首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Sutter's Mill (SM) carbonaceous chondrite fell in California on April 22, 2012. The cosmogenic radionuclide data indicate that Sutter's Mill was exposed to cosmic rays for 0.082 ± 0.008 Myr, which is one of the shortest ages for C chondrites, but overlaps with a small cluster at approximately 0.1 Myr. The age is significantly longer than proposed ages that were obtained from cosmogenic noble gas concentrations, which have large uncertainties due to trapped noble gas corrections. The presence of neutron‐capture 60Co and 36Cl in SM indicates a minimum preatmospheric radius of approximately 50 cm, and is consistent with a radius of 1–2 m, as derived from the fireball observations. Although a large preatmospheric size was proposed, one fragment (SM18) contains solar cosmic ray–produced short‐lived radionuclides, such as 56Co and 51Cr. This implies that this specimen was less than 2 cm from the preatmospheric surface of Sutter's Mill. Although this conclusion seems surprising, it is consistent with the observation that the meteoroid fragmented high in the atmosphere. The presence of SCR‐produced nuclides is consistent with the high SCR fluxes observed during the last few months before the meteorite's fall, when its orbit was less than 1 AU from the Sun.  相似文献   

2.
3.
Abstract— The Peekskill H6 meteorite fell on 1992 October 9. We report extensive measurements of cosmic-ray produced stable nuclides of He, Ne, and Ar, of the radionuclides 22Na, 60Co, 14C, 36Cl, 26Al, and 10Be, and of cosmic-ray track densities. After correction for shielding via the 22Ne/21Ne ratio, the concentrations of cosmic-ray produced 3He, 21Ne and 38Ar give an average exposure age of 25 Ma, which is considered to be a lower limit on the true value. The 10Be/21Ne age is 32 Ma and falls onto a peak in the H-chondrite exposure age distribution. The activities of 26Al, 14C, 36Cl, and 10Be are all close to the maximum values expected for H-chondrites. Together with cosmic-ray track densities and the 22Ne/21Ne ratio, these radionuclide data place the samples at a depth >20 cm in a meteoroid with a radius >40 cm. In contrast, the 60Co activity requires a near-surface location and/or a much smaller body. Calculations show that a flattened geometry for the Peekskill meteoroid does not explain the observations in the context of a one-stage irradiation. A two-stage model can account for the data. We estimate an upper bound of 70 cm on the radius of the earlier stage of irradiation and conclude that Peekskill's radius was <70 cm when it entered the Earth's atmosphere. This size limit is somewhat smaller than the dynamic determinations (Brown et al., 1994).  相似文献   

4.
Abstract— A new meteorite find from the Nullarbor Plain in Australia was studied using optical, SEM, and electron microprobe techniques. The meteorite, Nullarbor 018, is an orthodox L6 chondrite that experienced minor-to-moderate alteration of metal during terrestrial weathering (grade A–B to B). During weathering, troilite was preferentially altered, and roughly 20% of the original complement of S in the meteorite was removed. Shock metamorphic effects corresponding to shock stage S4 (or shock facies d) are found, including the presence of some diaplectic feldspar (maskelynite). The meteorite is not obviously paired with other finds from the Nullarbor region, but the possibility that it is paired cannot be excluded.  相似文献   

5.
Abstract— The Sfax meteorite fell on 16 October 1989. Four pieces totaling less than 10 kg were recovered from a much larger meteoroid, according to the cosmogenic gas measurements. It is an L6 chondrite, strongly degassed and shocked, with olivine of composition Fa24.  相似文献   

6.
Abstract— Core samples were obtained from various locations of the ~ 105-kg Chico, NM, L6 chondrite in order to study the effects of large shielding on the production rates of cosmic-ray-produced nuclides. Relations between measured abundances of cosmogenic nuclides (10Be, 26Al, and stable isotopes of He, Ne, and Ar) and the cosmogenic 22Ne/21Ne ratio were determined and compared with recent model predictions of production rates. The measured 22Ne/21Ne ratios (1.06-1.08) and significant variations observed in concentrations of cosmogenic 21Ne and 3He suggest an ~40-cm shielding gradient across Chico and irradiation within a large object (> 100-cm radius). Noble gas data indicate that Chico experienced greater shielding than chondrites Knyahinya or Keyes and similar to Jilin. Values of 10Be (average = 20.7 dpm/kg) and 26Al (average = 71.1 dpm/kg) are nearly constant, however, and show no correlation with either 22Ne/21Ne or 21Ne. Activities of 10Be and 26Al suggest irradiation in a smaller object (~40–80 cm radius). The 26Al activity and the 26Al/10Be ratio (average value = 3.42) are both significantly larger than values for most other chondrites. These results could indicate a two-stage irradiation with t1 ~ 104 Ma and t2 ~ 4 Ma and a second-stage body the size of Knyahinya. The single stage, 10Be/21Ne exposure age for Chico is 65 Ma. The 22Ne/21Ne ratio apparently becomes insensitive to shielding for objects the size of Chico. No substantial evidence exists for chondrites with 22Ne/21Ne ratios significantly less than ~ 1.055.  相似文献   

