melts. Glass‐bearing inclusions in Shergotty and Chassigny appear to have been altered (as was the rock itself) by different postformational processes (e.g., shock, metamorphism, metasomatic [?] fluids) that affected these meteorites with different degree of intensity. Our results indicate that these inclusions could not preserve a reliable sample of the primary trapped melt.  相似文献   

3.
Abstract— Nakhla contains crystallized melt inclusions that were trapped in augite and olivine when these phases originally formed on Mars. Our study involved rehomogenization (slow‐heating and fast‐heating) experiments on multiphase melt inclusions in Nakhla augite. We studied melt inclusions trapped in augite because this phase re‐equilibrated with the external melt to a lesser extent than olivine and results could be directly compared with previous Nakhla melt inclusion studies. Following heating and homogenization of encapsulated melt inclusions, single mineral grains were mounted and polished to expose inclusions. Major element chemistry was determined by electron microprobe. The most primitive melt inclusion analyzed in Nakhla NA03 is basaltic and closely matches previously reported nakhlite parent melt compositions. MELTS equilibrium and fractional crystallization models calculated for NA03 and previous Nakhla parent melt estimates at QFM and QFM‐1 produced phase assemblages and compositions that can be compared to Nakhla. Of these models, equilibrium crystallization of NA03 at QFM‐1 produced the best match to mineral phases and compositions in Nakhla. In all models, olivine and augite co‐crystallize, consistent with the hypothesis that olivine is not xenocrystic but has undergone subsolidus re‐equilibration. In addition, measured melt inclusion compositions plot along the MELTS‐calculated liquid line of descent and may represent pockets of melt trapped at various stages during crystallization. We attempt to resolve discrepancies between previous estimates of the Nakhla parental melt composition and to reinterpret the results of a previous study of rehomogenized melt inclusions in Nakhla. Melt inclusions demonstrate that Nakhla is an igneous rock whose parent melt composition and crystallization history reflect planetary igneous processes.  相似文献   

4.
Abstract— Microbeam studies of Martian meteorites Dar al Gani (DaG) 476 and Allan Hills (ALH) 77005 have been conducted to identify potential causes of disequilibrium exhibited in their Sm‐Nd isotopic systematics. Olivine and maskelynite mineral fractions on the DaG 476 isochron are displaced relative to their positions as dictated by measured mineral compositions. The olivine mineral fractions from ALH 77005 not only have a relatively low Sm/Nd ratio, but appear to contain an unradiogenic component that shifts the olivine mineral fraction off the isochron defined by the pyroxene and maskelynite mineral fractions. Trace components such as melt inclusions, impact melt, high‐Si mesostasis, and altered olivine were analyzed using scanning electron microscopy, quantitative electron microscopy, and secondary ion mass spectrometry to determine their potential for disturbing the isotopic systematics of the mineral fractions, assuming that the mineral fractions were not completely pure. Mixing models indicate that the presence of melt inclusions in the DaG 476 olivine mineral fraction lowered its Sm/Nd ratio. The maskelynite mineral fraction contains a related but more evolved mesostasis component that raised the Sm/Nd ratio of the fraction. The position of two olivine mineral fractions below the ALH 77005 isochron is interpreted to reflect small additions of impact melt with a light rare earth element enriched pattern and a non‐indigenous, unradiogenic Nd component. Furthermore, the presence of rare earth elements in olivine and maskelynite from both igneous and non‐igneous components such as melt inclusions, mesostasis, and impact melt is observed on a fine (<30 μm) scale. Despite the addition of this material, the Sm‐Nd ages are not affected. This study demonstrates that detailed mineral separation procedures as employed by modern geochronology laboratories permit reliable ages to be derived from shocked and altered samples.  相似文献   

