首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Considerable evidence points to a martian origin of the SNC meteorites. Noble gas isotopic compositions have been measured in most SNC meteorites. The 129Xe/132Xe vs. 84Kr/132Xe ratios in Chassigny, most shergottites, and lithology C of EETA 79001 define a linear array. This array is thought to be a mixing line between martian mantle and martian atmosphere. One of the SNC meteorites, Nakhla, contains a leachable component that has an elevated 129Xe/132Xe ratio relative to its 84Kr/132Xe ratio when compared to this approximately linear array. The leachable component probably consists in part of iddingsite, an alteration product produced by interaction of olivine with aqueous fluid at temperatures lower than 150 °C. The elevated Xe isotopic ratio may represent a distinct reservoir in the martian crust or mantle. More plausibly, it is elementally fractionated martian atmosphere. Formation of sediments fractionates the noble gases in the correct direction. The range of sediment/atmosphere fractionation factors is consistent with the elevated 129Xe/132Xe component in Nakhla being contained in iddingsite, a low temperature weathering product. The crystallization age of Nakhla is 1.3 Ga. Its low-shock state suggests that it was ejected from near the surface of Mars. As liquid water is required for the formation of iddingsite, these observations provide further evidence for the near surface existence of aqueous fluids on Mars more recently than 1.3 Ga.  相似文献   

2.
Abstract— 20–25 mg whole rock samples of the nakhlites Lafayette and Nakhla have been analyzed via the 40Ar‐39Ar technique, in part to verify their formation ages, but primarily, in an attempt to determine the timing of aqueous alteration in these martian meteorites. As in previous studies, plateaus in apparent age are observed at about 1300 Ma (1322 ± 10 for Lafayette, 1332 ± 10 and 1323 ± 11 for Nakhla), presumably corresponding to crystallization ages. The plateaus are not entirely flat, perhaps reflecting the effects of recoil during creation of 39Ar in the nuclear irradiation. The first 5–20% of the K‐derived Ar released from all three samples give apparent ages <1300 Ma. Coupled with the fact that chronometric isotopic studies of nakhlites typically show some disturbance, we believe the low temperature pattern represents more recent (than 1300 Ma) formation of martian aqueous alteration products such as iddingsite. No low temperature plateaus are observed. This is consistent with petrographic evidence for multiple formation events, although the lack of low temperature plateaus is far from conclusive. On the other hand, if there was a single time of alteration, we believe that it will be difficult, if not impossible, to determine it using the K‐Ar system.  相似文献   

3.
Abstract— Cosmic‐ray exposure (CRE) ages and Mars ejection times were calculated from the radionuclide 81Kr and stable Kr isotopes for seven martian meteorites. The following 81Kr‐Kr CRE ages were obtained: Los Angeles = 3.35 ± 0.70 Ma; Queen Alexandra Range 94201 = 2.22 ± 0.35 Ma; Shergotty = 3.05 ± 0.50 Ma; Zagami = 2.98 ± 0.30 Ma; Nakhla = 10.8 ± 0.8 Ma; Chassigny = 10.6 ± 2.0 Ma; and Allan Hills 84001 = 15.4 ± 5.0 Ma. Comparison of these ages with previously obtained CRE ages from the stable noble gas nuclei 3He, 21Ne, and 38Ar shows excellent agreement. This indicates that the method for the production rate calculation for the stable nuclei is reliable. In all martian meteorites we observe effects induced by secondary cosmic‐ray produced epithermal neutrons. Epithermal neutron fluxes, φn (30–300 eV), are calculated based on the reaction 79Br(n, γβ)80Kr. We show that the neutron capture effects were induced in free space during Mars‐Earth transfer of the meteoroids and that they are not due to a pre‐exposure on Mars before ejection of the meteoritic material. Neutron fluxes and slowing down densities experienced by the meteoroids are calculated and pre‐atmospheric sizes are estimated. We obtain minimum radii in the range of 22–25 cm and minimum masses of 150–220 kg. These results are in good agreement with the mean sizes reported for model calculations using current semiempirical data.  相似文献   

