首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Minor element variations in MgAl2O4 spinel from the type B1 calcium‐aluminum‐rich inclusion (CAI) Allende TS‐34 confirm earlier studies in showing correlations between the minor element chemistry of spinels with their location within the inclusion and with the chemistry of host silicate phases. These correlations result from a combination of crystallization of a liquid produced by re‐melting event(s) and local re‐equilibration during subsolidus reheating. The correlation of the Ti and V in spinel inclusions with the Ti and V in the adjacent host clinopyroxene can be qualitatively explained by spinel and clinopyroxene crystallization prior to melilite, following a partial melting event. There are, however, difficulties in quantitative modeling of the observed trends, and it is easier to explain the Ti correlation in terms of complete re‐equilibration. The correlation of V in spinel inclusions with that in the adjacent host clinopyroxene also cannot be quantitatively modeled by fractional crystallization of the liquid produced by re‐melting, but it can be explained by partial re‐equilibration. The distinct V and Ti concentrations in spinel inclusions in melilite from the edge regions of the CAI are best explained as being affected by only a minor degree of re‐equilibration. The center melilites and included spinels formed during crystallization of the liquid produced by re‐melting, while the edge melilites and included spinels are primary. The oxygen isotope compositions of TS‐34 spinels are uniformly 16O‐rich, regardless of the host silicate phase or its location within the inclusion. Similar to other type B1 CAIs, clinopyroxene is 16O‐rich, but melilite is relatively 16O‐poor. These data require that the oxygen isotope exchange in TS‐34 melilite occurred subsequent to the last re‐melting event.  相似文献   

2.
Abstract— We have made Be‐B measurements in six calcium‐aluminum‐rich inclusions (CAIs) (mostly type B inclusions) from CV chondrites and compared them to Al‐Mg measurements. All CAIs show 10B excesses in melilite that are correlated with Be/B ratios. The initial 10Be/9Be ratio inferred from the correlation line is 6.2 times 10?4. In contrast to the Be‐B system in melilite, the Al‐Mg system in anorthite is disturbed. This is probably due to B diffusion in melilite being slow compared with Mg diffusion in anorthite. This suggests that Be‐B chronology may be useful for measuring time differences of high‐temperature (melting, condensation, etc.) events in the early solar system.  相似文献   

3.
Abstract— Here we report the petrography, mineralogy, and bulk compositions of Ca,Al‐rich inclusions (CAIs), amoeboid olivine aggregate (AOA), and Al‐rich chondrules (ARCs) in Sayh al Uhaymir (SaU) 290 CH chondrite. Eighty‐two CAIs (0.1% of the section surface area) were found. They are hibonite‐rich (9%), grossite‐rich (18%), melilite ± spinel‐rich (48%), fassaite ± spinel‐rich (15%), and fassaite‐anorthite‐rich (10%) refractory inclusions. Most CAIs are rounded in shape and small in size (average = 40 μm). They are more refractory than those of other groups of chondrites. CAIs in SaU 290 might have experienced higher peak heating temperatures, which could be due to the formation region closer to the center of protoplanetary disk or have formed earlier than those of other groups of chondrites. In SaU 290, refractory inclusions with a layered texture could have formed by gas‐solid condensation from the solar nebula and those with an igneous texture could have crystallized from melt droplets or experienced subsequent melting of pre‐existing condensates from the solar nebula. One refractory inclusion represents an evaporation product of pre‐existing refractory solid on the basis of its layered texture and melting temperature of constituting minerals. Only one AOA is observed (75 μm across). It consists of olivine, Al‐diopside, anorthite, and minor spinel with a layered texture. CAIs and AOA show no significant low‐temperature aqueous alteration. ARCs in SaU 290 consist of diopside, forsterite, anorthite, Al‐enstatite, spinel, and mesostasis or glass. They can be divided into diopside‐rich, Al‐enstatite‐rich, glass‐rich, and anorthite‐rich chondrules. Bulk compositions of most ARCs are consistent with a mixture origin of CAIs and ferromagnesian chondrules. Anorthite and Al‐enstatite do not coexist in a given ARC, implying a kinetic effect on their formation.  相似文献   