5.
Abstract— Terminal particles and mineral fragments from comet 81P/Wild 2 were studied in 16 aerogel tracks by transmission and secondary electron microscopy. In eight tracks clinopyroxenes with correlated Na2O and Cr2O3 contents as high as 6.0 wt% and 13.0 wt%, respectively, were found. Kosmochloric (Ko) clinopyroxenes were also observed in 4 chondritic interplanetary dust particles (IDPs). The Ko‐clinopyroxenes were often associated with FeO‐rich olivine ± Cr‐rich spinel ± aluminosilicate glass or albitic feldspar, assemblages referred to as Kool grains (Ko = kosmochloric Ca‐rich pyroxene, ol = olivine). Fine‐grained (submicron) Kool fragments have textures suggestive of crystallization from melts while coarse‐grained (>1 μm) Kool fragments are often glass‐free and may have formed by thermal metamorphism in the nebula. Average major and minor element distributions between clinopyroxenes and coexisting FeO‐rich olivines are consistent with these phases forming at or near equilibrium. In glass‐bearing fine‐grained Kool fragments, high concentrations of Na in the clinopyroxenes are inconsistent with existing experimentally determined partition coefficients at equilibrium. We speculate that the availability of Cr in the melt increased the clinopyroxene Na partition coefficient via a coupled substitution thereby enhancing this phase with the kosmochlor component. The high temperature minerals, fine‐grain sizes, bulk compositions and common occurrence in the SD tracks and IDPs support the idea that Kool grains could have been precursors to type II chondrules in ordinary chondrites. These grains, however, have not been observed in these meteorites suggesting that they were destroyed during chondrule formation and recycling or were not present in the nebula at the time and location where meteoritic chondrules formed.  相似文献   

6.
M.E. Varela  G. Kurat 《Icarus》2005,178(2):553-569
Glasses, in the Kaba CV3 chondrite, occur as mesostasis in chondrules and aggregates and as inclusions in olivines, both confined or open and connected to the mesostasis. The inclusions in olivine and the glassy mesostasis of aggregates seem to have formed contemporaneously. The confined glass inclusions and open inclusions in olivine were formed during olivine growth and the mesostasis glass during olivine aggregation. All glasses have high trace element contents (10-20×CI) with unfractionated CI-normalized abundances of refractory trace elements. In contrast, V, Mn, Li, and Cr are depleted in all glasses with respect to the refractory trace elements, as is Rb in the glass inclusions in olivine but not in the mesostasis glass. This abundance pattern indicates vapor fractionation and a common condensation origin for both glasses. Glasses of confined glass inclusions in olivine have a SiAlCa-rich composition with a chondritic Ca/Al ratio. Glasses of open glass inclusions and mesostasis are poor in Ca and enriched in alkalis. However, Ca contents of olivines indicate crystallization from a Ca-rich melt of a composition similar to that of the glass inclusions. In addition, trace element abundances indicate that these glasses (liquids) probably had an original composition similar to that of the inclusion glass. They apparently lost Ca in exchange for alkalis in a metasomatic exchange reaction, presumably with the vapor. There is now growing evidence that liquids can indeed condense from a solar nebula gas, provided the gas/dust ratio is sufficiently low. In these regions with enhanced oxygen fugacity as compared to that of a nebula of solar composition, liquids (the glass precursor) probably played an important role in growing crystals from the vapor by liquid-phase epitaxy. The glasses appear to be the remnants of this thin liquid layer interface that supported the growth of olivine from the vapor following the Vapor-Liquid-Solid process. This liquid will have a refractory composition and will have trace element contents which are in equilibrium with the vapor, and, therefore, will not change much during the time of olivine growth. The composition of the liquid seems to be unconstrained by the phases it is in contact with. Samples of this liquid will be retained as glass inclusions in olivine. The glassy mesostasis could also be a sample of this liquid that got trapped in inter-crystal spaces. The mesostasis glass subsequently behaved as an open system and its Ca was exchanged—presumably with the vapor—for the alkali elements Na, K, and Rb. In contrast, glass inclusions in olivine were protected by the host, could not react, and thus preserved the original composition of this liquid.  相似文献   

