首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract– A synthesis of previous work leads to a model of chondrule formation that involves periodic melting of dispersed dust in debris clouds that were generated by collisions between chondritic planetesimals. I suggest that chondrules formed by the passage of nebular shock waves through these dust clumps, which temporarily surrounded disrupted planetesimals. Type I chondrules formed by more intense evaporative heating of fewer particles in tenuous clumps, or at the edges of dense clumps, and type II chondrules formed by less intense evaporative heating of more particles deeper within dense clumps. Chondrules reaccreted by self‐gravity into the planetesimals, mixing with less heated dust and rock. This process of disruption, melting, and reaccretion could have repeated many times. In this way, chondrite components of various origins and thermal histories could remain preserved in planetesimals as a distinctive mix of materials for extended periods of time, while still allowing for a repetitive melting process that converted some of the planetesimal debris into chondrules. I also suggest that during chondrule formation, the inner solar nebula gas was evolving by the gradual incorporation and heating of icy bodies depleted in 16O, causing a general increase in gaseous Δ17O with time in most places, especially close to the “snow line.” In this model, early formed type I chondrules in C chondrites with lower Δ17O values were produced inside the snow line, and later formed type I and type II chondrules in C and O chondrites with higher Δ17O values were created nearer the snow line after it had moved closer to the young Sun.  相似文献   

2.
Abstract— We investigate the possible formation of chondrules by planetesimal bow shocks. The formation of such shocks is modeled using a piecewise parabolic method (PPM) code under a variety of conditions. The results of this modeling are used as a guide to study chondrule formation in a one‐dimensional, finite shock wave. This model considers a mixture of chondrule‐sized particles and micron‐sized dust and models the kinetic vaporization of the solids. We found that only planetesimals with a radius of ?1000 km and moving at least ?8 km/s with respect to the nebular gas can generate shocks that would allow chondrule‐sized particles to have peak temperatures and cooling rates that are generally consistent with what has been inferred for chondrules. Planetesimals with smaller radii tend to produce lower peak temperatures and cooling rates that are too high. However, the peak temperatures of chondrules are only matched for low values of chondrule wavelength‐averaged emissivity. Very slow cooling (<?100s of K/hr) can only be achieved if the nebular opacity is low, which may result after a significant amount of material has been accreted into objects that are chondrule‐sized or larger, or if chondrules formed in regions of the nebula with small dust concentrations. Large shock waves of approximately the same scale as those formed by gravitational instabilities or tidal interactions between the nebula and a young Jupiter do not require this to match the inferred thermal histories of chondrules.  相似文献   

3.
Abstract— We present a model for the thermal processing of particles in shock waves typical of the solar nebula. This shock model improves on existing models in that the dissociation and recombination of H2 and the evaporation of particles are accounted for in their effects on the mass, momentum and energy fluxes. Also, besides thermal exchange with the gas and gas‐drag heating, particles can be heated by absorbing the thermal radiation emitted by other particles. The flow of radiation is calculated using the equations of radiative transfer in a slab geometry. We compute the thermal histories of particles as they encounter and pass through the shock. We apply this shock model to the melting and cooling of chondrules in the solar nebula. We constrain the combinations of shock speed and gas density needed for chondrules to reach melting temperatures, and show that these are consistent with shock waves generated by gravitational instabilities in the protoplanetary disk. After their melting, cooling rates of chondrules in the range 10–1000 K h?1 are naturally reproduced by the shock model. Chondrules are kept warm by the reservoir of hot shocked gas, which cools only as fast as the dust grains and chondrules themselves can radiate away the gas's energy. We predict a positive correlation between the concentration of chondrules in a region and the cooling rates of chondrules in that region. This correlation is supported by the unusually high frequency of (rapidly cooled) barred chondrules among compound chondrules, which must have collided preferentially in regions of high chondrule density. We discuss these and other compelling consistencies between the meteoritic record and the shock wave model of chondrule formation.  相似文献   