4.
Abstract— Fine‐grained, spinel‐rich inclusions in the reduced CV chondrites Efremovka and Leoville consist of spinel, melilite, anorthite, Al‐diopside, and minor hibonite and perovskite; forsterite is very rare. Several CAIs are surrounded by forsterite‐rich accretionary rims. In contrast to heavily altered fine‐grained CAIs in the oxidized CV chondrite Allende, those in the reduced CVs experienced very little alteration (secondary nepheline and sodalite are rare). The Efremovka and Leoville fine‐grained CAIs are 16O‐enriched and, like their Allende counterparts, generally have volatility fractionated group II rare earth element patterns. Three out of 13 fine‐grained CAIs we studied are structurally uniform and consist of small concentrically zoned nodules having spinel ± hibonite ± perovskite cores surrounded by layers of melilite and Al‐diopside. Other fine‐grained CAIs show an overall structural zonation defined by modal mineralogy differences between the inclusion cores and mantles. The cores are melilite‐free and consist of tiny spinel ± hibonite ± perovskite grains surrounded by layers of anorthite and Al‐diopside. The mantles are calcium‐enriched, magnesium‐depleted and coarsergrained relative to the cores; they generally contain abundant melilite but have less spinel and anorthite than the cores. The bulk compositions of fine‐grained CAIs generally show significant fractionation of Al from Ca and Ti, with Ca and Ti being depleted relative to Al; they are similar to those of coarsegrained, type C igneous CAIs, and thus are reasonable candidate precursors for the latter. The finegrained CAIs originally formed as aggregates of spinel‐perovskite‐melilite ± hibonite gas‐solid condensates from a reservoir that was 16O‐enriched but depleted in the most refractory REEs. These aggregates later experienced low‐temperature gas‐solid nebular reactions with gaseous SiO and Mg to form Al‐diopside and ±anorthite. The zoned structures of many of the fine‐grained inclusions may be the result of subsequent reheating that resulted in the evaporative loss of SiO and Mg and the formation of melilite. The inferred multi‐stage formation history of fine‐grained inclusions in Efremovka and Leoville is consistent with a complex formation history of coarse‐grained CAIs in CV chondrites.  相似文献   

5.
Abstract— The metal‐rich chondrites Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627, contain relatively rare (<1 vol%) calcium‐aluminum‐rich inclusions (CAIs) and Al‐diopside‐rich chondrules. Forty CAIs and CAI fragments and seven Al‐diopside‐rich chondrules were identified in HH 237 and QUE 94411/94627. The CAIs, ~50–400 μm in apparent diameter, include (a) 22 (56%) pyroxene‐spinel ± melilite (+forsterite rim), (b) 11 (28%) forsterite‐bearing, pyroxene‐spinel ± melilite ± anorthite (+forsterite rim) (c) 2 (5%) grossite‐rich (+spinel‐melilite‐pyroxene rim), (d) 2 (5%) hibonite‐melilite (+spinel‐pyroxene ± forsterite rim), (e) 1 (2%) hibonite‐bearing, spinel‐perovskite (+melilite‐pyroxene rim), (f) 1 (2%) spinel‐melilite‐pyroxene‐anorthite, and (g) 1 (2%) amoeboid olivine aggregate. Each type of CAI is known to exist in other chondrite groups, but the high abundance of pyroxene‐spinel ± melilite CAIs with igneous textures and surrounded by a forsterite rim are unique features of HH 237 and QUE 94411/94627. Additionally, oxygen isotopes consistently show relatively heavy compositions with Δ17O ranging from ?6%0 to ?10%0 (1σ = 1.3%0) for all analyzed CAI minerals (grossite, hibonite, melilite, pyroxene, spinel). This suggests that the CAIs formed in a reservoir isotopically distinct from the reservoir(s) where “normal”, 16O‐rich (Δ17O < ?20%0) CAIs in most other chondritic meteorites formed. The Al‐diopside‐rich chondrules, which have previously been observed in CH chondrites and the unique carbonaceous chondrite Adelaide, contain Al‐diopside grains enclosing oriented inclusions of forsterite, and interstitial anorthitic mesostasis and Al‐rich, Ca‐poor pyroxene, occasionally enclosing spinel and forsterite. These chondrules are mineralogically similar to the Al‐rich barred‐olivine chondrules in HH 237 and QUE 94411/94627, but have lower Cr concentrations than the latter, indicating that they may have formed during the same chondrule‐forming event, but at slightly different ambient nebular temperatures. Aluminum‐diopside grains from two Al‐diopside‐rich chondrules have O‐isotopic compositions (Δ17O ? ?7 ± 1.1 %0) similar to CAI minerals, suggesting that they formed from an isotopically similar reservoir. The oxygen‐isotopic composition of one Ca, Al‐poor cryptocrystalline chondrule in QUE 94411/94627 was analyzed and found to have Δ17O ? ?3 ± 1.4%0. The characteristics of the CAIs in HH 237 and QUE 94411/94627 are inconsistent with an impact origin of these metal‐rich meteorites. Instead they suggest that the components in CB chondrites are pristine products of large‐scale, high‐temperature processes in the solar nebula and should be considered bona fide chondrites.  相似文献   