4.
Abstract— Samples from a suite of Shergotty—Nakhla—Chassigny (SNC) meteorites were analyzed for their O isotopic ratios by a modified version of the laser fluorination technique. Measured isotopic ratios (17O/16O and 18O/16O) from bulk samples of the Shergottites, EETA79001, Shergotty and Zagami; the Nakhlite Lafayette; and Chassigny are similar to those reported in the literature, as are those from olivine and pyroxene mineral separates from Lafayette. Iddingsite, a preterrestrial alteration product of Lafayette, was measured for the first time as a separate phase. Oxygen isotopic ratios increase with the percentage of iddingsite in a sample to a maximum δ18O of 14.4% for a ~90% separate. Based on these measurements, end-member iddingsite has a δ18O of 15.6%, which places it among other 18O-enriched secondary phases (carbonate and silica) observed in SNC meteorites. The relatively large difference in δ18O between iddingsite and the olivine and pyroxene it replaces (~11%) is typical of low-temperature alteration products. A range of crustal fluid δ18O values can be interpreted from the δ18O for end-member iddingsite, assuming isotopic equilibrium was achieved during low-temperature hydrous alteration (<100 °C; Treiman et al., 1993). The calculated range of values, ?15 to 5%, depends on many factors including: (1) the modal mineralogy of iddingsite, (2) potential isotopic exchange among other O-bearing phases such as host silicate and carbonate, and (3) exchange with evolved or exotic O reservoirs on Mars. Despite the lack of constraints, the calculated range is consistent with isotopic exchange, and possibly equilibria, among components of the CO2-carbonate-iddingsite-H2O system at low temperature. The SNC meteorite samples in this study have Δ17O values that are indistinguishable from bulk Mars (0.30%), except for a single, small sample of iddingsite that has an anomalous Δ17O of ~1.4%. While analytical difficulties make isotopic measurements for this sample problematic, the Δ17O is similar in direction to Δ17O reported for waters extracted from bulk samples of Lafayette (Karlsson et al., 1992). If the Δ17O for iddingsite is confirmed, it can be concluded that evolved or exotic fluids on Mars have contributed volatiles to the O reservoir from which iddingsite formed 130 to 700 Ma ago.  相似文献   

5.
Abstract— Isotopic abundances of the noble gases were measured in the following Martian meteorites: two shock glass inclusions from Elephant Moraine (EET) 79001, shock vein glass from Shergotty and Yamato (Y) 793605, and whole-rock samples of Allan Hills (ALH) 84001 and Queen Alexandra Range (QUE) 94201. These glass samples, when combined with literature data on a separate single glass inclusion from EET 79001 and a glass vein from Zagami, permit examination in greater detail of the isotopic composition of Ne, Ar, Kr, and Xe trapped from the Martian atmosphere. The isotopic composition of Martian Ne, if actually present in these glasses, remains poorly defined. The 40Ar/36Ar ratio of trapped Martian atmospheric Ar is probably considerably lower than the nominal ratio of 3000 measured by Viking, and data on impact glasses suggest a value of ~1900. The atmospheric 36Ar/38Ar ratio is ≤4.0. Martian atmospheric Kr may be enriched in lighter isotopes by ~0.5%/amu compared to both solar-wind Kr and to the Martian composition previously reported. The isotopic composition of Xe in these glasses agrees with that previously reported in the literature. The Martian atmospheric 36Ar/132Xe and 84Kr/132Xe elemental ratios are higher than those reported by Viking by factors of ~2.5–1.6 (depending on the 40Ar/36Ar ratio adopted) and ~1.8, respectively, and are discussed in a separate paper. Cosmogenic gases indicate space exposure ages of 2.7 ± 0.6 Ma for QUE 94201 and Shergotty and 14 ± 1 Ma for ALH 84001. Small amounts of 21Ne produced by energetic solar protons may be present in QUE 94201 but are not present in ALH 84001 or Y-793605. The space exposure age for Y-793605 is 4.9 ± 0.6 Ma and appears to be distinctly older than the ages for basaltic shergottites. However, uncertainties in cosmogenic production rates still makes somewhat uncertain the number of Martian impact events required to produce the exposure ages of Martian meteorites.  相似文献   