4.
Abstract– We investigate the hypothesis that many chondrules are frozen droplets of spray from impact plumes launched when thin‐shelled, largely molten planetesimals collided at low speed during accretion. This scenario, here dubbed “splashing,” stems from evidence that such planetesimals, intensely heated by 26Al, were abundant in the protoplanetary disk when chondrules were being formed approximately 2 Myr after calcium‐aluminum‐rich inclusions (CAIs), and that chondrites, far from sampling the earliest planetesimals, are made from material that accreted later, when 26Al could no longer induce melting. We show how “splashing” is reconcilable with many features of chondrules, including their ages, chemistry, peak temperatures, abundances, sizes, cooling rates, indented shapes, “relict” grains, igneous rims, and metal blebs, and is also reconcilable with features that challenge the conventional view that chondrules are flash‐melted dust‐clumps, particularly the high concentrations of Na and FeO in chondrules, but also including chondrule diversity, large phenocrysts, macrochondrules, scarcity of dust‐clumps, and heating. We speculate that type I (FeO‐poor) chondrules come from planetesimals that accreted early in the reduced, partially condensed, hot inner nebula, and that type II (FeO‐rich) chondrules come from planetesimals that accreted in a later, or more distal, cool nebular setting where incorporation of water‐ice with high Δ17O aided oxidation during heating. We propose that multiple collisions and repeated re‐accretion of chondrules and other debris within restricted annular zones gave each chondrite group its distinctive properties, and led to so‐called “complementarity” and metal depletion in chondrites. We suggest that differentiated meteorites are numerically rare compared with chondrites because their initially plentiful molten parent bodies were mostly destroyed during chondrule formation.  相似文献   

5.
The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is examined. Gravitational instability in a dust layer and collisional accretion are considered as possible mechanisms of planetesimal formation. Non-Keplerian rotation of the nebula results in shear between the gas and a dust layer. This shear produces turbulence within the layer which inhibits gravitational instability, unless the mean particle size exceeds a critical value, ~1 cm at 1 AU. The size requirement is less stringent at larger heliocentric distances, suggesting a possible difference in planetesimal formation mechanisms between the inner and outer nebula. Coagulation of grains during settling is expected in the solar nebula environment. Van der Waals forces appear adequate to produce centimeter-sized aggregates. Growth is primarily due to sweepup of small particles by larger ones due to size-dependent settling velocities. A numerical model for computing simultaneous coagulation and settling is described. Relative velocities are determined by gas drag and the non-Keplerian rotation of the nebula. The settling is very nonhomologous. Most of the solid matter reaches the central plane as centimeter-sized aggregates in a few times 103 revolutions, but some remains suspended in the form of fine dust. Drag-induced relative velocities result in collisions. The growth of bodies in the central plane is initially rapid. After sizes reach ~103 cm, relative velocities decrease and the growth rate declines. Gas drag rapidly damps the out-of-plane motions of these intermediate-sized bodies. They settle into a thin layer which is subject to gravitational instability. Kilometer-sized planetesimals are formed by this composite process.  相似文献   

6.
E. Beitz  C. Güttler  R. Weidling  J. Blum 《Icarus》2012,218(1):701-706
The formation of planetesimals in the early Solar System is hardly understood, and in particular the growth of dust aggregates above millimeter sizes has recently turned out to be a difficult task in our understanding (Zsom, A., Ormel, C.W., Güttler, C., Blum, J., Dullemond, C.P. [2010]. Astron. Astrophys., 513, A57). Laboratory experiments have shown that dust aggregates of these sizes stick to one another only at unreasonably low velocities. However, in the protoplanetary disk, millimeter-sized particles are known to have been ubiquitous. One can find relics of them in the form of solid chondrules as the main constituent of chondrites. Most of these chondrules were found to feature a fine-grained rim, which is hypothesized to have formed from accreting dust grains in the solar nebula. To study the influence of these dust-coated chondrules on the formation of chondrites and possibly planetesimals, we conducted collision experiments between millimeter-sized, dust-coated chondrule analogs at velocities of a few cm s?1. For 2 and 3 mm diameter chondrule analogs covered by dusty rims of a volume filling factor of 0.18 and 0.35–0.58, we found sticking velocities of a few cm s?1. This velocity is higher than the sticking velocity of dust aggregates of the same size. We therefore conclude that chondrules may be an important step towards a deeper understanding of the collisional growth of larger bodies. Moreover, we analyzed the collision behavior in an ensemble of dust aggregates and non-coated chondrule analogs. While neither the dust aggregates nor the solid chondrule analogs show sticking in collisions among their species, we found an enhanced sicking efficiency in collisions between the two constituents, which leads us to the conjecture that chondrules might act as “catalyzers” for the growth of larger bodies in the young Solar System.  相似文献   

