首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— Nakhla contains crystallized melt inclusions that were trapped in augite and olivine when these phases originally formed on Mars. Our study involved rehomogenization (slow‐heating and fast‐heating) experiments on multiphase melt inclusions in Nakhla augite. We studied melt inclusions trapped in augite because this phase re‐equilibrated with the external melt to a lesser extent than olivine and results could be directly compared with previous Nakhla melt inclusion studies. Following heating and homogenization of encapsulated melt inclusions, single mineral grains were mounted and polished to expose inclusions. Major element chemistry was determined by electron microprobe. The most primitive melt inclusion analyzed in Nakhla NA03 is basaltic and closely matches previously reported nakhlite parent melt compositions. MELTS equilibrium and fractional crystallization models calculated for NA03 and previous Nakhla parent melt estimates at QFM and QFM‐1 produced phase assemblages and compositions that can be compared to Nakhla. Of these models, equilibrium crystallization of NA03 at QFM‐1 produced the best match to mineral phases and compositions in Nakhla. In all models, olivine and augite co‐crystallize, consistent with the hypothesis that olivine is not xenocrystic but has undergone subsolidus re‐equilibration. In addition, measured melt inclusion compositions plot along the MELTS‐calculated liquid line of descent and may represent pockets of melt trapped at various stages during crystallization. We attempt to resolve discrepancies between previous estimates of the Nakhla parental melt composition and to reinterpret the results of a previous study of rehomogenized melt inclusions in Nakhla. Melt inclusions demonstrate that Nakhla is an igneous rock whose parent melt composition and crystallization history reflect planetary igneous processes.  相似文献   

2.
Abstract– The nakhlites, a subgroup of eight clinopyroxenites thought to come from a single geological unit at the Martian surface, show melt inclusions in augite and olivine. In contrast to olivine‐hosted melt inclusions, augite‐hosted melt inclusions are not surrounded by fractures, and are thus considered preferential candidates for reconstructing parent liquid compositions. Furthermore, two types of augite‐hosted melt inclusion have been defined and characterized in four different nakhlites (Northwest Africa [NWA] 817, Nakhla, Governador Valadares, and NWA 998): Type‐I isolated inclusions in augite cores that contain euhedral to subhedral augite, Ti‐magnetite, and pigeonite plus silica‐rich glass and a gas bubble; Type‐II microinclusions that form trails crosscutting host augite crystals. Fast‐heating experiments were performed on selected pristine primary augite‐hosted melt inclusions from these four samples. Of these, only data from Nakhla were considered robust for reconstruction of a nakhlite parental magma composition (NPM). Based upon careful petrographic selection and consideration of iron‐magnesium ratios, our data are used to propose an NPM, which is basaltic (49.1 wt% SiO2), of high Ca/Al (1.95), and K2O‐poor (0.32 wt%). Thermodynamic modeling at an oxygen fugacity one log unit below the QFM buffer using the MELTS and PETROLOG programs implies that Mg‐rich olivine was not a liquidus phase for this composition. Our analysis is used to suggest that olivine megacrysts found in the nakhlites are unlikely to have coprecipitated with augite, and thus may have been introduced during or subsequent to accumulation in the magma chamber, possibly from more evolved portions of the same chamber.  相似文献   