6.
Abstract– We present 40Ar‐39Ar dating results of handpicked mineral separates and whole‐rock samples of Nakhla, Lafayette, and Chassigny. Our data on Nakhla and Lafayette and recently reported ages for some nakhlites and Chassigny ( Misawa et al. 2006 ; Park et al. 2009 ) point to formation ages of approximately 1.4 Ga rather than 1.3 Ga that is consistent with previous suggestions of close‐in‐time formation of nakhlites and Chassigny. In Lafayette mesostasis, we detected a secondary degassing event at approximately 1.1 Ga, which is not related to iddingsite formation. It may have been caused by a medium‐grade thermal event resetting the mesostasis age but not influencing the K‐Ar system of magmatic inclusions and the original igneous texture of this rock. Cosmic‐ray exposure ages for these meteorites and for Governador Valadares were calculated from bulk rock concentrations of cosmogenic nuclides 3He, 21Ne, and 38Ar. Individual results are similar to literature data. The considerable scatter of T3, T21, and T38 ages is due to systematic uncertainties related to bulk rock and target element chemistry, production rates, and shielding effects. This hampers efforts to better constrain the hypothesis of a single ejection event for all nakhlites and Chassigny from a confined Martian surface terrain ( Eugster 2003 ; Garrison and Bogard 2005 ). Cosmic‐ray exposure ages from stepwise release age spectra using 38Ar and neutron induced 37Ar from Ca in irradiated samples can eliminate errors induced by bulk chemistry on production rates, although not from shielding conditions.  相似文献   

7.
Abstract The 244Pu-fission-136Xe retention ages of howardites, eucrites, and diogenites (HEDs) show that these meteorites have retained Xe since they were formed about 4500 Ma ago. For the Garland diogenite and the Millbillillie eucrite, we obtain fission Xe ages of 4525 ± 40 Ma and 4486 ± 40 Ma, respectively. If Xe isotope data reported by other workers are also considered, we conclude that the monomict equilibrated eucrites Camel Donga, Juvinas, and Millbillillie formed about 40 Ma later than Pasamonte, a polymict unequilibrated eucrite. Stannern, a monomict equilibrated brecciated eucrite, yields a 244Pu-136Xe age of 4442 Ma. The 40K-40Ar retention ages fall, for most HEDs, into the 1000–4000 Ma age range, indicating that 40Ar is generally not well retained. The good retentivity for Xe of HEDs allows us to study primordial trapped Xe in these meteorites. Except for Shalka, in which other authors found Kr and Xe from terrestrial atmospheric contamination only, we present for the first time Kr and Xe isotopic data for diogenites. We studied Ellemeet, Garland, Ibbenbühren, Shalka, and Tatahouine. We show that Tatahouine contains two types of trapped Xe: a terrestrial contamination acquired by an irreversible adsorption process and released at pyrolysis temperatures up to 800 °C, and indigenous primordial Xe released primarily between 800 °C and 1200 °C. The isotopic composition of this primordial Xe is identical to that proposed earlier to be present in primitive achondrites and termed U-Xe or “primitive” Xe, but it has not been directly observed in achondrites until now. This type of primitive Xe is important for understanding the evolution of other Xe reservoirs in the Solar System. Terrestrial atmospheric Xe (corrected for fission Xe and radiogenic Xe from outgassing of the Earth) is related to it by a mass dependent fractionation favoring the heavier Xe isotopes. This primitive Xe is isotopically very similar to solar Xe except for 134Xe and 136Xe. Solar Xe appears to contain an enrichment of unknown origin for these isotopes relative to the primitive Xe.  相似文献   