7.
Abstract— The primordial asteroid belt contained at least several hundred and possibly as many as 10,000 bodies with diameters of 1000 km or larger. Following the formation of Jupiter, nebular gas drag combined with passage of such bodies through Jovian resonances produced high eccentricities (e = 0.3‐0.5), low inclinations (i < 0.5°), and, therefore, high velocities (3–10 km/s) for “resonant” bodies relative to both nebular gas and non‐resonant planetesimals. These high velocities would have produced shock waves in the nebular gas through two mechanisms. First, bow shocks would be produced by supersonic motion of resonant bodies relative to the nebula. Second, high‐velocity collisions of resonant bodies with non‐resonant bodies would have generated impact vapor plume shocks near the collision sites. Both types of shocks would be sufficient to melt chondrule precursors in the nebula, and both are consistent with isotopic evidence for a time delay of ?1‐1.5 Myr between the formation of CAIs and most chondrules. Here, initial simulations are first reported of impact shock wave generation in the nebula and of the local nebular volumes that would be processed by these shocks as a function of impactor size and relative velocity. Second, the approximate maximum chondrule mass production is estimated for both bow shocks and impact‐generated shocks assuming a simplified planetesimal population and a rate of inward migration into resonances consistent with previous simulations. Based on these initial first‐order calculations, impact‐generated shocks can explain only a small fraction of the minimum likely mass of chondrules in the primordial asteroid belt (?1024‐1025g). However, bow shocks are potentially a more efficient source of chondrule production and can explain up to 10–100 times the estimated minimum chondrule mass.  相似文献   

8.
Abstract– One transient heating mechanism that can potentially explain the formation of most meteoritic chondrules 1–3 Myr after CAIs is shock waves produced by planetary embryos perturbed into eccentric orbits via resonances with Jupiter following its formation. The mechanism includes both bow shocks upstream of resonant bodies and impact vapor plume shocks produced by high‐velocity collisions of the embryos with small nonresonant planetesimals. Here, we investigate the efficiency of both shock processes using an improved planetesimal accretion and orbital evolution code together with previous simulations of vapor plume expansion in the nebula. Only the standard version of the model (with Jupiter assumed to have its present semimajor axis and eccentricity) is considered. After several hundred thousand years of integration time, about 4–5% of remaining embryos have eccentricities greater than about 0.33 and shock velocities at 3 AU exceeding 6 km s?1, currently considered to be a minimum for melting submillimeter‐sized silicate precursors in bow shocks. Most embryos perturbed into highly eccentric orbits are relatively large—half as large as the Moon or larger. Bodies of this size could yield chondrule‐cooling rates during bow shock passage compatible with furnace experiment results. The cumulative area of the midplane that would be traversed by highly eccentric embryos and their associated bow shocks over a period of 1–2 Myr is <1% of the total area. However, future simulations that consider a radially migrating Jupiter and alternate initial distributions of the planetesimal swarm may yield higher efficiencies.  相似文献   

9.
Edward R.D. Scott 《Icarus》2006,185(1):72-82
Thermal models and radiometric ages for meteorites show that the peak temperatures inside their parent bodies were closely linked to their accretion times. Most iron meteorites come from bodies that accreted <0.5 Myr after CAIs formed and were melted by 26Al and 60Fe, probably inside 2 AU. Rare carbon-rich differentiated meteorites like ureilites probably also come from bodies that formed <1 Myr after CAIs, but in the outer part of the asteroid belt. Chondrite groups accreted intermittently from diverse batches of chondrules and other materials over a 4 Myr period starting 1 Myr after CAI formation when planetary embryos may already have formed at ∼1 AU. Meteorite evidence precludes accretion of late-forming chondrites on the surface of early-formed bodies; instead chondritic and non-chondritic meteorites probably formed in separate planetesimals. Maximum metamorphic temperatures in chondrite groups are correlated with mean chondrule age, as expected if 26Al and 60Fe were the predominant heat sources. Because late-forming bodies could not accrete close to large, early-formed bodies, planetesimal formation may have spread across the nebula from regions where the differentiated bodies formed. Dynamical models suggest that the asteroids could not have accreted in the main belt if Jupiter formed before the asteroids. Therefore Jupiter probably reached its current mass >3-5 Myr after CAIs formed. This precludes formation of Jupiter via a gravitational instability <1 Myr after the solar nebula formed, and strongly favors core accretion. Jupiter probably formed too late to make chondrules by generating shocks directly, or indirectly by scattering Ceres-sized bodies across the belt. Nevertheless, shocks formed by gravitational instabilities or Ceres-sized bodies scattered by planetary embryos may have produced some chondrules. The minimum lifetime for the solar nebula of 3-5 Myr inferred from the total spread of CAI and chondrule ages may exceed the median lifetime of 3 Myr for protoplanetary disks, but is well within the 1-10 Myr observed range. Shorter formation times for extrasolar planets may help to explain their unusual orbits compared to those of solar giant planets.  相似文献   