6.
Dynamic crystallization experiments were performed on a liquid having the bulk composition of olivine‐phyric shergottite Yamato 980459, to constrain the igneous thermal history of this meteorite. Key characteristics of the meteorite's mineralogy and texture, including several morphologically distinct olivine and pyroxene crystal populations and a glassy mesostasis devoid of plagioclase, were replicated upon cooling from 1435 to 909 °C at 1 atmosphere under reducing conditions. Three sequential cooling ramps are required to produce synthetic samples with textures and compositions matching Yamato 980459. Olivine phenocrysts formed at <1 °C h?1, presumably at depth in the Martian crust. Pyroxene phenocrysts formed mainly at ~10 °C h?1, consistent with crystallization within a lava flow at depths of 25–45 cm. Increased cooling rate (~100 °C h?1) in a third stage suppressed the formation of plagioclase and produced groundmass crystals, consistent with crystallization at lava flow depths of 5–7 cm. Although Y 980459 is unique among Martian meteorites (i.e., preserving a primary glassy mesostasis), its emplacement did not require unique physical conditions. Rather, the second and third cooling stages may reflect cooling within the core of a pāhoehoe‐like flow and subsequent breakout on the surface of Mars.  相似文献   

7.
Abstract— In situ SIMS oxygen isotope data were collected from a coarse‐grained type B1 Ca‐Al‐rich inclusion (CAI) and an adjacent fine‐grained CAI in the reduced CV3 Efremovka to evaluate the timing of isotopic alteration of these two objects. The coarse‐grained CAI (CGI‐10) is a sub‐spherical object composed of elongate, euhedral, normally‐zoned melilite crystals ranging up to several hundreds of Pm in length, coarse‐grained anorthite and Al, Ti‐diopside (fassaite), all with finegrained (~10 μm across) inclusions of spinel. Similar to many previously examined coarse‐grained CAIs from CV chondrites, spinel and fassaite are 16O‐rich and melilite is 16O‐poor, but in contrast to many previous results, anorthite is 16O‐rich. Isotopic composition does not vary with textural setting in the CAI: analyses of melilite from the core and mantle and analyses from a variety of major element compositions yield consistent 16O‐poor compositions. CGI‐10 originated in an 16O‐rich environment, and subsequent alteration resulted in complete isotopic exchange in melilite. The fine‐grained CAI (FGI‐12) also preserves evidence of a 1st‐generation origin in an 16O‐rich setting but underwent less severe isotopic alteration. FGI‐12 is composed of spinel ± melilite nodules linked by a mass of Al‐diopside and minor forsterite along the CAI rim. All minerals are very fine‐grained (<5 μm) with no apparent igneous textures or zoning. Spinel, Al‐diopside, and forsterite are 16O‐rich, while melilite is variably depleted in 16O (δ17,18O from ~‐40‰ to ?5‰). The contrast in isotopic distributions in CGI‐10 and FGI‐12 is opposite to the pattern that would result from simultaneous alteration: the object with finer‐grained melilite and a greater surface area/ volume has undergone less isotopic exchange than the coarser‐grained object. Thus, the two CAIs were altered in different settings. As the CAIs are adjacent to each other in the meteorite, isotopic exchange in CGI‐10 must have preceded incorporation of this CAI in the Efremovka parent body. This supports a nebular setting for isotopic alteration of the commonly observed 16O‐poor melilite in coarse‐grained CAIs from CV chondrites.  相似文献   