8.
Abstract– We have determined the elemental abundances and the isotopic compositions of noble gases in a bulk sample and an HF/HCl residue of the Saratov (L4) chondrite using stepwise heating. The Ar, Kr, and Xe concentrations in the HF/HCl residue are two orders of magnitude higher than those in the bulk sample, while He and Ne concentrations from both are comparable. The residue contains only a portion of the trapped heavy noble gases in Saratov; 40 ± 9% for 36Ar, 58 ± 12% for 84Kr, and 48 ± 10% for 132Xe, respectively. The heavy noble gas elemental pattern in the dissolved fraction is similar to that in the residue but has high release temperatures. Xenon isotopic ratios of the HF/HCl residue indicate that there is no Xe‐HL in Saratov, but Ne isotopic ratios in the HF/HCl residue lie on a straight line connecting the cosmogenic component and a composition between Ne‐Q and Ne‐HL. This implies that the Ne isotopic composition of Q has been changed by incorporating Ne‐HL (Huss et al. 1996) or by being mass fractionated during the thermal metamorphism. However, it is most likely that the Ne‐Q in Saratov is intrinsically different from this component in other meteorites. The evidence of this is a lack of correlation between the isotopic ratio of Ne‐Q and petrologic types of meteorites (Busemann et al. 2000). A neutron capture effect was observed in the Kr isotopes, and this process also affected the 128Xe/132Xe ratio. The 3He and 21Ne exposure ages for the bulk sample are 33 and 35 Ma, respectively.  相似文献   

9.
Abstract— The noble gases He, Ne, Ar, Kr, and Xe were measured in 27 individual Antarctic micrometeorites (AMMs) in the size range 60 to 250 μm that were collected at the Dome Fuji Station. Eleven of the AMMs were collected in 1996 (F96 series) and 16 were collected in 1997 (F97 series). One of the F97 AMMs is a totally melted spherule, whereas all other particles are irregular in shape. Noble gases were extracted using a Nd‐YAG continuous wave laser with an output power of 2.5‐3.5 W for ?5 min. Most particles released measurable amounts of noble gases. 3He/4He ratios are determined for 26 AMMs ((0.85‐9.65) × 10?4). Solar energetic particles (SEP) are the dominant source of helium in most AMMs rather than solar wind (SW) and cosmogenic He. Three samples had higher 3He/4He ratios compared to that of SW, showing the presence of spallogenic 3He. The Ne isotopic composition of most AMMs resembled that of SEP as in the case of helium. Spallogenic 21Ne was detected in three samples, two of which had extremely long cosmic‐ray exposure ages (> 100 Ma), calculated by assuming solar cosmic‐ray (SCR) + galactic cosmic‐ray (GCR) production. These two particles may have come to Earth directly from the Kuiper Belt. Most AMMs had negligible amounts of cosmogenic 21 Ne and exposure ages of <1 Ma. 40Ar/36Ar ratios for all particles (3.9–289) were lower than that of the terrestrial atmosphere (296), indicating an extraterrestrial origin of part of the Ar with a very low 40Ar/36Ar ratio plus some atmospheric contamination. Indeed, 40Ar/36Ar ratios for the AMMs are higher than SW, SEP, and Q‐Ar values, which is explained by the presence of atmospheric 40Ar. The average 38Ar/36Ar ratio of 24 AMMs (0.194) is slightly higher than the value of atmospheric or Q‐Ar, suggesting the presence of SEP‐Ar which has a relatively high 38Ar/36Ar ratio. According to the elemental compositions of the heavy noble gases, Dome Fuji AMMs can be classified into three groups: chondritic (eight particles), air‐affected (nine particles), and solar‐affected (eight particles). The eight AMMs classified as chondritic preserve the heavy noble gas composition of primordial trapped component due to lack of atmospheric adsorption and solar implantation. The average of 129Xe/132Xe ratio for the 16 AMMs not affected by atmospheric contamination (1.05) corresponds to the values in matrices of carbonaceous chondrites (?1.04). One AMM, F96DK038, has high 129Xe/132Xe in excess of this ratio. Our results imply that most Dome Fuji AMMs originally had chondritic heavy noble gas compositions, and carbonaceous chondrite‐like objects are appropriate candidate sources for most AMMs.  相似文献   