3.
We used new analytical and theoretical methods to determine the major and minor element compositions of the primary trapped liquid (PTLs) represented by melt inclusions in olivine and augite in the Martian clinopyroxenite, Nakhla, for comparison with previously proposed compositions for the Nakhla (or nakhlite) parent magma. We particularly focused on obtaining accurate K2O contents, and on testing whether high K2O contents and K2O/Na2O ratios obtained in previous studies of melt inclusions in olivine in Nakhla could have been due to unrepresentative sampling, systematic errors arising from electron microprobe techniques, late alteration of the inclusions, and/or boundary layer effects. Based on analyses of 35 melt inclusions in olivine cores, the PTL in olivine, PTLoliv, contained (by wt) approximately 47% SiO2, 6.3% Al2O3, 9.6% CaO, 1.8% K2O, and 0.9% Na2O, with K2O/Na2O = 2.0. We infer that the high K2O content of PTLoliv is not due to boundary layer effects and represents a real property of the melt from which the host olivine crystallized. This melt was cosaturated with olivine and augite. Its mg# is model‐dependent and is constrained only to be ≥19 (equilibrium Fo = 40). Based on analyses of 91 melt inclusions in augite cores, the PTL in augite, PTLaug, contained (by wt) 53–54% SiO2, 7–8% Al2O3, 0.8–1.1% K2O, and 1.1–1.4% Na2O, with K2O/Na2O = 0.7–0.8. This K2O content and K2O/Na2O ratio are significantly higher than inferred in studies of melt inclusions in augite in Nakhla by experimental rehomogenization. PTLaug was saturated only with augite, and in equilibrium with augite cores of mg# 62. PTLaug represents the Nakhla parent magma, and does not evolve to PTLoliv by fractional crystallization. We therefore conclude that olivine cores in Nakhla (and, by extension, other nakhlites) are xenocrystic. We propose that PTLoliv and PTLaug were generated from the same source region. PTLoliv was generated first and emplaced to form olivine‐rich cumulate rocks. Shortly thereafter, PTLaug was generated and ascended through these olivine‐rich cumulates, incorporating fragments of wallrock that became the xenocrystic olivine cores in Nakhla. The Nakhla (nakhlite) mantle source region was pyroxenitic with some olivine, and could have become enriched in K relative to Na via metasomatism. A high degree of melting of this source produced the silica‐poor, alkali‐rich magma PTLoliv. Further ascension and decompression of the source led to generation of the silica‐rich, relatively alkali‐poor magma PTLaug. Potassium‐rich magmas like those involved in the formation of the nakhlites represent an important part of the diversity of Martian igneous rocks.  相似文献   

4.
Abstract— Antarctic meteorite Miller Range (MIL) 03346 is a nakhlite composed of 79% clinopyroxene, ?1% olivine, and 20% vitrophyric intercumulus material. We have performed a petrological and geochemical study of MIL 03346, demonstrating a petrogenetic history similar to previously discovered nakhlites. Quantitative textural study of MIL 03346 indicates long (>1 × 101 yr) residence times for the cumulus augite, whereas the skeletal Fe‐Ti oxide, fayalite, and sulfide in the vitrophyric intercumulus matrix suggest rapid cooling, probably as a lava flow. From the relatively high forsterite contents of olivine (up to Fo43) compared with other nakhlites and compositions of augite cores (Wo38–42En35–40Fs22–28) and their hedenbergite rims, we suggest that MIL 03346 is part of the same or a similar Martian cumulate‐rich lava flow as other nakhlites. However, MIL 03346 has experienced less equilibration and faster cooling than other nakhlites discovered to date. Calculated trace element concentrations based upon modal abundances of MIL 03346 and its constituent minerals are identical to whole rock trace element abundances. Parental melts for augite have REE patterns that are approximately parallel with whole rock and intercumulus melt using experimentally defined partition coefficients. This parallelism reflects closed‐system crystallization for MIL 03346, where the only significant petrogenetic process between formation of augite and eruption and emplacement of the nakhlite flow has been fractional crystallization. A model for the petrogenesis of MIL 03346 and the nakhlites (Nakhla, Governador Valadares, Lafayette, Yamato‐000593, Northwest Africa (NWA) 817, NWA 998) would include: 1) partial melting and ascent of melt generated from a long‐term LREE depleted mantle source, 2) crystallization of cumulus augite (± olivine, ± magnetite) in a shallow‐level Martian magma chamber, 3) eruption of the crystal‐laden nakhlite magma onto the surface of Mars, 4) cooling, crystal settling, overgrowth, and partial equilibration to different extents within the flow, 5) secondary alteration through hydrothermal processes, possibly immediately succeeding or during emplacement of the flow. This model might apply to single—or multiple—flow models for the nakhlites. Ultimately, MIL 03346 and the other nakhlites preserve a record of magmatic processes in volcanic rocks on Mars with analogous petrogenetic histories to pyroxene‐rich terrestrial lava flows and to komatiites.  相似文献   