10.
Abstract— Ningqiang is an anomalous CV chondrite (oxidized subgroup) containing a high abundance of aggregational inclusions (13.7 vol.%) and low abundances of refractory inclusions (1.0+1.0–0.5 vol.%) and bulk refractory lithophiles (~0.82 × CV). Ningqiang may have agglomerated after most refractory inclusions at the nebular midplane had already been incorporated into other objects. Coarse-grained rims surround only ~5% of Ningqiang chondrules, compared to ~50% in normal CV chondrites. Aggregational inclusions appear to have formed by incipient melting of fine-grained aggregates at relatively low temperatures in the solar nebula, possibly by the mechanism responsible for chondrule formation. Granoblastic porphyritic chondrules, which contain olivines forming 120° triple junctures and no mesostasis, probably formed in the solar nebula by incomplete melting of precursor materials that were olivine normative and had relatively low concentrations of Si, Ca, Al, Fe and Na.  相似文献   

11.
The importance of experiments: Constraints on chondrule formation models   总被引:1,自引:0,他引:1  
Abstract— We review a number of constraints that have been placed on the formation of chondrules and show how these can be used to test chondrule formation models. Four models in particular are examined: the “X‐wind” model (sudden exposure to sunlight <0.1 AU from the proto‐Sun, with subsequent launching in a magnetocentrifugal outflow); solar nebula lightning; nebular shocks driven by eccentric planetesimals; and nebular shocks driven by diskwide gravitational instabilities. We show that constraints on the thermal histories of chondrules during their melting and crystallization are the most powerful constraints and provide the least ambiguous tests of the chondrule formation models. Such constraints strongly favor melting of chondrules in nebular shocks. Shocks driven by gravitational instabilities are somewhat favored over planetesimal bow shocks.  相似文献   

12.
Abstract— We examined partially molten dust particles that have a solid core and a surrounding liquid mantle, and estimated the maximal size of chondrules in a framework of the shock wave heating model for chondrule formation. First, we examined the dynamics of the liquid mantle by analytically solving the hydrodynamics equations for a core‐mantle structure via a linear approximation. We obtained the deformation, internal flow, pressure distribution in the liquid mantle, and the force acting on the solid core. Using these results, we estimated conditions in which liquid mantle is stripped off from the solid core. We found that when the particle radius is larger than about 1–2 mm, the stripping is expected to take place before the entire dust particle melts. So chondrules larger than about 1–2 mm are not likely to be formed by the shock wave heating mechanism. Also, we found that the stripping of the liquid mantle is more likely to occur than the fission of totally molten particles. Therefore, the maximal size of chondrules may be determined by the stripping of the liquid mantle from the partially molten dust particles in the shock waves. This maximal size is consistent with the sizes of natural chondrules.  相似文献   

13.
Abstract— Some recent information on the Mn‐Cr and Al‐Mg systems is reviewed. This information is used to derive constraints on the timing of processes and events, which took place in the early solar system. Using reasonable assumptions, a timeline is constructed where the estimated age of the solar system is ~4571 Ma. This age is taken to mark the time when most calcium‐aluminum‐rich inclusions (CAIs) were starting to form, a process that may have lasted for several 105 years. Almost contemporaneously small planetesimals have accreted that served to store these CAIs for later dispersal among larger planetesimals. By the time large numbers of planetesimals of several tens of kilometers in size had formed, the interior of these objects started to melt through the decay of 26Al. Collisional disruption of these planetesimals allowed gases, dust, and melt to escape into the surrounding space. The fine droplets of melt reacted with gas and dust to form chondrules, which, after rapid cooling, were partially re‐accreted onto the residual rubble pile. This process of primary chondrule formation, in most cases involving several generations of planetesimals, most plausibly lasted only for ~2 Ma. Towards the end of this period and during the following 3 to 4 Ma planetary objects of several hundred kilometers in size were formed. They still stored enough energy to continue melting from the inside to finally differentiate into chemically stratified layers, with basaltic volcanism occurring within a few million years.  相似文献   