10.
Here we present the isotopic concentrations of He, Ne, Ar, Kr, and Xe for the three Martian meteorites, namely Grove Mountains 99027 (GRV 99027), Northwest Africa 7906 (NWA 7906), and Northwest Africa 7907 (NWA 7907). The cosmic ray exposure (CRE) age for GRV 99027 of 5.7 ± 0.4 Ma (1σ) is consistent with CRE ages for other poikilitic basaltic shergottites and suggests that all were ejected in a single event ~5.6 Ma ago. After correcting for an estimated variable sodium concentration, the CRE ages for NWA 7906 and NWA 7907 of 5.4 ± 0.4 and 4.9 ± 0.4 Ma (1σ), respectively, are in good agreement with the CRE age of ~5 Ma favored by Cartwright et al. ( 2014 ) for NWA 7034. The data, therefore, support the conclusion that all three basaltic regolith breccias are paired. The 40Ar gas retention age for NWA 7907 of ~1.3 Ga is in accord with Cartwright et al. ( 2014 ). For NWA 7906, we were unable to determine a 40Ar gas retention age. The 4He gas retention ages for NWA 7906 and 7907 are in the range of 200 Ma and are much shorter than the 40Ar gas retention age of NWA 7907, indicating that about 86–88% of the radiogenic 4He has been lost. The Kr and Xe isotopic concentrations in GRV 99027 are composed almost exclusively of Martian interior (MI) gases, while for NWA 7906 and NWA 7907, they indicate gases from the MI, elementally fractionated air, and possibly Martian atmosphere.  相似文献   

11.
Abstract— This work reports on the noble gas inventory of 3 new acapulcoites, 3 brachinites, 2 new eucrites from the Dar al Gani region in Libya, the unique achondrite Dar al Gani (DaG) 896 from the same locality, the new eucrite‐like achondrite Northwest Africa (NWA) 011, and the controversial sample Tafassasset. We determined cosmic ray exposure and gas retention ages, evaluated shielding conditions, and discuss the trapped noble gas component of the specimens. All exposure ages are within the known range of stony meteorites and partly confirm previously established age clusters. Shielding conditions vary, suggesting substantial shielding for all 3 brachinites and Tafassasset. We cannot exclude, however, that the Mg‐rich composition of brachinites simply simulates heavy shielding. Regarding the trapped component, we found Q‐like compositions only for the acapulcoite Thiel Mountains (TIL) 99002. The brachinite Elephant Moraine (EET) 99402 yields a high, subsolar 36Ar/132Xe ratio of ?400 along with a slightly elevated 84Kr/132atio, indicating minor atmospheric contamination. All the other samples, particularly the eucrite DaG 983, are characterized by clearly elevated Ar/Kr/Xe ratios due to significant terrestrial alteration. Tafassasset exhibits noble gas parameters that are different from those of CR chondrites, including a relatively high cosmic ray exposure age, the absence of a solar component, low 132Xe concentrations, a low trapped 36Ar/132Xe ratio of ?30, and a noticeable amount of radiogenic 129Xe. Similar attributes have been observed for some primitive achondrites. These attributes are also consistent with the metamorphic character of the sample. We, therefore, consider Tafassasset's noble gas record to be inconclusive as to its classification (primitive achondrite versus metamorphosed CR chondrite).  相似文献   

12.
Water is not currently stable in liquid form on the martian surface due to the present mean atmospheric pressure of ~7 mbar and mean global temperature of ~220 K. However, geomorphic features and hydrated mineral assemblages suggest that Mars’ climate was once warmer and liquid water flowed on the surface. These observations may indicate a substantially more massive atmosphere in the past, but there have been few observational constraints on paleoatmospheric pressures. Here we show how the 40Ar/36Ar ratios of trapped gases within martian meteorite ALH 84001 constrain paleoatmospheric pressure on Mars during the Noachian era [~4.56–3.8 billion years (Ga)]. Our model indicates that atmospheric pressures did not exceed ~1.5 bar during the first 400 million years (Ma) of the Noachian era, and were <400 mbar by 4.16 Ga. Such pressures of CO2 are only sufficient to stabilize liquid water on Mars’ surface at low latitudes during seasonally warm periods. Other greenhouse gases like SO2 and water vapor may have played an important role in intermittently stabilizing liquid water at higher latitudes following major volcanic eruptions or impact events.  相似文献   