5.
A scanning and transmission electron microscope study of aluminosilicate glasses within melt inclusions from the Martian meteorite Nakhla shows that they have been replaced by berthierine, an aluminum‐iron serpentine mineral. This alteration reaction was mediated by liquid water that gained access to the glasses along fractures within enclosing augite and olivine grains. Water/rock ratios were low, and the aqueous solutions were circumneutral and reducing. They introduced magnesium and iron that were sourced from the dissolution of olivine, and exported alkalis. Berthierine was identified using X‐ray microanalysis and electron diffraction. It is restricted in its occurrence to parts of the melt inclusions that were formerly glass, thus showing that under the ambient physico‐chemical conditions, the mobility of aluminum and silicon were low. This discovery of serpentine adds to the suite of postmagmatic hydrous silicates in Nakhla that include saponite and opal‐A. Such a variety of secondary silicates indicates that during aqueous alteration compositionally distinct microenvironments developed on sub‐millimeter length scales. The scarcity of berthierine in Nakhla is consistent with results from orbital remote sensing of the Martian crust showing very low abundances of aluminum‐rich phyllosilicates.  相似文献   

6.
Abstract— The Yamato nakhlites, Y‐000593, Y‐000749, and Y‐000802, were recovered in 2000 from the bare icefield around the Yamato mountains in Antarctica, consisting of three independent specimens with black fusion crusts. They are paired cumulate clinopyroxenites. We obtained the intercumulus melt composition of the Yamato nakhlites and here call it the Yamato intercumulus melt (YIM). The YIM crystallized to form the augite rims, the olivine rims and the mesostasis phases in the cumulates. The augite rims consist of two layers: inner and outer. The crystallization of the inner rim drove the interstitial melt into the plagioclase liquidus field. Subsequently, the residual melt crystallized pigeonites and plagioclase to form the outer rims and the mesostasis. Three types of inclusions were identified in olivine phenocrysts: rounded vitrophyric, angular vitrophyric, and monomineralic augite inclusions. The monomineralic augite inclusions are common and may have been captured by growing olivine phenocrysts. The rounded vitrophyric inclusions are rare and may represent the composition of middle‐stage melts, whereas the angular vitrophyric inclusions seem to have been derived from fractionated late‐stage melts. Glass inclusions occur in close association with titanomagnetite and ferroan augite halo in phenocryst core augites and the assemblages may be magmatic inclusions in augites. We compared the YIM with compositions of magmatic inclusions in olivine and augite. The composition of magmatic inclusions in augite is similar to the YIM. Phenocrystic olivines contain exsolution lamellae, augite‐magnetite aggregates, and symplectites in the cores. The symplectites often occur at the boundaries between olivine and augite grains. The aggregates, symplectite and lamellae formed by exsolution from the host olivine at magmatic temperatures. We present a formational scenario for nakhlites as follows: (1) accumulation of augite, olivine, and titanomagnetite phenocrysts took place on the floor of a magma chamber; (2) olivine exsolved augite and magnetite as augite‐magnetite aggregates, symplectites and lamellae; (3) the overgrowth on olivine phenocrysts formed their rims, and the inner rims crystallized on augite phenocryst cores; and finally, (4) the outer rim formed surrounding the inner rims of augite phenocrysts, and plagioclase and minor minerals crystallized to form mesostasis under a rapid cooling condition, probably in a lava flow or a sill.  相似文献   

7.
The petrogenesis of the Northwest Africa (NWA) 7635 Martian meteorite involved the entrainment of xenocrystic olivine grains into a relatively magnesian and oxidized melt, followed by a redox-dependent reaction between olivine and melt that resulted in the crystallization of orthopyroxene and magnetite. Subsequent crystallization of the melt began with augite, plagioclase, and magnetite phenocrysts, and was followed by crystallization of augite, plagioclase, magnetite, ilmenite, and pyrrhotite in the groundmass, which took place under more rapid conditions of cooling, as reflected in the groundmass grain size. The petrogenetic history of NWA 7635 is similar in many ways to that of NWA 8159; this observation, coupled with similarities in geochemical and isotopic characteristics from other studies, suggests that the parent melts of the two rocks—as represented by all minerals except the xenocrystic olivine—were one and the same. The main distinctions between the two rocks are that their parent melts entrained xenocrystic olivine of different composition, and the cooling rate of the groundmass of NWA 7635 was more rapid than that of NWA 8159. The conclusion that the redox reaction took place between olivine and melt is in contrast to other work that suggests the reaction took place in the subsolidus, and has implications for the nature of the reaction in both NWA 7635 and NWA 8159.  相似文献   