7.
An assemblage with FeNi metal, troilite, Fe‐Mn‐Na phosphate, and Al‐free chromite was identified in the metal‐troilite eutectic nodules in the shock‐produced chondritic melt of the Yanzhuang H6 meteorite. Electron microprobe and Raman spectroscopic analyses show that a few phosphate globules have the composition of Na‐bearing graftonite (Fe,Mn,Na)3(PO4)2, whereas most others correspond to Mn‐bearing galileiite Na(Fe,Mn)4(PO4)3 and a possible new phosphate phase of Na2(Fe,Mn)17(PO4)12 composition. The Yanzhuang meteorite was shocked to a peak pressure of 50 GPa and a peak temperature of approximately 2000 °C. All minerals were melted after pressure release to form a chondritic melt due to very high postshock heat that brought the chondrite material above its liquidus. The volatile elements P and Na released from whitlockite and plagioclase along with elements Cr and Mn released from chromite are concentrated into the shock‐produced Fe‐Ni‐S‐O melt at high temperatures. During cooling, microcrystalline olivine and pyroxene first crystallized from the chondritic melt, metal‐troilite eutectic intergrowths, and silicate melt glass finally solidified at about 950–1000 °C. On the other hand, P, Mn, and Na in the Fe‐Ni‐S‐O melt combined with Fe and crystallized as Fe‐Mn‐Na phosphates within troilite, while Cr combined with Fe and crystallized as Al‐free chromite also within troilite.  相似文献   

8.
Abstract— Scanning electron microscopy and energy-dispersive X-ray spectrometry of untreated interior chips from three different specimens of the Chassigny meteorite confirm the presence of discrete grains of Ca-carbonate, Mg-carbonate, and Ca-sulfate. Morphologies of these salt grains suggest that the Ca-carbonate is calcite (CaCO3) and that the Ca-sulfate is gypsum (CaSO4·2H2O) or bassanite (CaSO4·1/2H2O). The morphologic identification of the Mg-carbonate is equivocal, but rhombohedral and acicular crystal habits suggest magnesite and hydromagnesite, respectively. The salts in Chassigny occur as discontinuous veins in primary igneous minerals and are similar to those previously documented in the nakhlites, Nakhla and Lafayette, and in shergottite EETA79001. Unlike those in nakhlites, however, the Chassigny salts occur alone, without associated ferric oxides or aluminosilicate clays. Traces of Cl and P in Chassigny salts are consistent with precipitation of the salts from short-lived, saline, aqueous solutions that postdated igneous crystallization. In contrast with the clear case for nakhlites, stratigraphic evidence for a preterrestrial origin of the salts in Chassigny is ambiguous; however, a preterrestrial origin of the Chassigny salts best explains all available evidence. The water-precipitated salts provide clear physical evidence for the hypothesis, proposed by other workers, that the igneous amphiboles in Chassigny might have experienced isotope-exchange reactions with near-surface water, thereby compromising the original stable-isotope signature of any magmatic water in melt inclusions.  相似文献   