8.
Abstract— Calcium‐aluminum‐rich refractory inclusions (CAIs) in CR chondrites are rare (<1 vol%), fairly small (<500 μm) and irregularly‐shaped, and most of them are fragmented. Based on the mineralogy and petrography, they can be divided into grossite ± hibonite‐rich, melilite‐rich, and pyroxene‐anorthite‐rich CAIs. Other types of refractory objects include fine‐grained spinel‐melilite‐pyroxene aggregates and amoeboid olivine aggregates (AOAs). Some of the pyroxene‐anorthite‐rich CAIs have igneous textures, and most melilite‐rich CAIs share similarities to both the fluffy and compact type A CAIs found in CV chondrites. One major difference between these CAIs and those in CV, CM, and CO chondrites is that secondary mineral phases are rare. In situ ion microprobe analyses of oxygen‐isotopic compositions of 27 CAIs and AOAs from seven CR chondrites demonstrate that most of the CAIs are 16O‐rich (δ17O of hibonite, melilite, spinel, pyroxene, and anorthite < ?22‰) and isotopically homogeneous within 3–4‰. Likewise, forsterite, spinel, anorthite, and pyroxene in AOAs have nearly identical, 16O‐rich compositions (?24‰ < δ17O < ?20‰). In contrast, objects which show petrographic evidence for extensive melting are not as 16O‐rich (δ17O less than ?18‰). Secondary alteration minerals replacing 16O‐rich melilite in melilite‐rich CAIs plot along the terrestrial fractionation line. Most CR CAIs and AOAs are mineralogically pristine objects that largely escaped thermal metamorphism and secondary alteration processes, which is reflected in their relatively homogeneous 16O‐rich compositions. It is likely that these objects (or their precursors) condensed in an 16O‐rich gaseous reservoir in the solar nebula. In contrast, several igneous CAIs are not very enriched in 16O, probably as a result of their having melted in the presence of a relatively 16O‐poor nebular gas. If the precursors of these CAIs were as 16O‐rich as other CR CAIs, this implies either temporal excursions in the isotopic composition of the gas in the CAI‐forming regions and/or radial transport of some CAI precursors into an 16O‐poor gas. The absence of oxygen isotope heterogeneity in the primary minerals of melilite‐rich CAIs containing alteration products suggests that mineralogical alteration in CR chondrites did not affect oxygen‐isotopic compositions of their CAIs.  相似文献   