8.
Abstract— Zagami and Nakhla are achondrites and belong to the Shergotty-Nakhla-Chassigny (SNC) meteorite group. It is generally accepted that Mars is their parent body. Mineralogical and chemical analyses have revealed that the major mineral phases of these two meteorites are pyroxene, olivine, maskelynite, and plagioclase. In this work, near-infrared biconical reflectance measurements were performed on sawed surfaces of chips from Zagami and Nakhla. Spectra obtained with an analytical spot diameter on the order of the mineral grain size reflect the heterogeneous distribution of different mineral phases. The characteristic absorption bands of the pyroxenes are numerically evaluated in terms of the modified Gaussian model. Spectra with overlapping absorption features are resolved into the basic absorption bands. From these results, it can be estimated what kind of clinopyroxenes belong to the investigated mineral assemblages. As a result, the major clinopyroxene phase in Nakhla is Ca-rich augite, whereas in Zagami both Ca-rich and Ca-poor pyroxenes are present. By means of such a procedure, laboratory spectra of minerals become more informative and may help in discussing Martian remote sensing data in the near-infrared region.  相似文献   

9.
Abstract— The objective of this study was to identify and map possible source regions for all 5 known martian meteorite lithologies (basalt, lherzolite, clinopyroxenite, orthopyroxenite, and dunite) using data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). We deconvolved the TES data set using laboratory spectra of 6 martian meteorites (Los Angeles, Zagami, ALH A77005, Nakhla, ALH 84001, and Chassigny) as end members, along with atmospheric and surface spectra previously derived from TES data. Global maps (16 pixels/degree) of the distribution of each meteorite end member show that meteorite‐like compositions are not present at or above TES detectability limits over most of the planet's dust‐free regions. However, we have confidently identified local‐scale (100s‐1000s km2) concentrations of olivine‐ and orthopyroxene‐bearing materials similar to ALH A77005, Chassigny, and ALH 84001 in Nili Fossae, in and near Ganges Chasma, in the Argyre and Hellas basin rims, and in Eos Chasma. Nakhla‐like materials are identified near the detection limit throughout the eastern Valles Marineris region and portions of Syrtis Major. Basaltic shergottites were not detected in any spatially coherent areas at the scale of this study. Martian meteorite‐like lithologies represent only a minor portion of the dust‐free surface and, thus, are not representative of the bulk composition of the ancient crust. Meteorite‐like spectral signatures identified above TES detectability limits in more spatially restricted areas (<tens of km) are targets of ongoing analysis.  相似文献   

10.
Abstract— Dhofar 019 is a new martian meteorite found in the desert of Oman. In texture, mineralogy, and major and trace element chemistry, this meteorite is classified as a basaltic shergottite. Olivine megacrysts are set within a groundmass composed of finer grained olivine, pyroxene (pigeonite and augite), and maskelynite. Minor phases are chromite‐ulvöspinel, ilmenite, silica, K‐rich feldspar, merrillite, chlorapatite, and pyrrhotite. Secondary phases of terrestrial origin include calcite, gypsum, celestite, Fe hydroxides, and smectite. Dhofar 019 is most similar to the Elephant Moraine (EETA) 79001 lithology A and Dar al Gani (DaG) 476/489 shergottites. The main features that distinguish Dhofar 019 from other shergottites are lack of orthopyroxene; lower Ni contents of olivine; the heaviest oxygen‐isotopic bulk composition; and larger compositional ranges for olivine, maskelynite, and spinel, as well as a wide range for pyroxenes. The large compositional ranges of the minerals are indicative of relatively rapid crystallization. Modeling of olivine chemical zonations yield minimum cooling rates of 0.5‐0.8 °C/h. Spinel chemistry suggests that crystallization took place under one of the most reduced conditions for martian meteorites, at an fO2 3 log units below the quartz‐fayalite‐magnetite (QFM) buffer. The olivine megacrysts are heterogeneously distributed in the rock. Crystal size distribution analysis suggests that they constitute a population formed under steady‐state conditions of nucleation and growth, although a few grains may be cumulates. The parent melt is thought to have been derived from partial melting of a light rare earth element‐ and platinum group element‐depleted mantle source. Shergottites, EETA79001 lithology A, DaG 476/489, and Dhofar 019, although of different ages, comprise a particular type of martian rocks. Such rocks could have formed from chemically similar source(s) and parent melt(s), with their bulk compositions affected by olivine accumulation.  相似文献   

