首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Abstract— Water‐soluble ion concentrations from the martian achondrite Nakhla and three asteroidal achon drites are reported. The Nakhla sample contains significant concentrations of chloride, sulfate, Mg, Na, Ca, and K ions. The results are interpreted to indicate that this rock has been in contact with a seawater‐like brine on the martian surface.  相似文献   

2.
Abstract— Nakhla contains crystallized melt inclusions that were trapped in augite and olivine when these phases originally formed on Mars. Our study involved rehomogenization (slow‐heating and fast‐heating) experiments on multiphase melt inclusions in Nakhla augite. We studied melt inclusions trapped in augite because this phase re‐equilibrated with the external melt to a lesser extent than olivine and results could be directly compared with previous Nakhla melt inclusion studies. Following heating and homogenization of encapsulated melt inclusions, single mineral grains were mounted and polished to expose inclusions. Major element chemistry was determined by electron microprobe. The most primitive melt inclusion analyzed in Nakhla NA03 is basaltic and closely matches previously reported nakhlite parent melt compositions. MELTS equilibrium and fractional crystallization models calculated for NA03 and previous Nakhla parent melt estimates at QFM and QFM‐1 produced phase assemblages and compositions that can be compared to Nakhla. Of these models, equilibrium crystallization of NA03 at QFM‐1 produced the best match to mineral phases and compositions in Nakhla. In all models, olivine and augite co‐crystallize, consistent with the hypothesis that olivine is not xenocrystic but has undergone subsolidus re‐equilibration. In addition, measured melt inclusion compositions plot along the MELTS‐calculated liquid line of descent and may represent pockets of melt trapped at various stages during crystallization. We attempt to resolve discrepancies between previous estimates of the Nakhla parental melt composition and to reinterpret the results of a previous study of rehomogenized melt inclusions in Nakhla. Melt inclusions demonstrate that Nakhla is an igneous rock whose parent melt composition and crystallization history reflect planetary igneous processes.  相似文献   

3.
Abstract— Interior samples of three different Nakhla specimens contain an iron-rich silicate “rust” (which includes a tentatively identified smectite), Ca-carbonate (probably calcite), Ca-sulfate (possibly gypsum or bassanite), Mg-sulfate (possibly epsomite or kieserite), and NaCl (halite); the total abundance of these phases is estimated as <0.01 weight percent of the bulk meteorite. Rust veins are truncated and decrepitated by fusion crust and are preserved as faulted segments in partially healed olivine crystals, indicating that the rust is pre-terrestrial in origin. Because Ca-carbonate and Ca-sulfate are intergrown with the rust, they are also indicated to be of pre-terrestrial origin. Similar textural evidence regarding origins of the NaCl and Mg-sulfate is lacking. Impure and poorly crystallized sulfates and halides on the fusion crust of the meteorite suggest leaching of interior (pre-terrestrial) salts from the interior after Nakhla arrived on Earth but coincidental addition of these same salts by terrestrial contamination cannot be excluded. At least the clay-like silicate “rust,” Ca-carbonate, and Ca-sulfate were formed by precipitation from water-based solutions on the Nakhla parent planet although temperature and pressure conditions of aqueous precipitation are unconstrained by currently available data. It is possible that aqueous alteration on the parent body was responsible for the previously observed disturbance of the Rb-Sr geochronometer in Nakhla at or near 1.3 Ga.  相似文献   

4.
Veins containing carbonates, hydrous silicates, and sulfates that occur within and between grains of augite and olivine in the Nakhla meteorite are good evidence for the former presence of liquid water in the Martian crust. Aqueous solutions gained access to grain interiors via narrow fractures, and those fractures within olivine whose walls were oriented close to (001) were preferentially widened by etching along [001]. This orientation selective dissolution may have been due to the presence within olivine of shock‐formed [001](100) and [001]{110} screw dislocations. The duration of etching is likely to have been brief, possibly less than a year, and the solutions responsible were sufficiently cool and reducing that laihunite did not form and Fe liberated from the olivine was not immediately oxidized. The pores within olivine were mineralized in sequence by siderite, nanocrystalline smectite, a Fe‐Mg phyllosilicate, and then gypsum, whereas only the smectite occurs within augite. The nanocrystalline smectite was deposited as submicrometer thick layers on etched vein walls, and solution compositions varied substantially between and sometimes during precipitation of each layer. Together with microcrystalline gypsum the Fe‐Mg phyllosilicate crystallized as water briefly returned to some of the veins following desiccation fracturing of the smectite. These results show that etching of olivine enhanced the porosity and permeability of the nakhlite parent rock and that dissolution and secondary mineralization took place within the same near‐static aqueous system.  相似文献   