7.
Abstract— The Machinga, southern Malawi, Africa, L6 chondrite (observed fall, 22 January 1981) contains accessory phases of metal, troilite, chromite, and native Cu (which is associated with limonite and found in zones of aqueous alteration). Rare accessory phases are apatite and pentlandite, which are uncommon in L6 chondrites. Major mineral constituents (olivine, orthopyroxene, and plagioclase) indicate shock effects at a level of about 15–20 GPa shock pressure. The meteorite is thus classified to be of L6d type. Melt pockets of widely variable composition are abundant.  相似文献   

8.
The disruption of the L chondrite parent body (LCPB) at ~470 Ma is currently the best-documented catastrophic celestial impact event, based on the large number of L chondritic materials associated with this event. Uranium-lead (U-Pb) dating of apatite and its high-pressure decomposition product, tuite, in the Sixiangkou L6 chondrite provides a temporal link to this event. The U-Pb system of phosphates adjacent to shock melt veins was altered to varying degrees and the discordance of the U-Pb system correlates closely with the extent of apatite decomposition. This suggests that the U-Pb system of apatite could be substantially disturbed by high-temperature pulse during shock compression from natural impacts, at least on the scale of mineral grains. Although many L chondrites can be temporally related to the catastrophic LCPB impact event, the shock conditions experienced by each individual meteorite vary. This could be due to the different geologic settings of these meteorites on their parent body. The shock pressure and duration derived from most meteorites may only reflect local shock features rather than the impact conditions, although they could provide lower limits to the impact conditions. The Sixiangkou shock duration (~4 s), estimated from high-pressure transformation kinetics, provides a lower limit to the high-pressure pulse of the LCPB disruption impact. Combined with available literature data of L chondrites associated with this impact event, our results suggest that the LCPB suffered a catastrophic collision with a large projectile (with a diameter of at least 18–22 km) at a low impact velocity (5–6 km s−1). This is consistent with astronomical estimates based on the dynamical evolution of L chondritic asteroids.  相似文献   

9.
We analyzed He and Ne in chromite grains from the regolith breccia Ghubara (L5), to compare it with He and Ne in sediment‐dispersed extraterrestrial chromite (SEC) grains from mid‐Ordovician sediments. These SEC grains arrived on Earth as micrometeorites in the aftermath of the L chondrite parent body (LCPB) breakup event, 470 Ma ago. A significant fraction of them show prolonged exposure to galactic cosmic rays for up to several 10 Ma. The majority of the cosmogenic noble gases in these grains were probably acquired in the regolith of the LCPB (Meier et al. 2010 ). Ghubara, an L chondritic regolith breccia with an Ar‐Ar shock age of 470 Ma, is a sample of that regolith. We find cosmic‐ray exposure ages of up to several 10 Ma in some Ghubara chromite grains, confirming for the first time that individual chromite grains with such high exposure ages indeed existed in the LCPB regolith, and that the >10 Ma cosmic‐ray exposure ages found in recent micrometeorites are thus not necessarily indicative of an origin in the Kuiper Belt. Some Ghubara chromite grains show much lower concentrations of cosmogenic He and Ne, indicating that the 4π (last‐stage) exposure age of the Ghubara meteoroid lasted only 4–6 Ma. This exposure age is considerably shorter than the 15–20 Ma suggested before from bulk analyses, indicating that bulk samples have seen regolith pre‐exposure as well. The shorter last‐stage exposure age probably links Ghubara to a small peak of 40Ar‐poor L5 chondrites of the same exposure age. Furthermore, and quite unexpectedly, we find a Ne component similar to presolar Ne‐HL in the chromite grains, perhaps indicating that some presolar Ne can be preserved even in meteorites of petrologic type 5.  相似文献   