11.
Abstract— The polymict eucrite Macibini is a fragmental breccia, predominantly composed of eucritic materials with minor proportions (maximum 2 vol%) of diogenitic material. Hence, it is intermediate between the Yamato‐74159‐type polymict eucrites, which contain negligible amounts of magnesian orthopyroxene, and the howardites. The present study provides mineralogical and bulk compositional data for the meteorite breccia and for six clasts. These clasts include both volcanic and igneous rocks and a variety of impact‐generated rocks. A broad range of degrees of postcrystallization metamorphism affected these materials before the final aggregation of the breccia. Clast A is a fragment of unequilibrated eucrite with subophitic texture. The edges of the zoned pyroxenes in this clast are composed of a host of Fe‐rich augite containing vermicules (blebs) and lamellae composed of a mixture of Fe‐rich olivine and silica. Similar features occur as fragments in lunar breccias and are attributed by some workers to the breakdown of pyroxferroite, an Fe‐rich pyroxenoid. However, textures and compositions of these augite‐olivine‐silica intergrowths in clast A suggest that, in this case, they are the result of decomposition in a series of steps of Fe‐rich subcalcic augite. Among the fragments of impact‐generated material in Macibini is clast 2, an earlier‐formed clastic breccia that was lithified before being broken apart and included in the meteorite breccia. Clast 3 is an impact‐melt breccia that is composed of rock and mineral fragments in a devitrified groundmass. Clast C is also an impact‐melt breccia that has a coarser‐grained, hornfelsic groundmass that resulted from extensive metamorphism after formation.  相似文献   

12.
Veins containing carbonates, hydrous silicates, and sulfates that occur within and between grains of augite and olivine in the Nakhla meteorite are good evidence for the former presence of liquid water in the Martian crust. Aqueous solutions gained access to grain interiors via narrow fractures, and those fractures within olivine whose walls were oriented close to (001) were preferentially widened by etching along [001]. This orientation selective dissolution may have been due to the presence within olivine of shock‐formed [001](100) and [001]{110} screw dislocations. The duration of etching is likely to have been brief, possibly less than a year, and the solutions responsible were sufficiently cool and reducing that laihunite did not form and Fe liberated from the olivine was not immediately oxidized. The pores within olivine were mineralized in sequence by siderite, nanocrystalline smectite, a Fe‐Mg phyllosilicate, and then gypsum, whereas only the smectite occurs within augite. The nanocrystalline smectite was deposited as submicrometer thick layers on etched vein walls, and solution compositions varied substantially between and sometimes during precipitation of each layer. Together with microcrystalline gypsum the Fe‐Mg phyllosilicate crystallized as water briefly returned to some of the veins following desiccation fracturing of the smectite. These results show that etching of olivine enhanced the porosity and permeability of the nakhlite parent rock and that dissolution and secondary mineralization took place within the same near‐static aqueous system.  相似文献   

13.
Abstract– Petrological and geochemical analyses of Miller Range (MIL) 03346 indicate that this meteorite originated from the same augitic cumulate layer(s) as the nakhlite Martian meteorites, but underwent rapid cooling prior to complete crystallization. As with the other nakhlites, MIL 03346 contains a secondary alteration assemblage, in this case consisting of iddingsite‐like alteration veins in olivine phenocrysts, Fe‐oxide alteration veins associated with the mesostasis, and Ca‐ and K,Fe‐sulfate veins. We compared the textural and mineralogical compositions of MIL 090030, 090032, and 090136 with MIL 03346, focusing on the composition and Raman spectra of the alteration assemblages. These observations indicate that the meteorites are paired, and that the preterrestrial olivine‐bound alteration assemblages were produced by weakly acidic brine. Although these alteration assemblages resemble similar assemblages in Nakhla, the absence of siderite and halite in the Miller Range nakhlites indicates that the parental alteration brine was comparatively HCO3? depleted, and less concentrated, than that which altered Nakhla. This indicates that the Miller Range nakhlite alteration brine experienced a separate evolutionary pathway to that which altered Nakhla, and therefore represents a separate branch of the Lafayette‐Nakhla evaporation sequence. Thin‐sections cut from the internal portions of these meteorites (away from any fusion crust or terrestrially exposed edge), contain little Ca‐sulfate (identified as gypsum), and no jarosite, whereas thin‐sections with terrestrially exposed edges have much higher sulfate abundances. These observations suggest that at least the majority of sulfate within the Miller Range nakhlites is terrestrially derived.  相似文献   