9.
Abstract— The petrography and mineral and bulk chemistries of silicate inclusions in Sombrerete, an ungrouped iron that is one of the most phosphate‐rich meteorites known, was studied using optical, scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and secondary ion mass spectrometry (SIMS) techniques. Inclusions contain variable proportions of alkalic siliceous glass (?69 vol% of inclusions on average), aluminous orthopyroxene (?9%, Wo1–4Fs25–35, up to ?3 wt% Al), plagioclase (?8%, mainly An70–92), Cl‐apatite (?7%), chromite (?4%), yagiite (?1%), phosphate‐rich segregations (?1%), ilmenite, and merrillite. Ytterbium and Sm anomalies are sometimes present in various phases (positive anomalies for phosphates, negative for glass and orthopyroxene), which possibly reflect phosphate‐melt‐gas partitioning under transient, reducing conditions at high temperatures. Phosphate‐rich segregations and different alkalic glasses (K‐rich and Na‐rich) formed by two types of liquid immiscibility. Yagiite, a K‐Mg silicate previously found in the Colomera (IIE) iron, appears to have formed as a late‐stage crystallization product, possibly aided by Na‐K liquid unmixing. Trace‐element phase compositions reflect fractional crystallization of a single liquid composition that originated by low‐degree (?4–8%) equilibrium partial melting of a chondritic precursor. Compositional differences between inclusions appear to have originated as a result of a “filter‐press differentiation” process, in which liquidus crystals of Cl‐apatite and orthopyroxene were less able than silicate melt to flow through the metallic host between inclusions. This process enabled a phosphoran basaltic andesite precursor liquid to differentiate within the metallic host, yielding a dacite composition for some inclusions. Solidification was relatively rapid, but not so fast as to prevent flow and immiscibility phenomena. Sombrerete originated near a cooling surface in the parent body during rapid, probably impact‐induced, mixing of metallic and silicate liquids. We suggest that Sombrerete formed when a planetesimal undergoing endogenic differentiation was collisionally disrupted, possibly in a breakup and reassembly event. Simultaneous endogenic heating and impact processes may have widely affected silicate‐bearing irons and other solar system matter.  相似文献   

10.
Abstract— Magmatic inclusions occur in type II ureilite clasts (olivine‐orthopyroxene‐augite assemblages with essentially no carbon) and in a large isolated plagioclase clast in the Dar al Gani (DaG) 319 polymict ureilite. Type I ureilite clasts (olivine‐pigeonite assemblages with carbon), as well as other lithic and mineral clasts in this meteorite, are described in Ikeda et al.(2000). The magmatic inclusions in the type II ureilite clasts consist mainly of magnesian augite and glass. They metastably crystallized euhedral pyroxenes, resulting in feldspar component‐enriched glass. On the other hand, the magmatic inclusions in the large plagioclase clast consist mainly of pyroxene and plagioclase, with a mesostasis. They crystallized with a composition along the cotectic line between the pyroxene and plagioclase liquidus fields. DaG 319 also contains felsic lithic clasts that represent various types of igneous lithologies. These are the rare components not found in the common monomict ureilites. Porphyritic felsic clasts, the main type, contain phenocrysts of plagioclase and pyroxene, and their groundmass consists mainly of plagioclase, pyroxene, and minor phosphate, ilmenite, chromite, and/or glass. Crystallization of these porphyritic clasts took place along the cotectic line between the pyroxene and plagioclase fields. Pilotaxitic felsic clasts crystallized plagioclase laths and minor interstitial pyroxene under metastable conditions, and the mesostasis is extremely enriched in plagioclase component in spite of the ubiquitous crystallization of plagioclase laths in the clasts. We suggest that there are two crystallization trends, pyroxene‐metal and pyroxene‐plagioclase trends, for the magmatic inclusions and felsic lithic clasts in DaG 319. The pyroxene‐metal crystallization trend corresponds to the magmatic inclusions in the type II ureilite clasts and the pilotaxitic felsic clasts, where crystallization took place under reducing and metastable conditions, suppressing precipitation of plagioclase. The pyroxene‐plagioclase crystallization trend corresponds to the magmatic inclusions in the isolated plagioclase clast and the porphyritic felsic clasts. This trend developed under oxidizing conditions in magma chambers within the ureilite parent body. The felsic clasts may have formed mainly from albite component‐rich silicate melts produced by fractional partial melting of chondritic precursors. The common monomict ureilites, type I ureilites, may have formed by the fractional partial melting of alkali‐bearing chondritic precursors. However, type II ureilites may have formed as cumulates from a basaltic melt.  相似文献   