5.
Abstract— The Mg‐isotopic compositions in five barred olivine (BO) chondrules, one coarse‐grained rim of a BO chondrule, a relic spinel in a BO chondrule, one skeletal olivine chondrule similar to BO chondrules in mineralogy and composition, and two non‐BO chondrules from the Allende meteorite have been measured by thermal ionization mass spectrometry. The Mg isotopes are not fractionated and are within terrestrial standard values (±2.0%o per amu) in seven of the eight analyzed ferromagnesian chondrules. A clump of relic spinel grain and its host BO chondrule R‐11 give well‐resolvable Mg fractionations that show an enrichment of the heavier isotopes, up to +2.5%‰ per amu. The Mg‐isotopic compositions of coarse‐grained rim are identical to those of the host chondrule with BO texture. The results imply that ferromagnesian and refractory precursor components of the Allende chondrule may have been formed from isotopically heterogeneous reservoirs. In the nebula region where Allende chondrules formed, recycling of chondrules and multiple high‐temperature heating did not significantly alter the chemical and isotopic memory of earlier generations. Chemical and isotopic characteristics of refractory precursors of carbonaceous chondrite chondrules and CAIs are more closely related than previously thought. One of the refractory chondrule precursors of CV Allende is enriched in the heavier Mg isotopes and different from those of more common ferromagnesian chondrule precursors. The most probable scenario at the location where chondrule R‐11 formed is as follows. Before chondrule formation, several high‐temperature events occurred and then RPMs, refractory oxides, and silicates condensed from the nebular gas in which Mg isotopes were fractionated. Then, this CAI was transported into the chondrule formation region and mixed with more common, ferromagnesian precursors with normal Mg isotopes, and formed the BO chondrule. Because Mg isotope heterogeneity among silicates and spinel are found in some CAIs (Esat and Taylor, 1984), we cannot rule out the possibility that Mg isotopes of a melted portion of the refractory precursor (i.e., outer portion of CAI) are normal or enriched in the light isotope. Magnesium isotopes in the R‐11 host are also enriched in the heavier isotopes, +2.5%o per amu, which suggests that effects of isotopic heterogeneity among silicates and spinel, if they existed, are not considered to be large. It is possible that CAI precursor silicates partially dissolved during the chondrule forming event, contributing Mg to the melt and producing a uniform Mg‐isotopic signature but enriched in the heavier Mg isotopes, +2.5%‰ per amu. Most Mg isotopes in more common ferromagnesian chondrules represent normal chondritic material. Chemical and Mg‐isotopic signatures formed during nebular fractionations were not destroyed during thermal processes that formed the chondrule, and these were partly preserved in relic phases. Recycling of Allende chondrules and multiple heating at high temperature did not significantly alter the chemical and Mg‐isotopic memory of earlier generations.  相似文献   