14.
Northwest Africa 7533, a polymict Martian breccia, consists of fine‐grained clast‐laden melt particles and microcrystalline matrix. While both melt and matrix contain medium‐grained noritic‐monzonitic material and crystal clasts, the matrix also contains lithic clasts with zoned pigeonite and augite plus two feldspars, microbasaltic clasts, vitrophyric and microcrystalline spherules, and shards. The clast‐laden melt rocks contain clump‐like aggregates of orthopyroxene surrounded by aureoles of plagioclase. Some shards of vesicular melt rocks resemble the pyroxene‐plagioclase clump‐aureole structures. Submicron size matrix grains show some triple junctions, but most are irregular with high intergranular porosity. The noritic‐monzonitic rocks contain exsolved pyroxenes and perthitic intergrowths, and cooled more slowly than rocks with zoned‐pyroxene or fine grain size. Noritic material contains orthopyroxene or inverted pigeonite, augite, calcic to intermediate plagioclase, and chromite to Cr‐bearing magnetite; monzonitic clasts contain augite, sodic plagioclase, K feldspar, Ti‐bearing magnetite, ilmenite, chlorapatite, and zircon. These feldspathic rocks show similarities to some rocks at Gale Crater like Black Trout, Mara, and Jake M. The most magnesian orthopyroxene clasts are close to ALH 84001 orthopyroxene in composition. All these materials are enriched in siderophile elements, indicating impact melting and incorporation of a projectile component, except for Ni‐poor pyroxene clasts which are from pristine rocks. Clast‐laden melt rocks, spherules, shards, and siderophile element contents indicate formation of NWA 7533 as a regolith breccia. The zircons, mainly derived from monzonitic (melt) rocks, crystallized at 4.43 ± 0.03 Ga (Humayun et al. 2013 ) and a 147Sm‐143Nd isochron for NWA 7034 yielding 4.42 ± 0.07 Ga (Nyquist et al. 2016 ) defines the crystallization age of all its igneous portions. The zircon from the monzonitic rocks has a higher Δ17O than other Martian meteorites explained in part by assimilation of regolith materials enriched during surface alteration (Nemchin et al. 2014 ). This record of protolith interaction with atmosphere‐hydrosphere during regolith formation before melting demonstrates a thin atmosphere, a wet early surface environment on Mars, and an evolved crust likely to have contaminated younger extrusive rocks. The latest events recorded when the breccia was on Mars are resetting of apatite, much feldspar and some zircons at 1.35–1.4 Ga (Bellucci et al. 2015 ), and formation of Ni‐bearing pyrite veins during or shortly after this disturbance (Lorand et al. 2015 ).  相似文献   

15.
Abstract– Northwest Africa (NWA) 2977 is an olivine‐gabbro lunar meteorite that has a distinctly different petrographic texture from other lunar basalts. We studied this rock with a series of in situ analytical methods. NWA 2977 consists mainly of olivine and pyroxene with minor plagioclase. It shows evidence of intense shock metamorphism, locally as high as shock‐stage S6. Olivine adjacent to a melt vein has been partially transformed into ringwoodite and Al,Ti‐rich chromite grains have partially transformed into their high‐pressure polymorph (possibly CaTi2O4‐structure). Olivine in NWA 2977 contains two types of lithic inclusions. One type is present as Si,Al‐rich melt inclusions that are composed of glass and, in most cases, dendritic pyroxene. The other type is mafic and composed of relatively coarse‐grained augite with accessory chromite, RE‐merrillite, and baddeleyite. Two Si,Al‐rich melt inclusions are heavy rare earth elements (REE) enriched, whereas the mafic inclusion has high REE concentrations and a KREEP‐like pattern. The mafic inclusion could be a relict fragment captured during the ascent of the parent magma of NWA 2977, whereas the Si,Al‐rich inclusions may represent the original NWA 2977 melt. The calculated whole‐rock composition has a KREEP‐like REE pattern, suggesting that NWA 2977 has an affinity to KREEP rocks. Baddeleyite has recorded a young crystallization age of 3123 ± 7 Ma (2σ), which is consistent with results from previous whole‐rock and mineral Sm‐Nd and Rb‐Sr studies. The petrography, mineralogy, trace element geochemistry, and young crystallization age of NWA 2977 support the possibility of pairing between NWA 2977 and the olivine‐gabbro portion of NWA 773.  相似文献   