10.
Abstract— During a petrological study of the previously unclassified ordinary chondrite Los Martínez, we discovered a highly unusual Cr-rich inclusion which we believe is unique in both extraterrestrial and terrestrial mineralogy. The inclusion is highly zoned both compositionally and optically, with a Ca-Al rich, cloudy core and an opaque, Cr-Na-rich rim (up to 24 wt.% Cr2O3). Detailed SEM and TEM studies show that the inclusion now consists of a highly zoned, single crystal of plagioclase intergrown with chromium-rich spinel. The spinel has a well-developed crystallographic orientation relationship with the host plagioclase, which indicates that it is the product of exsolution. Although superficially similar to a plagioclase feldspar in composition, in detail the inclusion is Si-deficient and Al-enriched relative to a stoichiometric feldspar. We have not been able to identify a viable precursor mineral phase to the plagioclase-chromite intergrowth and suggest that it may be an unknown metastable phase. The Cr-rich precursors of the inclusion probably have close affinities to the chromite-plagioclase chondrules observed by Ramdohr (1967) in several ordinary chondrites. Based on the zoning in the inclusion, we suggest that it is the product of fractional crystallization from a melt, which may have formed as a liquid condensate, or by melting of solid condensates, in the solar nebula. Subsequent cooling of this melt condensate resulted in crystallization of the, as yet, unidentified phase. After crystallization, the inclusion was probably incorporated into a parent body where it underwent metamorphism and was probably shocked to some degree. During this period of parent body metamorphism, exsolution and decomposition of the unknown precursor occurred to produce the observed intergrowth of plagioclase and chromite. Finally, we have classified Los Martínez as an L6 ordinary chondrite breccia.  相似文献   

11.
Abstract– We have determined the elemental abundances and the isotopic compositions of noble gases in a bulk sample and an HF/HCl residue of the Saratov (L4) chondrite using stepwise heating. The Ar, Kr, and Xe concentrations in the HF/HCl residue are two orders of magnitude higher than those in the bulk sample, while He and Ne concentrations from both are comparable. The residue contains only a portion of the trapped heavy noble gases in Saratov; 40 ± 9% for 36Ar, 58 ± 12% for 84Kr, and 48 ± 10% for 132Xe, respectively. The heavy noble gas elemental pattern in the dissolved fraction is similar to that in the residue but has high release temperatures. Xenon isotopic ratios of the HF/HCl residue indicate that there is no Xe‐HL in Saratov, but Ne isotopic ratios in the HF/HCl residue lie on a straight line connecting the cosmogenic component and a composition between Ne‐Q and Ne‐HL. This implies that the Ne isotopic composition of Q has been changed by incorporating Ne‐HL (Huss et al. 1996) or by being mass fractionated during the thermal metamorphism. However, it is most likely that the Ne‐Q in Saratov is intrinsically different from this component in other meteorites. The evidence of this is a lack of correlation between the isotopic ratio of Ne‐Q and petrologic types of meteorites (Busemann et al. 2000). A neutron capture effect was observed in the Kr isotopes, and this process also affected the 128Xe/132Xe ratio. The 3He and 21Ne exposure ages for the bulk sample are 33 and 35 Ma, respectively.  相似文献   

12.
Abstract— The Devgaon meteorite fell in India on February 12, 2001 and was immediately collected. It is an ordinary chondrite having a number of SiO2‐rich objects and some Ca, Al‐rich inclusions. Olivines (Fa17–19) are fairly equilibrated, while pyroxenes (Fs4–20) are unequilibrated. Occasionally, shock veins are visible, but the bulk rock sample is very weakly shocked (S2). Chondrules and chondrule fragments are abundant. Based on chemical and petrological features, Devgaon is classified as an H3.8 group chondrite. Several cosmogenic radionuclides ranging in half‐lives from 5.6 d (52Mn) to 7.3 times 105 yr (26Al), noble gases (He, Ne, Ar, Kr, and Xe), and particle track density have been measured. The track density in olivines from five spot samples varies between (4.6 to 9) × 106 cm?2 showing a small gradient within the meteorite. The light noble gases are dominated by cosmogenic and radiogenic components. Large amounts of trapped gases (Ar, Kr, and Xe) are present. In addition, (n, γ) products from Br and I are found in Kr and Xe, respectively. The average cosmic ray exposure age of 101 ± 8 Ma is derived based on cosmogenic 38Ar, 83Kr, and 126Xe. The track production rates correspond to shielding depths of about 4.9 to 7.8 cm, indicating that the stone suffered type IV ablation. Low 60Co, high (22Ne/21Ne)c, and large neutron produced excesses at 80Kr, 82Kr, and 128Xe indicate a complex exposure history of the meteoroid. In the first stage, a meter‐sized body was exposed for nearly 108 yr in the interplanetary space that broke up in ?50 cm‐sized fragments about a million years ago (stage 2), before it was captured by the Earth.  相似文献   