6.
Abstract— Transmission electron microscopy was used to examine pyroxene microstructure in the Northwest Africa (NWA) 856 martian meteorite to construct its cooling and shock histories. All pyroxenes contain strained coherent pigeonite/augite exsolution lamellae on (001). The average width and periodicity of lamellae are 80 and 400 nm, respectively, indicating a cooling rate below 0.1 °C/hr for the parent rock. Pigeonite and augite are topotactic, with strained coherent interfaces parallel to (001). The closure temperature for Ca‐Fe, Mg interdiffusion, estimated from the composition at the augite pigeonite interface, is about 700 °C. Tweed texture in augite reveals that a spinodal decomposition occurred. Locally, tweed evolved toward secondary pigeonite exsolutions on (001). Due to the decreasing diffusion rate with decreasing temperature, “M‐shaped” concentration profiles developed in augite lamellae. Pigeonite contains antiphase boundaries resulting from the C2/c to P21/c space group transition that occurred during cooling. The reconstructive phase transition from P21/c clinopyroxene to orthopyroxene did not occur. The deformation (shock) history of the meteorites is revealed by the presence of dislocations and mechanical twins. Dislocations are found in glide configuration, with the [001](100) glide system preferentially activated. They exhibit strong interaction with the strained augite/pigeonite interfaces and did not propagate over large distances. Twins are found to be almost all parallel to (100) and show moderate interaction with the augite/pigeonite interfaces. These twins are responsible for the plastic deformation of the pyroxene grains. Comparison with microstructure of shocked clinopyroxene (experimentally or naturally shocked) suggests that NWA 856 pyroxenes are not strongly shocked.  相似文献   

7.
We used new analytical and theoretical methods to determine the major and minor element compositions of the primary trapped liquid (PTLs) represented by melt inclusions in olivine and augite in the Martian clinopyroxenite, Nakhla, for comparison with previously proposed compositions for the Nakhla (or nakhlite) parent magma. We particularly focused on obtaining accurate K2O contents, and on testing whether high K2O contents and K2O/Na2O ratios obtained in previous studies of melt inclusions in olivine in Nakhla could have been due to unrepresentative sampling, systematic errors arising from electron microprobe techniques, late alteration of the inclusions, and/or boundary layer effects. Based on analyses of 35 melt inclusions in olivine cores, the PTL in olivine, PTLoliv, contained (by wt) approximately 47% SiO2, 6.3% Al2O3, 9.6% CaO, 1.8% K2O, and 0.9% Na2O, with K2O/Na2O = 2.0. We infer that the high K2O content of PTLoliv is not due to boundary layer effects and represents a real property of the melt from which the host olivine crystallized. This melt was cosaturated with olivine and augite. Its mg# is model‐dependent and is constrained only to be ≥19 (equilibrium Fo = 40). Based on analyses of 91 melt inclusions in augite cores, the PTL in augite, PTLaug, contained (by wt) 53–54% SiO2, 7–8% Al2O3, 0.8–1.1% K2O, and 1.1–1.4% Na2O, with K2O/Na2O = 0.7–0.8. This K2O content and K2O/Na2O ratio are significantly higher than inferred in studies of melt inclusions in augite in Nakhla by experimental rehomogenization. PTLaug was saturated only with augite, and in equilibrium with augite cores of mg# 62. PTLaug represents the Nakhla parent magma, and does not evolve to PTLoliv by fractional crystallization. We therefore conclude that olivine cores in Nakhla (and, by extension, other nakhlites) are xenocrystic. We propose that PTLoliv and PTLaug were generated from the same source region. PTLoliv was generated first and emplaced to form olivine‐rich cumulate rocks. Shortly thereafter, PTLaug was generated and ascended through these olivine‐rich cumulates, incorporating fragments of wallrock that became the xenocrystic olivine cores in Nakhla. The Nakhla (nakhlite) mantle source region was pyroxenitic with some olivine, and could have become enriched in K relative to Na via metasomatism. A high degree of melting of this source produced the silica‐poor, alkali‐rich magma PTLoliv. Further ascension and decompression of the source led to generation of the silica‐rich, relatively alkali‐poor magma PTLaug. Potassium‐rich magmas like those involved in the formation of the nakhlites represent an important part of the diversity of Martian igneous rocks.  相似文献   