16.
The nakhlite meteorites are clinopyroxenites that are derived from a ~1300 million year old sill or lava flow on Mars. Most members of the group contain veins of iddingsite whose main component is a fine‐grained and hydrous Fe‐ and Mg‐rich silicate. Siderite is present in the majority of veins, where it straddles or cross‐cuts the Fe‐Mg silicate. This carbonate also contains patches of ferric (oxy)hydroxide. Despite 40 years of investigation, the mineralogy and origins of the Fe‐Mg silicate is poorly understood, as is the paragenesis of the iddingsite veins. Nanometer‐scale analysis of Fe‐Mg silicate in the Nakhla meteorite by electron and X‐ray imaging and spectroscopy reveals that its principal constituents are nanoparticles of opal‐A. This hydrous and amorphous phase precipitated from acidic solutions that had become supersaturated with respect to silica by dissolution of olivine. Each opal‐A nanoparticle is enclosed within a ferrihydrite shell that formed by oxidation of iron that had also been liberated from the olivine. Siderite crystallized subsequently and from solutions that were alkaline and reducing, and replaced both the nanoparticles and olivine. The fluids that formed both the opal‐A/ferrihydrite and the siderite were sourced from one or more reservoirs in contact with the Martian atmosphere. The last event recorded by the veins was alteration of the carbonate to a ferric (oxy)hydroxide that probably took place on Mars, although a terrestrial origin remains possible. These results support findings from orbiter‐ and rover‐based spectroscopy that opaline silica was a common product of aqueous alteration of the Martian crust.  相似文献   

17.
Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine. Augite shows irregular core zoning, euhedral rims, and thin overgrowths enriched in Fe relative to the core. Low‐Ca pyroxene is found adjacent to olivine. Phenocrysts of Fe‐Ti oxides are titanomagnetite with exsolutions of ilmenite/ulvöspinel. Intercumulus material consists of both coarse plagioclase and fine‐grained mesostasis, comprising K‐feldspars, pyroxene, apatite, ilmenite, Fe‐Ti oxides, and silica. CeC 022 shows a high proportion of Martian aqueous alteration products (iddingsite) in olivine (45.1 vol% of olivine) and mesostasis. This meteorite is the youngest nakhlite with a distinct Sm/Nd crystallization age of 1.215 ± 0.067 Ga. Its ejection age of 11.8 ± 1.8 Ma is similar to other nakhlites. CeC 022 reveals contrasted cooling rates with similarities with faster cooled nakhlites, such as Northwest Africa (NWA) 817, NWA 5790, or Miller Range 03346 nakhlites: augite irregular cores, Fe‐rich overgrowths, fine‐grained K‐feldspars, quenched oxides, and high rare earth element content. CeC 022 also shares similarities with slower cooled nakhlites, including Nakhla and NWA 10153: pyroxene modal abundance, pyroxenes crystal size distribution, average pyroxene size, phenocryst mineral compositions, unzoned olivine, and abundant coarse plagioclase. Moreover, CeC 022 is the most magnetic nakhlite and represents an analog source lithology for the strong magnetization of the Martian crust. With its particular features, CeC 022 must originate from a previously unsampled sill or flow in the same volcanic system as the other nakhlites, increasing Martian sample diversity and our knowledge of nakhlites.  相似文献   