14.
Abstract— We test the hypothesis that chondrules (and Type B and C calcium-aluminum-rich inclusions, CAIs) originated during passage of precursors through bow shocks upstream of planetesimals moving supersonically relative to nebula gas. A two-dimensional piecewise parabolic method (PPM) hydrocode, supplemented by a one-dimensional adiabatic shock model, is employed to simulate the postshock gas density, temperature, and velocity fields for given planetesimal sizes, velocities, and ambient nebular densities and temperatures. Thermal histories of incident silicate particles are calculated in the free molecular flow approximation by integration of the one-dimensional equations of gas-grain energy and momentum transfer. For gas number densities >1014 cm?3, Mach numbers in the range of 4 to 5 are sufficient to melt isolated spherical particles with radii in the range 0.05 to 0.5 mm during passage of shocked gas thicknesses of 25–35 km. Minimum gas-planetesimal relative velocities are in the range 5.5–7 km/s, implying orbital eccentricities >0.2 and/or inclinations >15°. Melting of centimeter-sized CAI precursors requires either higher Mach numbers (6–7) or ambient gas densities >1015 cm?3. For a constant radial distribution of planetesimal orbital eccentricities and inclinations, the model predicts more efficient melting of precursor particles at decreasing radial distances from the Sun where planetesimal velocities are largest. In order to process a significant fraction of solids in the nebula, planetesimals near ~2.5 AU during the chondrule formation epoch must have had a range of eccentricities and inclinations comparable to those presently observed in the residual asteroid belt. The most likely energy source for maintaining the necessary gas-planetesimal relative velocities is external gravitational perturbations associated with the forming outer planets, primarily Jupiter.  相似文献   

15.
We are investigating chondrule formation by nebular shock waves, using hot plasma as an analog of the heated gas produced by a shock wave as it passes through the protoplanetary environment. Precursor material (mainly silicates, plus metal, and sulfide) was dropped through the plasma in a basic experimental set‐up designed to simulate gas–grain collisions in an unconstrained spatial environment (i.e., no interaction with furnace walls during formation). These experiments were undertaken in air (at atmospheric pressure), to act as a “proof‐of‐principle”—could chondrules, or chondrule‐analog objects (CAO), be formed by gas–grain interaction initiated by shock fronts? Our results showed that if accelerating material through a fixed plasma field is a valid simulation of a supersonic shock wave traveling through a cloud of gas and dust, then CAO certainly could be formed by this process. Melting of and mixing between starting materials occurred, indicating temperatures of at least 1266 °C (the olivine‐feldspar eutectic). The production of CAO with mixed mineralogy from monomineralic starting materials also shows that collisions between particles are an important mechanism within the chondrule formation process, such that dust aggregates are not necessarily required as chondrule precursors. Not surprisingly, there were significant differences between the synthetic CAO and natural chondrules, presumably mainly because of the oxidizing conditions of the experiment. Results also show similarity to features of micrometeorites like cosmic spherules, particularly the dendritic pattern of iron oxide crystallites produced on micrometeorites by oxidation during atmospheric entry and the formation of vesicles by evaporation of sulfides.  相似文献   

16.
Abstract– In the scenario developed here, most types of calcium‐aluminum‐rich inclusions (CAIs) formed near the Sun where they developed Wark‐Lovering rims before being transported by aerodynamic forces throughout the nebula. The amount of ambient dust in the nebula varied with heliocentric distance, peaking in the CV–CK formation location. Literature data show that accretionary rims (which occur outside the Wark‐Lovering rims) around CAIs contain substantial 16O‐rich forsterite, suggesting that, at this time, the ambient dust in the nebula consisted largely of 16O‐rich forsterite. Individual sub‐millimeter‐size Compact Type‐A CAIs (each surrounded by a Wark‐Lovering rim) collided in the CV–CK region and stuck together (in a manner similar to that of sibling compound chondrules); the CTAs were mixed with small amounts of 16O‐rich mafic dust and formed centimeter‐size compound objects (large Fluffy Type‐A CAIs) after experiencing minor melting. In contrast to other types of CAIs, centimeter‐size Type‐B CAIs formed directly in the CV–CK region after gehlenite‐rich Compact Type‐A CAIs collided and stuck together, incorporated significant amounts of 16O‐rich forsteritic dust (on the order of 10–15%) and probably some anorthite, and experienced extensive melting and partial evaporation. (Enveloping compound chondrules formed in an analogous manner.) In those cases where appreciably higher amounts of 16O‐rich forsterite (on the order of 25%) (and perhaps minor anorthite and pyroxene) were incorporated into compound Type‐A objects prior to melting, centimeter‐size forsterite‐bearing Type‐B CAIs (B3 inclusions) were produced. Type‐B1 inclusions formed from B2 inclusions that collided with and stuck to melilite‐rich Compact Type‐A CAIs and experienced high‐temperature processing.  相似文献   