13.
The Mifflin meteorite fell on the night of April 14, 2010, in southwestern Wisconsin. A bright fireball was observed throughout a wide area of the midwestern United States. The petrography, mineral compositions, and oxygen isotope ratios indicate that the meteorite is a L5 chondrite fragmental breccia with light/dark structure. The meteorite shows a low shock stage of S2, although some shock‐melted veins are present. The U,Th‐He age is 0.7 Ga, and the K‐Ar age is 1.8 Ga, indicating that Mifflin might have been heated at the time of the 470 Ma L‐chondrite parent body breakup and that U, Th‐He, and K‐Ar ages were partially reset. The cosmogenic radionuclide data indicate that Mifflin was exposed to cosmic rays while its radius was 30–65 cm. Assuming this exposure geometry, a cosmic‐ray exposure age of 25 ± 3 Ma is calculated from cosmogenic noble gas concentrations. The low 22Ne/21Ne ratio may, however, indicate a two‐stage exposure with a longer first‐stage exposure at high shielding. Mifflin is unusual in having a low radiogenic gas content combined with a low shock stage and no evidence of late stage annealing; this inconsistency remains unexplained.  相似文献   

14.
Abstract— Twenty ~100-mg random fragments of the Bruderheim chondrite were analyzed by INAA to determine extents of heterogeneity and to check earlier results that gave anomalous LREE concentrations. Considerable compositional heterogeneity was observed in both concentrations (maximum/minimum of 1.7 for Ir, 1.8 for Na, 6.8 for La, 7.4 for Co) and concentration ratios (>3 × for Ni/Co and La/Eu). Compositions could be modelled quantitatively in terms of end-member components of constant composition representing the minerals olivine + orthopyroxene, clinopyroxene, plagioclase, kamacite, taenite, troilite, chromite, and phosphate. The model yields the proportions of minerals in each sample as well as the meteorite as a whole; accurate determination of the end members depends on high intrasample precision for many elements. No evidence of compositional heterogeneity of end members for trace elements was found. It is shown that these analyses, which used only ~2 grams of the meteorite, are equivalent in accuracy to a single sample of several tens of grams, and that knowledge of the extent of heterogeneity is essential to knowing the quality of sampling as well as for comparing results from one analysis with another and of one meteorite with another.  相似文献   

15.
Abstract— The isotopic abundances of the noble gases in bulk samples of the Guangnan L6 chondrite and of the anomalous CV3 chondrite Ningqiang were measured. Guangnan yields a cosmic-ray exposure age of 2.9 ± 0.4 Ma and belongs to the group of L chondrites with low exposure ages. Ningqiang, however, shows a cosmic-ray exposure age of 42.2 ± 4.0 Ma, the highest for a CV3 chondrite. The concentrations of radiogenic 4He and 40Ar in Guangnan are the lowest observed in any ordinary chondrite. A U/Th-4He age of 27 ± 16 Ma and a 40K–40Ar age of 142 ± 14 Ma are calculated assuming L chondritic U, Th, and K concentrations. This assumption is justified considering the fact that a mineralogical composition typical for L chondrites was reported for this meteorite. The observed severe gas losses must have occurred at or before the onset of the exposure of the meteoroid to the cosmic radiation. For the Ningqiang carbonaceous chondrite concordant gas retention ages are obtained: The U/Th-4He age is 4170 ± 160 Ma whereas the 40K–40Ar age is 4260 ± 70 Ma, assuming average U, Th, and K concentrations for C3 chondrites.  相似文献   

16.
Abstract— A crusted stone weighing 3.10 kg was found in 1983 near Tabbita in south central New South Wales (ca. 34°03′S, 145°50′E), Australia. Compositions of the ferro-magnesian silicates (olivine Fa24.6; orthopyroxene Fs20.9) show that the meteorite belongs to the L-group of chondrites. Uniformity of silicate compositions and the presence of abundant crystalline plagioclase feldspar (An10.8Ab81.7Or7.5) show that the meteorite belongs to petrologic type 6. Silicates that display undulose extinction, and the absence of any thermal effects induced by shock indicate that Tabbita is shock facies c. Tabbita is distinct from several other L6 chondrites found in the same general area.  相似文献   