13.
Abstract— We report the elemental and isotopic composition of the noble gases as well as the chemical abundances in pyroxene, maskelynite/mesostasis glass, and bulk material of Shergotty and of bulk samples from Chassigny and Yamato 793605. The 40K-40Ar isochron for the Shergotty minerals yields a gas retention age of 196 Ma, which is, within errors, in agreement with previously determined Rb-Sr internal isochron ages. Argon that was trapped at this time has a 40Ar/36Ar ratio of 1100. For Chassigny and Y-793605, we obtain trapped 40Ar/36Ar ratios of 1380 and 950, respectively. Using these results and literature data, we show that the three shergottites, Shergotty, Zagami, and QUE 94001; the lherzolites ALH 77005, LEW 88516, and Y-793605; as well as Chassigny and ALH 84001 contain a mixture of Martian mantle and atmospheric Ar; whereas, the trapped 40Ar/36Ar ratio of the nakhlites, Nakhla, Lafayette, and Governador Valadares cannot be determined with the present data. We show that Martian atmospheric trapped Ar in Martian meteorites is correlated with the shock pressure that they experienced. Hence, we conclude that the Martian atmospheric gases were introduced by shock into the meteoritic material. For the Shergotty minerals, we obtain 3He-, 21Ne-, and 38Ar-based cosmic-ray exposure ages of 3.0 Ma, and for the lherzolite Y-793605, 4.0 Ma, which confirms our earlier conclusion that the lherzolites were ejected from Mars ~1 Ma before the shergottites. Chassigny yields the previously known ejection age of 11.6 Ma.  相似文献   

14.
Abstract— We investigated the characteristics and history of lunar meteorites Queen Alexandra Range 93069, Yamato 793169 and Asuka 881757 based on the abundances of all stable noble gas isotopes, the concentrations of the radionuclides 10Be, 26Al, 36Cl, and 81Kr, and the abundances of Mg, Al, K, Ca, Fe, Cl, Sr, Y, Zr, Ba, and La. Based on the solar wind and cosmic-ray irradiations, QUE 93069 is the most mature lunar meteorite studied up to now. The 40Ar/36Ar ratio of the trapped component is 1.87 ± 0.16. This ratio corresponds to a time when the material was exposed to solar and lunar atmospheric volatiles ~400 Ma ago. On the other hand, Yamato 793169 and Asuka 881757 contain very little or no solar noble gases, which indicates that these materials resided in the top layer of the lunar regolith only briefly or not at all. For all lunar meteorites, we observe a positive correlation of the concentrations of cosmic-ray produced with trapped solar noble gases. The duration of lunar regolith residence for the lunar meteorites was calculated based on cosmic-ray produced 21Ne, 38Ar, 78Kr, 83Kr, and 126Xe and appropriate production rates that were derived based on the target element abundances and the shielding indicator 131Xe/126Xe. For QUE 93069, Yamato 793169, and Asuka 881757, we obtained 1000 ± 400 Ma, 50 ± 10 Ma, and <1 Ma, respectively. Both Asuka 881757 and Yamato 793169 show losses of radiogenic 4He from U and Th decay and Yamato 793169 also 40Ar loss from K-decay. For Asuka 881757, we calculate a K-Ar gas retention age of 3100 ± 600 Ma and a 244Pu-136Xe fission age of 4240 ± 170 Ma. This age is one of the oldest formation ages ever observed for a lunar basalt. The exposure history of QUE 93069 after ejection from the Moon was derived from the radionuclide concentrations: ejection 0.16 ± 0.03 Ma ago, duration of Moon-Earth transit 0.15 ± 0.02 Ma and fall on Earth <0.015 Ma ago. This ejection event is distinguished temporally from those which produced the other lunar meteorites. We conclude that six to eight events are necessary to eject all the known lunar meteorites.  相似文献   