17.
We present numerical simulations of the thermal and dynamical histories of solid particles (chondrules and their precursors—treated as 1-mm silicate spheres) during passage of an adiabatic shock wave through a particle-gas suspension in a minimum-mass solar nebula. The steady-state equations of energy, momentum, and mass conservation are derived and integrated for both solids and gas under a variety of shock conditions and particle number densities using the free-molecular-flow approximation. These simulations allow us to investigate both the heating and cooling of particles in a shock wave and to compare the time and distance scales associated with their processing to those expected for natural chondrules. The interactions with the particles cause the gas to achieve higher temperatures and pressures both upstream and downstream of the shock than would be reached otherwise. The cooling rates of the particles are found to be nonlinear but agree approximately with the cooling rates inferred for chondrules by laboratory simulations. The initial concentration of solids upstream of the shock controls the cooling rates and the distances over which they are processed: Lower concentrations cool more slowly and over longer distances. These simulations are consistent with the hypothesis that large-scale shocks, e.g., those due to density waves or gravitational instabilities, were the dominant mechanism for chondrule formation in the nebula.  相似文献   

18.
Meteoritical and astrophysical models of planet formation make contradictory predictions for dust concentration factors in chondrule-forming regions of the solar nebula. Meteoritical and cosmochemical models strongly suggest that chondrules, a key component of the meteoritical record, formed in regions with solids-to-gas mass ratios orders above the solar nebula average. However, models of dust grain dynamics in protoplanetary disks struggle to surpass concentration factors of a few except during very short-lived stages in a dust grain's life. Worse, those models do not predict significant concentration factors for dust grains the size of chondrule precursors. We briefly develop the difficulty in concentrating dust particles in the context of nebular chondrule formation and show that the disagreement is sufficiently stark that cosmochemists should explore ideas that might revise the concentration factor requirements downward.  相似文献   

19.
Abstract— Primary minerals in calcium‐aluminum‐rich inclusions (CAIs), Al‐rich and ferromagnesian chondrules in each chondrite group have δ18O values that typically range from ?50 to +5%0. Neglecting effects due to minor mass fractionations, the oxygen isotopic data for each chondrite group and for micrometeorites define lines on the three‐isotope plot with slopes of 1.01 ± 0.06 and intercepts of ?2 ± 1. This suggests that the same kind of nebular process produced the 16O variations among chondrules and CAIs in all groups. Chemical and isotopic properties of some CAIs and chondrules strongly suggest that they formed from solar nebula condensates. This is incompatible with the existing two‐component model for oxygen isotopes in which chondrules and CAIs were derived from heated and melted 16O‐rich presolar dust that exchanged oxygen with 16O‐poor nebular gas. Some FUN CAIs (inclusions with isotope anomalies due to fractionation and unknown nuclear effects) have chemical and isotopic compositions indicating they are evaporative residues of presolar material, which is incompatible with 16O fractionation during mass‐independent gas phase reactions in the solar nebula. There is only one plausible reason why solar nebula condensates and evaporative residues of presolar materials are both enriched in 16O. Condensation must have occurred in a nebular region where the oxygen was largely derived from evaporated 16O‐rich dust. A simple model suggests that dust was enriched (or gas was depleted) relative to cosmic proportions by factors of ~10 to >50 prior to condensation for most CAIs and factors of 1–5 for chondrule precursor material. We infer that dust‐gas fractionation prior to evaporation and condensation was more important in establishing the oxygen isotopic composition of CAIs and chondrules than any subsequent exchange with nebular gases. Dust‐gas fractionation may have occurred near the inner edge of the disk where nebular gases accreted into the protosun and Shu and colleagues suggest that CAIs formed.  相似文献   

20.
Small but macroscopic particles—chondrules, higher temperature mineral inclusions, metal grains, and their like—dominate the fabric of primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, suggest that they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In this paper we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (relevant to diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relative to each other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size dependence of these velocities in this important particle size regime, and we compare these expressions with new numerical calculations. The magnitude and size dependence of these velocities have immediate applications to chondrule and CAI rimming by fine dust and to their diffusion in the nebula, which we explore separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号