17.
Microtextural study of a single troilite‐metal nodule (TMN) from the Katol L6‐7 chondrite, a recent fall (May, 2012) in India suggests that the TMN is primarily an aggregate of submicron‐scale intergrowth of troilite and kamacite (mean Ni: 6.18 wt%) juxtaposed with intensely fractured silicates, mainly olivine (Fa: 25 mole%), low‐Ca pyroxene (Fs: 21.2 mole%), and a large volume of maskelynite. Evidence of shock textures in the TMN indicates a high degree of shock metamorphism that involves plagioclase‐maskelynite and olivine‐wadsleyite/ringwoodite transformations and formation of quenched metal‐sulfide melt textures due to localized shear‐induced frictional melting. It is inferred that the TMN formation is an independent, localized event by a high energy impact and its subsequent incorporation in the ejected chondritic fragment of the parent body. Katol chondrite has been calibrated with a peak shock pressure of S5 (~45 GPa) after Stöffler et al. (1991), whereas peak shock pressure within the TMN exceeds the shock facies S6 (>45 GPa) following Bennett and McSween (1996) and Stöffler et al. (1991). Overall, the shock‐thermal history of the Katol TMN is dissimilar as compared to the host chondrite.  相似文献   

18.
Abstract— The petrographic and chemical characteristics of a fresh Indian meteorite fall at Sabrum are described. Its mean mineral composition is defined by olivine (Fa31.4), orthopyroxene (Fs25.1,Wo2.0), clinopyroxene (Wo45En45.6Fs9.4) and plagioclase (An10.6Ab83.6Or5.8). The meteorite shows moderate shock features, which indicate that it belongs to the S4 category. Based on mineralogical and chemical criteria the meteorite is classified as an LL6 brecciated veined chondrite. Several cosmogenic radioisotopes (46Sc, 7Be, 54Mn, 22Na and 26Al), noble gas (He, Ne, Ar, Kr and Xe), nitrogen isotopes, and particle tracks density have been measured. Concentrations of cosmogenic 21Ne and 38Ar indicate that its cosmic‐ray exposure age is 24.8 Ma. Small amounts of trapped Kr and Xe, consistent with petrologic class 5/6, are present. The track density in olivines is found to be (1.3 ± 0.3) × 106/cm2. Activities of most of the short‐lived isotopes are lower than those expected from solar cycle variation. 22Na/26Al (1.12 ± 0.02) is found to be significantly anomalous, being ?25% lower than expected from the Climax neutron monitor data. These results indicate that the cosmic‐ray flux during the terminal segment of the meteoroid orbit was low. The activities of 26Al and 60Co and the track density indicate small meteoroid size with a radius ?15 cm.  相似文献   

19.
Abstract– The isotopic compositions of Sm and/or Gd of nine documented drill core samples of the Jilin H5 chondrite were determined to study the neutron capture records of individual meteorite samples. All the samples showed significant isotopic shifts of 150Sm/149Sm and/or 158Gd/157Gd corresponding to neutron fluences of (1.3–1.7) × 1015 n cm?2. Considering the short 4π irradiation age of 0.32 Ma during the second stage, the 2π irradiation of 7 Ma during the first stage is the main influence on the Sm and Gd isotopic shifts of the Jilin chondrite. Although a depth dependence of the neutron capture effects was expected from the isotopic variations of 150Sm/149Sm and 158Gd/157Gd in the Jilin chondrite core samples that were possibly drilled perpendicular to the surface of the large object with a radius of >10 m in the 2π‐geometry, no clear evidence was observed in this study. The data from the combination of the isotopic shifts between Sm and Gd defined as εSmGd suggest that the neutrons produced in the 2π‐geometry of the Jilin chondrite follow the similar energy spectra as the neutrons in lunar samples, although the present analytical quality is not enough to discuss a critical discussion for the thermalization of the neutron energy levels.  相似文献   

20.
Abstract— We report here a chance find of a meteorite in the sand dunes of Ararki village of Hanumangarh district in the Rajasthan desert of northwest India. Chemical and petrological evidence in conjunction with isotopic composition of oxygen indicate that it is an L5 chondrite. The fayalite content of olivines is 26.3 mol%. The meteorite has some serpentinized olivines and 0.3% carbon having a terrestrial isotopic composition, indicating that it is moderately weathered. The absence of 22Na indicate that the meteorite fell to Earth more than a decade ago. The cosmic‐ray exposure age based on cosmogenic 21Ne is 7.2 Ma. Low density of cosmic‐ray heavy nuclei tracks, low 26A1 activity, the shielding parameter [(22Ne/21Ne)C = 1.094] and absence of neutron capture effects indicate cosmic‐ray shielding in a meteoroid having radius of about 16 cm, implying a meteoroid mass of about 60 kg and ablation of about 93%. The gas retention ages, based on U/Th‐4He and K‐40Ar are 1.1 and 0.58 Ga, respectively, suggesting a heating and degassing event late in the history of this meteorite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号