15.
Abstract— We present concentration and isotopic composition of He, Ne, and Ar in ten chondrites from the Nullarbor region in Western Australia as well as the concentrations of 84Ke, 129Xe, and 132Xe. From the measured cosmogenic 14C concentrations (Jull et al. 1995), shielding‐corrected production rates of 14C are deduced using cosmogenic 22Ne/21Ne ratios. For shielding conditions characterized by 22Ne/21Ne >1.10, this correction becomes significant and results in shorter terrestrial ages. The exposure ages of the ten Nullarbor chondrites are in the range of values usually observed in ordinary chondrites. Some of the meteorites have lost radiogenic gases as well as cosmogenic 3He. Most of the analyzed specimens show additional trapped Ar, Kr, and Xe of terrestrial origin. The incorporation of these gases into weathering products is common in chondrites from hot deserts.  相似文献   

16.
Abstract— Studies of several samples of the large Caddo County IAB iron meteorite reveal andesitic material enriched in Si, Na, Al, and Ca, which is essentially unique among meteorites. This material is believed to have formed from a chondritic source by partial melting and to have further segregated by grain coarsening. Such an origin implies extended metamorphism of the IAB parent body. New 39Ar‐40Ar ages for silicate from three different Caddo samples are consistent with a common age of 4.50‐4.51 Gyr. Less well‐defined Ar‐Ar degassing ages for inclusions from two other IABs, EET (Elephant Moraine) 83333 and Udei Station, are ?4.32 Gyr, whereas the age for Campo del Cielo varies considerably over about 3.23‐4.56 Gyr. New 129I‐129Xe ages for Caddo County and EET 83333 are 4557.9 ± 0.1 Myr and 4557–4560 Myr, respectively, relative to an age of 4562.3 Myr for Shallowater. Considering all reported Ar‐Ar degassing ages for IABs and related winonaites, the range is ?4.32‐4.53 Gyr, but several IABs give similar Ar ages of 4.50‐4.52 Gyr. We interpret these older Ar ages to represent cooling after the time of last significant metamorphism on the parent body and the younger ages to represent later 40Ar diffusion loss. The older Ar‐Ar ages for IABs are similar to Sm‐Nd and Rb‐Sr isochron ages reported in the literature for Caddo County. Considering the possibility that IAB parent body formation was followed by impact disruption, reassembly, and metamorphism (e.g., Benedix et al. 2000), the Ar‐Ar ages and IAB cooling rates deduced from Ni concentration profiles in IAB metal (Herpfer et al. 1994) are consistent if the time of the postassembly metamorphism was as late as about 4.53 Gyr ago. However, I‐Xe ages reported for some IABs define much older ages of about 4558–4566 Myr, which cannot easily be reconciled with the much younger Ar‐Ar and Sm‐Nd ages. An explanation for the difference in radiometric ages of IABs may reside in combinations of the following: a) I‐Xe ages have very high closure temperatures and were not reset during metamorphism about 4.53 Gyr ago; b) a bias exists in the 40K decay constants which makes these Ar‐Ar ages approximately 30 Myr too young; c) the reported Sm‐Nd and Rb‐Sr ages for Caddo are in error by amounts equal to or exceeding their reported 2‐sigma uncertainties; and d) about 30 Myr after the initial heating that produced differentiation of Caddo silicate and mixing of silicate and metal, a mild metamorphism of the IAB parent body reset the Ar‐Ar ages.  相似文献   

17.
Abstract— The Campos Sales meteorite fell close to the town of Campos Sales in the northeastern Brazilian state of Ceará (7°2′ S, 40°10′ W) on 1991 January 31 at 10:00 P.M. (local time). Several fragments were recovered from an area estimated to be 1 × 3 km. The stone is an ordinary L5 chondrite (Fa25.0 and FS21.6) and is lightly shocked (S1). Metal phases present are kamacite, tetrataenite, and antitaenite. Noble gases He, Ne, Ar, Kr, and Xe have been analyzed in two bulk samples of Campos Sales. All exposure ages based on determination of cosmogenic 3He, 21Ne, 38Ar, 83Kr, and 126Xe abundances and on the cosmogenic 81Kr/83Kr ratio agree well, which suggests no gas loss during cosmic-ray exposure. The cosmic-ray exposure age is 23.3 ± 1.0 Ma, which falls in the range observed for L5 chondrites (20–30 Ma). The gas-retention ages indicate He loss that must have occurred prior to or during ejection from the L-chondrite parent body.  相似文献   