8.
Abstract— Sayhal Uhaymir (SaU) 094 is a 223.3 g, partially crusted, strongly to very strongly shocked melanocratic olivine-porphyric rock of the shergottite group showing a microgabbroic texture. The rock consists of pyroxene (52.0–58.2 vol%)—dominantly prismatic pigeonite (En60–68Fs20–27Wo7–9) associated with minor augite (En46–49Fs15–16Wo28–31)—brown (shock-oxidized) olivine (Fo65–69; 22.1–31%), completely isotropic interstitial plagioclase glass (maskelynite; An50–64Or0.3-0.9; 8.6–13.0%), chromite and titanian magnesian chromite (0.9-1.0%), traces of ilmenite (Ilm80–86), pyrrhotite (Fe92–100; 0.1-0.2%), merrillite (<<0.1%), and pockets (4.8-6.7%) consisting of green basaltic to basaltic andesitic shock glass that is partially devitrified into a brown to black product along boundaries with the primary minerals. The average maximum dimensions of minerals are: olivine (1.5 mm), pyroxene (0.3 mm) and maskelynite (0.3 mm). Primary melt inclusions in olivine and chromite are common and account for 0.1-0.6% of the rock. X-ray tomography revealed that the specimen contains ˜0.4 vol% of shock-melt associated vesicles, up to 3 mm in size, which show a preferred orientation. Fluidization of the maskelynite, melting and recrystallization of pyroxene, olivine and pyrrhotite indicate shock stage S6. Minor terrestrial weathering resulted in calcite-veining and minor oxidation of sulfides. The meteorite is interpreted as paired with SaU 005/008/051. The modal composition is similar to Dar al Gani 476/489/670/735/876, with the exception that neither mesostasis nor titanomagnetite nor apatite are present and that all phases show little zonation. The restricted mineral composition, predominance of chromite among the oxides, and abundance of olivine indicate affinities to the lherzolitic shergottites.  相似文献   

9.
Abstract— Dar al Gani 489 (DaG 489) is a meteorite fragment of 2146 g found in the Libyan Sahara by a meteorite finder during one of his search campaigns in 1997–98. It is a porphyritic rock with millimetersized olivine crystals (Fo79–59) set in a fine‐grained groundmass (average grain size 0.1 mm) consisting of pigeonite (En75–57 Wo5–15) crystals and interstitial feldspathic glass (An67–56 Or0–1). Minor phases include enstatite (En82–71 Wo2–4), augite (En48–52 Wo29–32), chromite, Ti‐chromite, ilmenite, pyrrhotite, merrillite, and secondary calcite and iron oxides. On the basis of mineralogical, petrographic, bulk chemical, O‐isotopic, and noble gas data, DaG 489 can be classified as a highly shocked martian meteorite (e.g., Fe/Mn(bulk) = 42.1, Ni/Mg(bulk) = 0.002; δ17O = 2.89, δ18O = 4.98, and Δ17O = 0.305), belonging to the basaltic shergottite subgroup. The texture and modal composition of DaG 489 are indeed those of basalts; nonetheless, the bulk chemistry, the abundance of large olivine and chromite crystals, and enstatitic pyroxene suggest some relationship with lherzolitic shergottites. As such, DaG 489 is similar to the hybrid shergottite Elephant Moraine (EET) A79001 lithology A; however, there are some relevant differences including a higher olivine content (20 vol%), the lack of orthopyroxene megacrysts, a higher molar Mg/(Mg + Fe)(molar) = 0.68, and a lower rare earth element content in the bulk sample. Therefore, DaG 489 has the potential of providing us with a further petrogenetic link between the basaltic and lherzolitic shergottites. Noble gases data show that DaG 489 has an ejection age of ~1.3 Ma. This young age lends support to the requirement of several ejection events to produce the current population of shergottites, nakhlites, and chassignites (SNC) meteorites. In terms of texture, mineral and bulk compositions, shock level, and weathering features, DaG 489 is essentially identical to DaG 476, another basaltic shergottite independently found ~25 km due northnortheast of DaG 489. Because DaG 489 also has the same exposure history as DaG 476, it is very likely that both meteorites are fragments of the same fall. In addition to the existing hypotheses on the petrogenesis of the similar EETA79001 lithology A and the identical DaG 476, we propose that DaG 489 could have formed through high‐degree partial melting of a lherzolite‐like material.  相似文献   