9.
Abstract— A large (7 mm in diameter) Allende type B inclusion has a typical bulk composition and a unique structure: a fassaite‐rich mantle enclosing a melilite‐rich core. The core and mantle have sharply contrasting textures. In the mantle, coarse (?1 mm across), subhedral fassaite crystals enclose radially oriented melilite laths about 500 μm long that occur at the inclusion rim. The core consists of blocky melilite grains 20–50 μm across and poikilitically enclosed in anhedral fassaite grains that are optically continuous over ?1 mm. Another unique feature of this inclusion is that melilite laths also extend from the core into the mantle. Fassaite in both the core and mantle is very rich in fine‐grained (1–10 μm) spinel. The rim laths are normally zoned (Åk30–70) inward from the rim of the inclusion with reverse zoning over the last ?200 μm to crystallize. A very wide range of melilite compositions is found in the core of the inclusion, where gehlenitic grains (Åk5–12) occur. These grains are enclosed in strongly zoned (Åk15–70) overgrowths. The gehlenitic cores and innermost parts of the overgrowths are Na2O‐free, but the outer parts of the overgrowths are not. In the laths at the rim, Na2O decreases inward from the rim, then increases. Fassaite in the core has the same range of Ti contents as that in the mantle: 2–9 wt% TiO2 + Ti2O3. Two melting events are required to account for the features of this inclusion. In the first event, the precursor assemblage is heated to ?1400 °C and melts except for gehlenitic (Åk5–12) melilite and some spinel. These grains become concentrated in the core. During cooling, Na2O‐free melilite nucleates at the rim of the inclusion and on the relict grains in the core. After open system secondary alteration, the inclusion is heated again, but only to ?1260 °C. Melilite more gehlenitic than Åk40 does not melt. During cooling, Na2O‐bearing melilite crystallizes as small, blocky grains and laths in the core and as overgrowths on relict grains in the core and at the rim. Eventually melilite co‐crystallizes with fassaite, leading to the reverse zoning observed in the laths. The coexistence in this inclusion of Na‐free and Na‐bearing melilite, plus a positive correlation between Na2O and åkermanite contents in melilite in an inclusion with a bulk Mg isotopic composition that is mass‐fractionated in favor of the heavy isotopes, are both consistent with at least two melting events. Several other recently described coarse‐grained inclusions also have features consistent with a sequence of early, high‐temperature melting, secondary alteration, and remelting at a lower temperature, suggesting that remelting of refractory inclusions was a common occurrence in the solar nebula.  相似文献   

10.
To better understand the formation conditions of ferromagnesian chondrules from the Renazzo‐like carbonaceous (CR) chondrites, a systematic study of 210 chondrules from 15 CR chondrites was conducted. The texture and composition of silicate and opaque minerals from each observed FeO‐rich (type II) chondrule, and a representative number of FeO‐poor (type I) chondrules, were studied to build a substantial and self‐consistent data set. The average abundances and standard deviations of Cr2O3 in FeO‐rich olivine phenocrysts are consistent with previous work that the CR chondrites are among the least thermally altered samples from the early solar system. Type II chondrules from the CR chondrites formed under highly variable conditions (e.g., precursor composition, redox conditions, cooling rate), with each chondrule recording a distinct igneous history. The opaque minerals within type II chondrules are consistent with formation during chondrule melting and cooling, starting as S‐ and Ni‐rich liquids at 988–1350 °C, then cooling to form monosulfide solid solution (mss) that crystallized around olivine/pyroxene phenocrysts. During cooling, Fe,Ni‐metal crystallized from the S‐ and Ni‐rich liquid, and upon further cooling mss decomposed into pentlandite and pyrrhotite, with pentlandite exsolving from mss at 400–600 °C. The composition, texture, and inferred formation temperature of pentlandite within chondrules studied here is inconsistent with formation via aqueous alteration. However, some opaque minerals (Fe,Ni‐metal versus magnetite and panethite) present in type II chondrules are a proxy for the degree of whole‐rock aqueous alteration. The texture and composition of sulfide‐bearing opaque minerals in Graves Nunataks 06100 and Grosvenor Mountains 03116 suggest that they are the most thermally altered CR chondrites.  相似文献   

11.
CK chondrites are the only group of carbonaceous chondrites with petrologic types ranging from 3 to 6. Although CKs are described as calcium‐aluminum‐rich inclusion (CAI)‐poor objects, the abundance of CAIs in the 18 CK3–6 we analyzed ranges from zero to approximately 16.4%. During thermal metamorphism, some of the fine‐grained CAIs recrystallized as irregular assemblages of plagioclase + Ca‐rich pyroxene ± olivine ± Ca‐poor pyroxene ± magnetite. Coarse‐grained CAIs display zoned spinel, fassaite destabilization, and secondary grossular and spinel. Secondary anorthite, grossular, Ca‐rich pyroxene, and spinel derive from the destabilization of melilite, which is lacking in all CAIs investigated. The Al‐Mg isotopic systematics measured in fine‐ and coarse‐grained CAIs from Tanezrouft (Tnz) 057 was affected by Mg redistribution. The partial equilibration of Al‐Mg isotopic signatures obtained in the core of a coarse‐grained CAI (CG1‐CAI) in Tnz 057 may indicate a lower peak temperature for Mg diffusion of approximately 540–580 °C, while grossular present in the core of this CAI indicates a higher temperature of around 800 °C for the metamorphic event on the parent body of Tnz 057. Excluding metamorphic features, the similarity in nature and abundance of CAIs in CK and CV chondrites confirms that CVs and CKs form a continuous metamorphic series from type 3 to 6.  相似文献   