18.
Abstract— Phosphates in martian meteorites are important carriers of trace elements, although, they are volumetrically minor minerals. PO4 also has potential as a biomarker for life on Mars. Here, we report measurements of the U‐Th‐Pb systematics of phosphates in the martian meteorite ALH 84001 using the Sensitive High Resolution Ion MicroProbe (SHRIMP) installed at Hiroshima University, Japan. Eleven analyses of whitlockites and 1 analysis of apatite resulted in a total Pb/U isochron age of 4018 ± 81 Ma in the 238U/206Pb‐207Pb/206Pb‐204Pb/206 Pb 3‐D space, and a 232Th‐208Pb age of 3971 ± 860 Ma. These ages are consistent within a 95% confidence limit. This result is in agreement with the previously published Ar‐Ar shock age of 4.0 ± 0.1 Ga from maskelynite and other results of 3.8–4.3 Ga but are significantly different from the Sm‐Nd age of 4.50 ± 0.13 Ga based on the whole rock and pyroxene. Taking into account recent studies on textural and chemical evidence of phosphate, our result suggests that the shock metamorphic event defines the phosphate formation age of 4018 ± 81 Ma, and that since then, ALH 84001 has not experienced a long duration thermal metamorphism, which would reset the U‐Pb system in phosphates.  相似文献   

19.
Abstract— The L/LL5 chondrite Knyahinya had an approximately spherical shape, and as it experienced a single stage exposure history, it represents a very interesting object to study depth profiles of cosmic-ray-produced nuclide concentrations. Such data are required to improve and to validate model calculations of production rates. We report Ne, Ar, Kr and Xe isotopic abundances in five bulk samples. The adopted procedure of noble gas extraction included two pyrolysis steps at 450 °C and 650 °C, respectively, followed by a combustion step in pure O2 at 650 °C before melting the sample. This procedure allows for the separation of a significant fraction of the trapped Kr and Xe, leading to an enrichment of the cosmic-ray produced component, which is released in the melting step. The isotopic composition of the trapped Xe component measured in the combustion step is found to be identical with the OC-Xe composition (Lavielle and Marti, 1992) and supports the suggestion that ordinary chondrites formed in a homogeneous trapped noble gas reservoir. Cosmic-ray produced Kr and Xe components and depth profiles were measured, including for the first time a 81Kr profile. The calculated exposure age of 39.5 ± 1.0 Ma, based on the 81Kr-Kr method, is found to be in excellent agreement with previous determinations. The concentrations of trapped and fissiogenic noble gas components are clearly lower than those generally observed in type 5 ordinary chondrites and may suggest diffusion losses before a meter-sized object was exposed to the cosmic radiation.  相似文献   

20.
Abstract— Elemental and isotopic compositions of the noble gases have been determined in six North American tektites (4 bediasites and 2 georgiaites) and one Ivory Coast tektite. Radiogenically produced 4He may explain the large 4He/36Ar ratios measured relative to air, despite significant diffusive losses. The Ne isotopic composition is enriched in 20Ne consistent with a single stage mass fractionation process. The enormous 20Ne/36Ar enrichments observed in all tektite samples, similar to those reported from other tektites and impact glasses, are attributed to atmospheric diffusion into the samples following solidification. The North American tektites show a systematic increase in 84Kr/36Ar and 132Xe/36Ar relative to air, with enrichments greater than those determined for any other tektite group or terrestrial samples other than shales. These enrichments are inconsistent with existing models of dissolving Kr and Xe in tektite glass without elemental fractionation at atmospheric pressures equivalent to ∼40 km altitude. The Kr and Xe isotopic compositions are indistinguishable from atmospheric within experimental uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号