10.
Abstract— In martian meteorite Allan Hills (ALH) 84001, this scanning electron microscope study was focused on the ferromagnesian minerals, which are extensively covered with nanometer‐size bodies mainly 30–100 nm in diameter. These bodies range from spheres to ovoids to caterpillar shapes and resemble, both in size and shape, nannobacteria that attack weathered rocks on Earth and that can be cultured. Dense colonies alternate with clean, smooth cleavage surfaces, possibly formed later. Statistical study shows that the distribution of presumed nannobacteria is very clustered. In addition to the small bodies, there are a few occurrences of ellipsoidal 200–400 nm objects, that are within the lower size range of “normal” earthly bacteria. We conclude that the nanobodies so abundant in ALH 84001 are indeed nannobacteria, confirming the initial assertion of McKay et al. (1996). However, whether these bodies originated on Mars or are Antarctic contamination remains a valid question.  相似文献   

11.
Abstract— The martian meteorite, Allan Hills (ALH) 84001, contains D‐rich hydrogen of plausible martian origin (Leshin et al., 1996). The phase identity of the host(s) of this hydrogen are not well known and could include organic matter (McKay et al., 1996), phlogopite (Brearley, 2000), glass (Mittlefehldt, 1994) and/or other unidentified components of this rock. Previous ion microprobe studies indicate that much of the hydrogen in ALH 84001 as texturally associated with concretions of nominally anhydrous carbonates, glass and oxides (Boctor et al., 1998; Sugiura and Hoshino, 2000). We examined the physical and chemical properties of the host(s) of this hydrogen by stepped pyrolysis of variously pre‐treated subsamples. A continuous‐flow method of water reduction and mass spectrometry (Eiler and Kitchen, 2001) was used to permit detailed study of the small amounts of this hydrogen‐poor sample available for study. We find that the host(s) of D‐rich hydrogen released from ALH 84001 at relatively low temperatures (?500 °C) is soluble in orthophosphoric and dilute hydrochloric acids and undergoes near‐complete isotopic exchange with water within hours at temperatures of 200 to 300 °C. These characteristics are most consistent with the carrier phase(s) being a hydrous salt (e.g., carbonate, sulfate or halide); the thermal stability of this material is inconsistent with many examples of such minerals (e.g., gypsum) and instead suggests one or more relatively refractory hydrous carbonates (e.g., hydromagnesite). Hydrous salts (particularly hydrous carbonates) are common on the Earth only in evaporite, sabkha, and hydrocryogenic‐weathering environments; we suggest that much (if not all) of the “martian” hydrogen in ALH 84001 was introduced in analogous environments on or near the martian surface rather than through biological activity or hydrothermal alteration of silicates in the crust.  相似文献   

12.
Abstract— We have studied carbonate and associated oxides and glasses in a demountable section of Allan Hills 84001 (ALH 84001) using optical, scanning, and transmission electron microscopy (TEM) to elucidate their origins and the shock history of the rock. Massive, fracture‐zone, and fracture‐filling carbonates in typical locations were characterized by TEM, X‐ray microanalysis, and electron diffraction in a comprehensive study that preserved textural and spatial relationships. Orthopyroxene is highly deformed, fractured, partially comminuted, and essentially unrecovered. Lamellae of diaplectic glass and other features indicate shock pressures >30 GPa. Bridging acicular crystals and foamy glass at contacts of orthopyroxene fragments indicate localized melting and vaporization of orthopyroxene. Carbonate crystals are >5 mm in size, untwinned, and very largely exhibit the R3c calcite structure. Evidence of plastic deformation is generally found mildly only in fracture‐zone and fracture‐filling carbonates, even adjacent to highly deformed orthopyroxene, and appears to have been caused by low‐stress effects including differential shrinkage. High dislocation densities like those observed in moderately shocked calcite are absent. Carbonate contains impactderived glasses of plagioclase, silica, and orthopyroxene composition indicating brief localized impact heating. Stringers and lenses of orthopyroxene glass in fracture‐filling carbonate imply flow of carbonates and crystallization during an impact. Periclase (MgO) occurs in magnesite as 30–50 nm crystals adjacent to voids and negative crystals and as ?1 μm patches of 3 nm crystals showing weak preferred orientation consistent with (111)MgO//(0001)carb, as observed in the thermal decomposition of CaCO3 to CaO. Magnetite crystals that are epitaxially oriented at voids, negative crystals, and microfractures clearly formed in situ. Fully embedded, faceted magnetites are topotactically oriented, in general with (111)mag//(0001)carb, so that their oxygen layers are aligned. In optically opaque rims, magnetites are more irregularly shaped and, except for the smallest crystals, poorly aligned. All magnetite and periclase crystals probably formed by exsolution from slightly non‐stoichiometric, CO2‐poor carbonate following impact‐induced thermal decomposition. Any magnetites that existed in the rock before shock heating could not have preserved evidence for biogenic activity.  相似文献   