12.
Abstract— Type B coarse‐grained calcium‐aluminum‐rich inclusions (CAIs) are the oldest known materials to have formed in the solar system and are a unique source of information regarding conditions and processes in the protoplanetary disk around the young sun. Recent experimental results on the crystallization and evaporation of type B‐like silicate melts allow us to place the following constraints on the conditions in the protoplanetary disk during the formation of type B CAIs. 1) Once type B CAIs precursors have been condensed from a solar composition gas, they were reheated at 1250–1450 °C, as is indicated by their igneous texture. 2) The melilite mantles characteristic of type B1 CAIs could be formed by crystallization of magnesium‐ and silicon‐depleted melt in the outer part of the partially molten droplets. Such depletion can arise when evaporation is fast compared to chemical diffusion in the melt. This requires the pressure of the surrounding solar composition gas to be at least 10−4 bars during the initial crystallization of melilite mantle. Type B2 CAIs with uniform distribution of melilite are expected to form at pressures less than 10−5 bars. 3) Evaporation calculations are used to place bounds on the thermal history of the type B CAIs. Observed compositional zoning in melilite suggests that the temperatures in the protoplanetary disk where the type B CAIs resided after crystallization could not have exceeded ˜1000 °C for more than a few tens of thousands of years. A recent calculation of the physical conditions associated with nebular shocks produced transient temperatures and gas pressures very much like what we find is required to melt reasonable CAI precursors and evaporate these sufficiently quickly to make a type B1 CAI.  相似文献   

13.
Meteorite Hills (MET) 01075 is unique among the CM carbonaceous chondrites in containing the feldspathoid mineral sodalite, and hence it may provide valuable evidence for a nebular or parent body process that has not been previously recorded by this meteorite group. MET 01075 is composed of aqueously altered chondrules and calcium‐ and aluminum‐rich inclusions (CAIs) in a matrix that is predominantly made of serpentine‐ and tochilinite‐rich particles. The chondrules have been impact flattened and define a foliation petrofabric. Sodalite occurs in a 0.6 mm size CAI that also contains spinel, perovskite, and diopside together with Fe‐rich phyllosilicate and calcite. By analogy with feldspathoid‐bearing CAIs in the CV and CO carbonaceous chondrites, the sodalite is interpreted to have formed by replacement of melilite or anorthite during alkali‐halogen metasomatism in a parent body environment. While it is possible that the CAI was metasomatized in a precursor parent body, then excavated and incorporated into the MET 01075 parent body, in situ metasomatism is the favored model. The brief episode of relatively high temperature water–rock interaction was driven by radiogenic or impact heating, and most of the evidence for metasomatism was erased by subsequent lower temperature aqueous alteration. MET 01075 is very unusual in sampling a CM parent body region that underwent early alkali‐halogen metasomatism and has retained one of its products.  相似文献   

14.
Grossular garnet has been observed in several white inclusions in the Allende meteorite. Compositions range from Gro9sPy5 to Gro88Py12 in five inclusions. Its mottled appearance indicates that it crystallized from a glass of near-grossular composition and not by a solid state reaction between wollastonite, anorthite and melilite. These grossular-bearing inclusions either condensed directly as metastable liquids from the solar nebula or if initial solid condensates were liquefied by some subsequent heating process. In either case, a prolonged residence time in a thermal blanket appears necessary to effect crystallization of the grossular.  相似文献   