11.
We used new analytical and theoretical methods to determine the major and minor element compositions of the primary trapped liquid (PTLs) represented by melt inclusions in olivine and augite in the Martian clinopyroxenite, Nakhla, for comparison with previously proposed compositions for the Nakhla (or nakhlite) parent magma. We particularly focused on obtaining accurate K2O contents, and on testing whether high K2O contents and K2O/Na2O ratios obtained in previous studies of melt inclusions in olivine in Nakhla could have been due to unrepresentative sampling, systematic errors arising from electron microprobe techniques, late alteration of the inclusions, and/or boundary layer effects. Based on analyses of 35 melt inclusions in olivine cores, the PTL in olivine, PTLoliv, contained (by wt) approximately 47% SiO2, 6.3% Al2O3, 9.6% CaO, 1.8% K2O, and 0.9% Na2O, with K2O/Na2O = 2.0. We infer that the high K2O content of PTLoliv is not due to boundary layer effects and represents a real property of the melt from which the host olivine crystallized. This melt was cosaturated with olivine and augite. Its mg# is model‐dependent and is constrained only to be ≥19 (equilibrium Fo = 40). Based on analyses of 91 melt inclusions in augite cores, the PTL in augite, PTLaug, contained (by wt) 53–54% SiO2, 7–8% Al2O3, 0.8–1.1% K2O, and 1.1–1.4% Na2O, with K2O/Na2O = 0.7–0.8. This K2O content and K2O/Na2O ratio are significantly higher than inferred in studies of melt inclusions in augite in Nakhla by experimental rehomogenization. PTLaug was saturated only with augite, and in equilibrium with augite cores of mg# 62. PTLaug represents the Nakhla parent magma, and does not evolve to PTLoliv by fractional crystallization. We therefore conclude that olivine cores in Nakhla (and, by extension, other nakhlites) are xenocrystic. We propose that PTLoliv and PTLaug were generated from the same source region. PTLoliv was generated first and emplaced to form olivine‐rich cumulate rocks. Shortly thereafter, PTLaug was generated and ascended through these olivine‐rich cumulates, incorporating fragments of wallrock that became the xenocrystic olivine cores in Nakhla. The Nakhla (nakhlite) mantle source region was pyroxenitic with some olivine, and could have become enriched in K relative to Na via metasomatism. A high degree of melting of this source produced the silica‐poor, alkali‐rich magma PTLoliv. Further ascension and decompression of the source led to generation of the silica‐rich, relatively alkali‐poor magma PTLaug. Potassium‐rich magmas like those involved in the formation of the nakhlites represent an important part of the diversity of Martian igneous rocks.  相似文献   

12.
Abstract— D'Orbigny is an exceptional angrite. Chemically, it resembles other angrites such as Asuka‐881371, Sahara 99555, Lewis Cliff (LEW) 87051, and LEW 86010, but its structure and texture are peculiar. It has a compact and porous lithology, abundant glasses, augite‐bearing druses, and chemical and mineralogical properties that are highly unusual for igneous rocks. Our previous studies led us to a new view on angrites: they can possibly be considered as CAIs that grew to larger sizes than the ones we know from carbonaceous chondrites. Thus, angrites may bear a record of rare and special conditions in some part of the early solar nebula. Here we report trace element contents of D'Orbigny phases. Trace element data were obtained from both the porous and the compact part of this meteorite. We have confronted our results with the popular igneous genetic model. According to this model, if all phases of D'Orbigny crystallized from the same system, as an igneous origin implies, a record of this genesis should be expressed in the distribution of trace elements among early and late phases. Our results show that the trace element distribution of the two contemporaneous phases olivine and plagioclase, which form the backbone of the rock, seem to require liquids of different composition. Abundances of highly incompatible elements in all olivines, including the megacrysts, indicate disequilibrium with the bulk rock and suggest liquids very rich in these elements (>10,000 x CI), which is much richer than any fractional crystallization could possibly produce. In addition, trace element contents of late phases are incompatible with formation from the bulk system's residual melt. These results add additional severe constraints to the many conflicts that existed previously between an igneous model for the origin of angrites and the mineralogical and chemical observations. This new trace element content data, reported here, corroborate our previous results based on the shape, structure, mineralogy, chemical, and isotopic data of the whole meteorite, as well as on a petrographic and chemical composition study of all types of glasses and give strength to a new genetic model that postulates that D'Orbigny (and possibly all angrites) could have formed in the solar nebula under changing redox conditions, more akin to chondritic constituents (e.g., CAIs) than to planetary differentiated rock.  相似文献   