13.
14.
Abstract— Examination of fracture surfaces near the fusion crust of the martian meteorite Allan Hills (ALH) 84001 have been conducted using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and has revealed structures strongly resembling mycelium. These structures were compared with similar structures found in Antarctic cryptoendolithic communities. On morphology alone, we conclude that these features are not only terrestrial in origin but probably belong to a member of the Actinomycetales, which we consider was introduced during the Antarctic residency of this meteorite. If true, this is the first documented account of terrestrial microbial activity within a meteorite from the Antarctic blue ice fields. These structures, however, do not bear any resemblance to those postulated to be martian biota, although they are a probable source of the organic contaminants previously reported in this meteorite.  相似文献   

15.
16.
Abstract— ALH84001, originally classified as a diogenite, is a coarse-grained, cataclastic, orthopyroxenite meteorite related to the martian (SNC) meteorites. The orthopyroxene is relatively uniform in composition, with a mean composition of Wo3.3En69.4Fs27.3. Minor phases are euhedral to subhedral chromite and interstitial maskelynite, An31.1Ab63.2Or5.7, with accessory augite, Wo42.2En45.1Fs12.7, apatite, pyrite and carbonates, Cc11.5Mg58.0Sd29.4Rd1.1. The pyroxenes and chromites in ALH84001 are similar in composition to these phases in EETA79001 lithology A megacrysts but are more homogeneous. Maskelynite is similar in composition to feldspars in the nakhlites and Chassigny. Two generations of carbonates are present, early (pre-shock) strongly zoned carbonates and late (post-shock) carbonates. The high Ca content of both types of carbonates indicates that they were formed at moderately high temperature, possibly ~700 °C. ALH84001 has a slightly LREE-depleted pattern with La 0.67x and Lu 1.85x CI abundances and with a negative Eu anomaly (Eu/Sm 0.56x CI). The uniform pyroxene composition is unusual for martian meteorites, and suggests that ALH84001 cooled more slowly than did the shergottites, nakhlites or Chassigny. The nearly monomineralic composition, coarse-grain size, homogenous orthopyroxene and chromite compositions, the interstitial maskelynite and apatite, and the REE pattern suggest that ALH84001 is a cumulate orthopyroxenite containing minor trapped, intercumulus material.  相似文献   

17.
Zagami, a well characterized SNC meteorite, represents a reference sample to verify the feasibility of the non-destructive infrared micro-spectroscopy technique to extract spectral signatures from individual mineral phases in a meteorite sample. For the first time individual infrared spectra of the major mineral phases, in the 6000-600 cm−1 (1.67-16.7 μm) spectral interval, whose identification is confirmed by energy dispersive X-ray analysis and backscattered imaging, are measured. The signatures of the main mineral phases we identified in the Zagami chip are: (1) maskelynite characterized by broad and smooth SiO vibrational bands in the 1000 cm−1 spectral region; (2) crystalline pyroxenes showing well defined fine structures; and (3) an oxide mineral phase with an almost featureless and flat spectrum. In the part of the spectrum centered around 2 μm, by analyzing the different positions of the Fe2+ bands, we were able to discern the high-Ca from the low-Ca pyroxene phases. This result demonstrates that by means of the infrared micro-spectroscopy technique it is possible to retrieve directly the composition of pyroxenes in the En-Fs-Wo system, without relying on the use of deconvolution techniques. In addition IR signatures due to water and aliphatic hydrocarbons were observed to be more abundant in the pyroxenes than in maskelynite. This could be an indication that the organic and water signatures are due to indigenous compounds in Zagami rather than laboratory contamination, however, further investigations are necessary before this conclusion can be confirmed.  相似文献   