15.
16.
Palisade bodies, mineral assemblages with spinel shells, in coarse‐grained Ca‐, Al‐rich inclusions (CAIs) have been considered either as exotic “mini‐CAIs” captured by their host inclusions (Wark and Lovering 1982 ) or as in situ crystallization products of a bubble‐rich melt (Simon and Grossman 1997 ). In order to clarify their origins, we conducted a comprehensive study of palisade bodies in an Allende Type B CAI (BBA‐7), using electron backscatter diffraction (EBSD), micro‐computed tomography (Micro‐CT), electron probe microanalysis (EPMA), and secondary ion mass spectrometry (SIMS). New observations support the in situ crystallization mechanism: early/residual melt infiltrated into spinel‐shelled bubbles and crystallized inside. Evidence includes (1) continuous crystallography of anorthite from the interior of the palisade body to the surrounding host; (2) partial consolidation of two individual palisade bodies revealed by micro‐CT; (3) a palisade body was entirely enclosed in a large anorthite crystal, and the anorthite within the palisade body shows the same crystallographic orientation as the anorthite host; and (4) identical chemical and oxygen isotopic compositions of the constituent minerals between the palisade bodies and the surrounding host. Oxygen isotopic compositions of the major minerals in BBA‐7 are bimodal‐distributed. Spinel and fassaite are uniformly 16O‐rich with ?17O = ?23.3 ± 1.5‰ (2SD), and melilite and anorthite are homogeneously 16O‐poor with ?17O = ?3.2 ± 0.7‰ (2SD). The latter ?17O value overlaps with that of the Allende matrix (?17O ~ ?2.87‰) (Clayton and Mayeda 1999 ), which could be explained by secondary alteration with a 16O‐poor fluid in the parent body. The mobility of fluid could be facilitated by the high porosity (1.56–2.56 vol%) and connectivity (~0.17–0.55 vol%) of this inclusion.  相似文献   

17.
Abstract– Dark streaks and different types of inclusions in Libyan Desert Glass (LDG) collected from the LDG strewn field in Egypt were investigated. Rare transparent spherules enclosed in the glassy matrix are characterized by concentric cracks, irregular internal cracks, intense twinning, and considerable amounts of Ti and Al. Raman spectra show that the spherules are α‐cristobalite. Their occurrence together with lechatelierite indicates quick heating of the source rock to at least 1550 °C, followed by rapid quenching leading to crystallization of β‐cristobalite, which upon cooling inverted into α‐cristobalite. Brownish inclusions are irregularly shaped, elongated objects with smooth contacts to the surrounding glass. They contain small roundish to elliptical droplets, and a few larger angular grains, which compositionally and according to their Raman spectra most closely resemble low‐Ca, Al‐rich orthopyroxene. Composition and texture of the orthopyroxene suggest that the brownish inclusions formed by incomplete melting of an Al‐rich orthopyroxene bearing precursor, e.g., mafic phases present in desert surface sands or also of orthopyroxene‐bearing granulite dykes in the LDG target. Experimental data on Ca‐poor enstatite also support that the inclusions were heated to about 1550 °C. Analyses of dark streaks in LDG reveal high abundances of Al, Ti, Mn, Cr, Fe, and Ni and a pronounced correlation between the abundances of Cr, Mn, Fe, and Ni. As the Fe/Ni, Mn/Ni, and Cr/Ni ratios are all clearly nonchondritic, the source of this material is most likely terrestrial and the dark streaks studied here represent a different type of schlieren compared to those which contain a meteoritic component. These findings suggest LDG formation during a short high‐temperature event. Melting of Al‐rich orthopyroxene bearing target material seems to suggest an asteroid impact rather than a near‐surface airburst.  相似文献   