13.
Abstract— The Frontier Mountain (FRO) 93001 meteorite is a 4.86 g fragment of an unshocked, medium‐ to coarse‐grained rock from the acapulcoite‐lodranite (AL) parent body. It consists of anhedral orthoenstatite (Fs13.3 ± 0.4Wo3.1 ± 0.2), augite (Fs6.1 ± 0.7Wo42.3 ± 0.9; Cr2O3 = 1.54 ± 0.03), and oligoclase (Ab80.5 ± 3.3Or3.1 ± 0.6) up to >1 cm in size enclosing polycrystalline aggregates of fine‐grained olivine (average grain size: 460 ± 210 μm) showing granoblastic textures, often associated with Fe,Ni metal, troilite, chromite (cr# = 0.91 ± 0.03; fe# = 0.62 ± 0.04), schreibersite, and phosphates. Such aggregates appear to have been corroded by a melt. They are interpreted as lodranitic xenoliths. After the igneous (the term “igneous” is used here strictly to describe rocks or minerals that solidified from molten material) lithology intruding an acapulcoite host in Lewis Cliff (LEW) 86220, FRO 93001 is the second‐known silicate‐rich melt from the AL parent asteroid. Despite some similarities, the silicate igneous component of FRO 93001 (i.e., the pyroxene‐plagioclase mineral assemblage) differs in being coarser‐grained and containing abundant enstatite. Melting‐crystallization modeling suggests that FRO 93001 formed through high‐degree partial melting (≥35 wt%; namely, ≥15 wt% silicate melting and ?20 wt% metal melting) of an acapulcoitic source rock, or its chondritic precursor, at temperatures ≥1200 °C, under reducing conditions. The resulting magnesium‐rich silicate melt then underwent equilibrium crystallization; prior to complete crystallization at ?1040 °C, it incorporated lodranitic xenoliths. FRO 93001 is the highest‐temperature melt from the AL parent‐body so far available in laboratory. The fact that FRO 93001 could form by partial melting and crystallization under equilibrium conditions, coupled with the lack of quench‐textures and evidence for shock deformation in the xenoliths, suggests that FRO 93001 is a magmatic rock produced by endogenic heating rather than impact melting.  相似文献   

14.
Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine‐hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine–phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76‐70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66‐55). REE‐plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole‐rock. Model calculations indicate two‐stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in ~10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole‐rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE‐rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.  相似文献   

15.
Abstract– Northwest Africa (NWA) 2977 is an olivine‐gabbro lunar meteorite that has a distinctly different petrographic texture from other lunar basalts. We studied this rock with a series of in situ analytical methods. NWA 2977 consists mainly of olivine and pyroxene with minor plagioclase. It shows evidence of intense shock metamorphism, locally as high as shock‐stage S6. Olivine adjacent to a melt vein has been partially transformed into ringwoodite and Al,Ti‐rich chromite grains have partially transformed into their high‐pressure polymorph (possibly CaTi2O4‐structure). Olivine in NWA 2977 contains two types of lithic inclusions. One type is present as Si,Al‐rich melt inclusions that are composed of glass and, in most cases, dendritic pyroxene. The other type is mafic and composed of relatively coarse‐grained augite with accessory chromite, RE‐merrillite, and baddeleyite. Two Si,Al‐rich melt inclusions are heavy rare earth elements (REE) enriched, whereas the mafic inclusion has high REE concentrations and a KREEP‐like pattern. The mafic inclusion could be a relict fragment captured during the ascent of the parent magma of NWA 2977, whereas the Si,Al‐rich inclusions may represent the original NWA 2977 melt. The calculated whole‐rock composition has a KREEP‐like REE pattern, suggesting that NWA 2977 has an affinity to KREEP rocks. Baddeleyite has recorded a young crystallization age of 3123 ± 7 Ma (2σ), which is consistent with results from previous whole‐rock and mineral Sm‐Nd and Rb‐Sr studies. The petrography, mineralogy, trace element geochemistry, and young crystallization age of NWA 2977 support the possibility of pairing between NWA 2977 and the olivine‐gabbro portion of NWA 773.  相似文献   