18.
The nakhlite meteorites are clinopyroxenites that are derived from a ~1300 million year old sill or lava flow on Mars. Most members of the group contain veins of iddingsite whose main component is a fine‐grained and hydrous Fe‐ and Mg‐rich silicate. Siderite is present in the majority of veins, where it straddles or cross‐cuts the Fe‐Mg silicate. This carbonate also contains patches of ferric (oxy)hydroxide. Despite 40 years of investigation, the mineralogy and origins of the Fe‐Mg silicate is poorly understood, as is the paragenesis of the iddingsite veins. Nanometer‐scale analysis of Fe‐Mg silicate in the Nakhla meteorite by electron and X‐ray imaging and spectroscopy reveals that its principal constituents are nanoparticles of opal‐A. This hydrous and amorphous phase precipitated from acidic solutions that had become supersaturated with respect to silica by dissolution of olivine. Each opal‐A nanoparticle is enclosed within a ferrihydrite shell that formed by oxidation of iron that had also been liberated from the olivine. Siderite crystallized subsequently and from solutions that were alkaline and reducing, and replaced both the nanoparticles and olivine. The fluids that formed both the opal‐A/ferrihydrite and the siderite were sourced from one or more reservoirs in contact with the Martian atmosphere. The last event recorded by the veins was alteration of the carbonate to a ferric (oxy)hydroxide that probably took place on Mars, although a terrestrial origin remains possible. These results support findings from orbiter‐ and rover‐based spectroscopy that opaline silica was a common product of aqueous alteration of the Martian crust.  相似文献   

19.
Abstract— Mixing models using major and trace elements show that the bulk composition of lithology A (xenocryst-bearing magnesian basalt) of Elephant Moraine A79001 (EETA79001) can be reasonably approximated as a simple mixture of ~44% EETA79001 lithology B (ferroan basalt) and ~56% of Allan Hills A77005 (ALHA7705) light lithology (incompatible element-poor lherzolite). Micro-instrumental neutron activation analysis (INAA) data on xenocryst-free groundmass samples of lithology A show that about 20–25% of the melt phase could be dissolved lherzolite. The bulk and groundmass samples of lithology A have excesses in Au, which indicates either meteoritic contamination or addition by some unknown martian geochemical process. Previous workers have suggested that lithology A was formed by either assimilation of cumulates (like ALHA77005), by a basalt (like lithology B), or by mixing of basaltic and lherzolitic magmas. The former scenario is energetically improbable and unlikely to explain the normal Fe/Mg zonation in lithology A groundmass pyroxenes, whereas the latter scenario is unlikely to satisfy the constraints of the mixing model indicating the ultramafic component is poor in incompatible elements. We suggest rather that EETA79001 lithology A is an impact melt composed dominantly of basalt like lithology B and lherzolitic cumulates like the trace-element-poor fraction of ALHA77005 or Y-793605. This model can satisfy the energetic, petrologic, and geochemical constraints imposed by the samples. If EETA79001 lithology A is an impact melt, this would have considerable consequences for current models of martian petrologic evolution. It would call into question the generally accepted age of magmatism of martian basalts and preclude the use of lithology A groundmass as a primary martian basalt composition in experimental studies. Regardless, the latter is required because lithology A groundmass is a hybrid composition.  相似文献   

20.
Abstract— Magnesium‐iron olivine in the Sixiangkou L6 chondrite contains abundant fractures induced by plastic deformation during shock metamorphism. This study reports the discovery of lamellar ringwoodite that incoherently nucleated and grew along planar and irregular fractures in olivine. Magnesium‐iron interdiffusion took place between olivine matrix and crystallizing ringwoodite at high pressures and high temperatures, which resulted in higher FeO content in ringwoodite lamellae than in olivine. This suggests that a quasi‐hydrostatic high pressure lasting for several minutes should have been produced in the shock veins of the meteorite. The intracrystalline transformation of olivine to ringwoodite also has implications for phase transitions in subducting lithospheric slabs because planar and irregular fractures are commonly produced in olivine that suffered plastic deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号