18.
Dar al Gani (DaG) 978 is an ungrouped type 3 carbonaceous chondrite. In this study, we report the petrography and mineralogy of Ca,Al‐rich inclusions (CAI), amoeboid olivine aggregates (AOAs), chondrules, mineral fragments, and the matrix in DaG 978. Twenty‐seven CAIs were found: 13 spinel‐diopside‐rich inclusions, 2 anorthite‐rich inclusions, 11 spinel‐troilite‐rich inclusions, and 1 spinel‐melilite‐rich inclusion. Most CAIs have a layered texture that indicates a condensation origin and are most similar to those in R chondrites. Compound chondrules represent a high proportion (approximately 8%) of chondrules in DaG 978, which indicates a local dusty chondrule‐forming region and multiple heating events. Most spinel and olivine in DaG 978 are highly Fe‐rich, which corresponds to a petrologic type of >3.5 and a maximum metamorphic temperature of approximately 850–950 K. This conclusion is also supported by other observations in DaG 978: the presence of coarse inclusions of silicate and phosphate in Fe‐Ni metal, restricted Ni‐Co distributions in kamacite and taenite, and low S concentrations in the matrix. Mineralogic records of iron‐alkali‐halogen metasomatism, such as platy and porous olivine, magnetite, hedenbergite, nepheline, Na‐rich in CAIs, and chlorapatite, are present, but relatively limited, in DaG 978. The fine‐grained, intergrowth texture of spinel‐troilite‐rich inclusions was probably formed by reaction between pre‐existing Al‐rich silicates and shock‐induced, high‐temperature S‐rich gas on the surface of the parent body of DaG 978. A shock‐induced vein is present in the matrix of DaG 978, which indicates that the parent body of DaG 978 at least experienced a shock event with a shock stage up to S3.  相似文献   

19.
Abstract– Northwest Africa 4859 (NWA 4859) is a meteorite of LL chondrite parentage that shows unusual igneous features and contains widely distributed pentlandite. The most obvious unusual feature is a high proportion of large (≤3 cm diameter) igneous‐textured enclaves (LITEs), interpreted as shock melts that were intruded into an LL chondrite host. One such LITE appears to have been produced by whole rock melting of LL chondrite, initial rapid partial crystallization, and subsequent slow cooling of the residual melt in the host to produce a differentiated object. Other unusual features include mm‐sized “overgrowth objects,” fine‐grained plagioclase‐rich bands, and coarse troilite (≤7 mm across) grains. All these features are interpreted as having crystallized from melts produced by a single transient shock event, followed by slow cooling. A subsequent shock event of moderate (S3) intensity produced veining and transformed some of the pyroxene into the clinoenstatite polytype. Pentlandite (together with associated troilite) in NWA 4859 probably formed by the breakdown of a monosulfide precursor phase at low temperature (≤230 °C) following the second shock event. NWA 4859 is interpreted to be an unusual impact‐melt breccia that contains shock melt which crystallized in different forms at depth within the parent body.  相似文献   

20.
Abstract— Metal‐troilite textures are examined in metamorphosed and impact‐affected ordinary chondrites to examine the response of these phases to rapid changes in temperature. Complexly intergrown metal‐troilite textures are shown to form in response to three different impact‐related processes. (1) During impacts, immiscible melt emulsions form in response to spatially focused heating. (2) Immediately after impact events, re‐equilibration of heterogeneously distributed heat promotes metamorphism adjacent to zones of maximum impact heating. Where temperatures exceed ~850 ° C, this post‐impact metamorphism results in melting of conjoined metal‐troilite grains in chondrites that were previously equilibrated through radiogenic metamorphism. When the resulting Fe‐Ni‐S melt domains crystallize, a finely intergrown mixture of troilite and metal forms, which can be zoned with kamacite‐rich margins and taenite‐rich cores. (3) At lower temperatures, post‐impact metamorphism can also cause liberation of sulfur from troilite, which migrates into adjacent Fe‐Ni metal, allowing formation of troilite and occasionally copper within the metal during cooling. Because impact events cause heating within a small volume, post‐impact metamorphism is a short duration event (days to years) compared with radiogenic metamorphism (>106 years). The fast kinetics of metal‐sulfide reactions allows widespread textural changes in conjoined metal‐troilite grains during post‐impact metamorphism, whereas the slow rate of silicate reactions causes these to be either unaffected or only partially annealed, except in the largest impact events. Utilizing this knowledge, information can be gleaned as to whether a given meteorite has suffered a post‐impact thermal overprint, and some constraints can be placed on the temperatures reached and duration of heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号