16.
NWA 2737, the second known chassignite, mainly consists of cumulate olivine crystals of homogeneous composition (Fo = 78.7 ± 0.9). These brown colored olivine grains exhibit two sets of perpendicular planar defects due to shock. Two forms of trapped liquids, interstitial melts and magmatic inclusions, have been examined. Mineral assemblages within the olivine‐hosted magmatic inclusions include low‐Ca pyroxene, augite, kaersutite, fluorapatite, biotite, chromite, sulfide, and feldspathic glass. The reconstructed parental magma composition (A#) of the NWA 2737 is basaltic and resembles both the experimentally constrained parental melt composition of chassiginites and the Gusev basalt Humphrey, albeit with lower Al contents. A# also broadly resembles the average of shergottite parent magmas or LAR 06319. However, we suggest that the mantle source for the chassignite parental magmas was distinct from that of the shergottite meteorites, particularly in CaO/Al2O3 ratio. In addition, based on the analysis of the volatile contents of kaersutite, we derived a water content of 0.48–0.67 wt% for the parental melt. Finally, our MELTS calculations suggest that moderate pressure (approximately 6.8 kb) came closest to reproducing the crystallized melt‐inclusion assemblages.  相似文献   

17.
Abstract— Sayh al Uhaymir (SaU) 300 comprises a microcrystalline igneous matrix (grain size <10 μm), dominated by plagioclase, pyroxene, and olivine. Pyroxene geothermometry indicates that the matrix crystallized at ?1100 °C. The matrix encloses mineral and lithic clasts that record the effects of variable levels of shock. Mineral clasts include plagioclase, low‐ and high‐Ca pyroxene, pigeonite, and olivine. Minor amounts of ilmenite, FeNi metal, chromite, and a silica phase are also present. A variety of lithic clast types are observed, including glassy impact melts, impact‐melt breccias, and metamorphosed impact melts. One clast of granulitic breccia was also noted. A lunar origin for SaU 300 is supported by the composition of the plagioclase (average An95), the high Cr content in olivine, the lack of hydrous phases, and the Fe/Mn ratio of mafic minerals. Both matrix and clasts have been locally overprinted by shock veins and melt pockets. SaU 300 has previously been described as an anorthositic regolith breccia with basaltic components and a granulitic matrix, but we here interpret it to be a polymict crystalline impact‐melt breccia with an olivine‐rich anorthositic norite bulk composition. The varying shock states of the mineral and lithic clasts suggest that they were shocked to between 5–28 GPa (shock stages S1–S2) by impact events in target rocks prior to their inclusion in the matrix. Formation of the igneous matrix requires a minimum shock pressure of 60 GPa (shock stage >S4). The association of maskelynite with melt pockets and shock veins indicates a subsequent, local 28–45 GPa (shock stage S2–S3) excursion, which was probably responsible for lofting the sample from the lunar surface. Subsequent fracturing is attributed to atmospheric entry and probable breakup of the parent meteor.  相似文献   