18.
Petrology of Martian meteorite Northwest Africa 998   总被引:1,自引:0,他引:1  
Abstract— Nakhlite Northwest Africa (NWA) 998 is an augite-rich cumulate igneous rock with mineral compositions and oxygen isotopic composition consistent with an origin on Mars. This 456-gram, partially fusion-crusted meteorite consists of (by volume) ∼75% augite (core composition Wo39En39Fs22), ∼9% olivine (Fo35), ∼7% plagioclase (Ab61An35) as anhedra among augite and olivine, ∼3.5% low-calcium pyroxenes (pigeonite and orthopyroxene) replacing or forming overgrowths on olivine and augite, ∼1% titanomagnetite, and other phases including potassium feldspar, apatite, pyrrhotite, chalcopyrite, ilmenite, and fine-grained mesostasis material. Minor secondary alteration materials include “iddingsite” associated with olivine (probably Martian), calcite crack fillings, and iron oxide/hydroxide staining (both probably terrestrial). Shock effects are limited to minor cataclasis and twinning in augite. In comparison to other nakhlites, NWA 998 contains more low-calcium pyroxenes and its plagioclase crystals are blockier. The large size of the intercumulus feldspars and the chemical homogeneity of the olivine imply relatively slow cooling and chemical equilibration in the late- and post-igneous history of this specimen, and mineral thermometers give subsolidus temperatures near 730 °C. Oxidation state was near that of the QFM buffer, from about QFM-2 in earliest crystallization to near QFM in late crystallization, and to about QFM + 1.5 in some magmatic inclusions. The replacement or overgrowth of olivine by pigeonite and orthopyroxene (with or without titanomagnetite), and the marginal replacement of augite by pigeonite, are interpreted to result from late-stage reactions with residual melts (consistent with experimental phase equilibrium relationships). Apatite is concentrated in planar zones separating apatite-free domains, which suggests that residual magma (rich in P and REE) was concentrated in planar (fracture?) zones and possibly migrated through them. Loss of late magma through these zones is consistent with the low bulk REE content of NWA 998 compared with the calculated REE content of its parent magma.  相似文献   

19.
《Planetary and Space Science》1999,47(3-4):353-362
The Raman microspectra of the Nakhla SNC meteorite, which probably originates from Mars, are reported here for the first time. The specimen is shown to be heterogeneous, even at a sampling level of 2 μm, but several important mineralogical features have been identified, including clinopyroxene, olivine and plagioclase. In some sampling regions, α-quartz particles are evident and in one sample region the ν(CO2−3) mode of calcite at 1086 cm−1 is found. There is no evidence for organic chemical content detectable in this meteorite specimen, based on an absence of ν(CH) and δ(CH2) modes near 3000 and 1400 cm−1, respectively. Comparative Raman spectroscopic analyses were made on epilithic examples of Xanthoria elegans from Crater Cirque, northern Victoria Land, Antarctica, and cryptoendoliths from East Beacon, McMurdo Dry Valleys, as positive controls for microbial organics in cold, arid habitats analogous to former Martian conditions. Finally, an assessment is made of the potential role of Raman spectroscopy for extra-terrestrial characterisation of geological specimens.  相似文献   

20.
Abstract— We report petrography, mineral chemistry, and microdistribution of rare earth elements (REE) in a new lherzolitic shergottite, Grove Mountains (GRV) 99027. The textural relationship and REE patterns of minerals suggest precipitation of cumulus olivine and chromite, followed by equilibrium crystallization of a closed system with a bulk composition of the inferred intercumulus melt. Subsolidus equilibrium temperatures of pyroxenes and olivine range from 1100 to 1210 °C, based on a two‐pyroxene thermometry and Ca partitioning between augite and olivine. Oxygen fugacity of the parent magma is 1.5–2.5 (av. 2.0 ± 0.4) log units below the quartz‐fayalite‐magnetite (QFM) buffer at 960–1360 °C, according to the olivine‐orthopyroxene‐chromite barometer. The ilmenite‐chromite barometer and thermometer show much wider ranges of oxygen fugacity (1.0–7.0 log unit below QFM) and temperature (1130–480 °C), suggesting subsolidus equilibration of the oxides at low temperatures, probably due to deep burial of GRV 99027 on Mars. The low oxygen fugacity and LREE depletion of the parent magma of GRV 99027 suggest low contamination by martian crust. Characteristics of GRV 99027 demonstrate similarity of lherzolitic shergottites, suggesting a high possibility of launch pairing or a homogeneous upper mantle of Mars if they were ejected by individual impact events. However, GRV 99027 probably experienced severe post‐shock thermal metamorphism in comparison with other lherzolitic shergottites, based on the re‐crystallization of maskelynite, the homogeneity of minerals, and the low subsolidus equilibrium temperatures between chromite and ilmenite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号