18.
Abstract— In order to use igneous surface lithologies to constrain Martian mantle characteristics, secondary processes that lead to compositional modification of primary mantle melts must be considered. Crystal fractionation of a mantle‐derived magma at the base of the crust followed by separation and ascent of residual liquids to the surface is common in continental hotspot regions on Earth. The possibility that this process also takes place on Mars was investigated by experimentally determining whether a surface rock, specifically the hawaiite Backstay analyzed by the MER Spirit could produce a known cumulate lithology with a deep origin (namely the assemblages of the Chassigny meteorite) if trapped at the base of the Martian crust. Both the major cumulus and melt inclusion mineral assemblages of the Chassigny meteorite were produced experimentally by a liquid of Backstay composition within the pressure range 9.3 to 6.8 kbar with bulk water contents between 1.5 and 2.6 wt%. Experiments at 4.3 and 2.8 kbar did not produce the requisite assemblages. This agreement suggests that just as on Earth, Martian mantle‐derived melts may rise to the surface or remain trapped at the base of the crust, fractionate, and lose their residual liquids. Efficient removal of these residual liquids at depth would yield a deep low‐silica cumulate layer for higher magmatic water content; at lower magmatic water content this cumulate layer would be basaltic with shergottitic affinity.  相似文献   

19.
The formation of the high‐pressure compositional equivalents of olivine and pyroxene has been well‐documented within and surrounding shock‐induced veins in chondritic meteorites, formed by crystallization from a liquid‐ or solid‐state phase transformation. Typically polycrystalline ringwoodite grains have a narrow range of compositions that overlap with those of their olivine precursors, whereas the formation of iron‐enriched ringwoodite has been documented from only a handful of meteorites. Here, we report backscattered electron images, quantitative wavelength‐dispersive spectrometry (WDS) analyses, qualitative WDS elemental X‐ray maps, and micro‐Raman spectra that reveal the presence of Fe‐rich ringwoodite (Fa44‐63) as fine‐grained (500 nm), polycrystalline rims on olivine (Fa24‐25) wall rock and as clasts engulfed by shock melt in a previously unstudied L5 chondrite, Dhofar 1970. Crystallization of majorite + magnesiowüstite in the vein interior and metastable mineral assemblages within 35 μm of the vein margin attest to rapid crystallization of a superheated shock melt (>2300 K) from 20─25 GPa to ambient pressure and temperature. The texture and composition of bright polycrystalline ringwoodite rims (Fa44‐63; MnO 0.01─0.08 wt%) surrounding dark polycrystalline olivine (Fa8‐14; MnO 0.56─0.65 wt%) implies a solid‐state transformation mechanism in which Fe was preferentially partitioned to ringwoodite. The spatial association between ringwoodite and shock melt suggests that the rapidly fluctuating thermal regimes experienced by chondritic minerals in contact with shock melt are necessary to both drive phase transformation but also to prevent back‐transformation.  相似文献   

20.
Abstract– We present 40Ar‐39Ar dating results of handpicked mineral separates and whole‐rock samples of Nakhla, Lafayette, and Chassigny. Our data on Nakhla and Lafayette and recently reported ages for some nakhlites and Chassigny ( Misawa et al. 2006 ; Park et al. 2009 ) point to formation ages of approximately 1.4 Ga rather than 1.3 Ga that is consistent with previous suggestions of close‐in‐time formation of nakhlites and Chassigny. In Lafayette mesostasis, we detected a secondary degassing event at approximately 1.1 Ga, which is not related to iddingsite formation. It may have been caused by a medium‐grade thermal event resetting the mesostasis age but not influencing the K‐Ar system of magmatic inclusions and the original igneous texture of this rock. Cosmic‐ray exposure ages for these meteorites and for Governador Valadares were calculated from bulk rock concentrations of cosmogenic nuclides 3He, 21Ne, and 38Ar. Individual results are similar to literature data. The considerable scatter of T3, T21, and T38 ages is due to systematic uncertainties related to bulk rock and target element chemistry, production rates, and shielding effects. This hampers efforts to better constrain the hypothesis of a single ejection event for all nakhlites and Chassigny from a confined Martian surface terrain ( Eugster 2003 ; Garrison and Bogard 2005 ). Cosmic‐ray exposure ages from stepwise release age spectra using 38Ar and neutron induced 37Ar from Ca in irradiated samples can eliminate errors induced by bulk chemistry on production rates, although not from shielding conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号