首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— Dhofar 019 is a new martian meteorite found in the desert of Oman. In texture, mineralogy, and major and trace element chemistry, this meteorite is classified as a basaltic shergottite. Olivine megacrysts are set within a groundmass composed of finer grained olivine, pyroxene (pigeonite and augite), and maskelynite. Minor phases are chromite‐ulvöspinel, ilmenite, silica, K‐rich feldspar, merrillite, chlorapatite, and pyrrhotite. Secondary phases of terrestrial origin include calcite, gypsum, celestite, Fe hydroxides, and smectite. Dhofar 019 is most similar to the Elephant Moraine (EETA) 79001 lithology A and Dar al Gani (DaG) 476/489 shergottites. The main features that distinguish Dhofar 019 from other shergottites are lack of orthopyroxene; lower Ni contents of olivine; the heaviest oxygen‐isotopic bulk composition; and larger compositional ranges for olivine, maskelynite, and spinel, as well as a wide range for pyroxenes. The large compositional ranges of the minerals are indicative of relatively rapid crystallization. Modeling of olivine chemical zonations yield minimum cooling rates of 0.5‐0.8 °C/h. Spinel chemistry suggests that crystallization took place under one of the most reduced conditions for martian meteorites, at an fO2 3 log units below the quartz‐fayalite‐magnetite (QFM) buffer. The olivine megacrysts are heterogeneously distributed in the rock. Crystal size distribution analysis suggests that they constitute a population formed under steady‐state conditions of nucleation and growth, although a few grains may be cumulates. The parent melt is thought to have been derived from partial melting of a light rare earth element‐ and platinum group element‐depleted mantle source. Shergottites, EETA79001 lithology A, DaG 476/489, and Dhofar 019, although of different ages, comprise a particular type of martian rocks. Such rocks could have formed from chemically similar source(s) and parent melt(s), with their bulk compositions affected by olivine accumulation.  相似文献   

2.
Abstract— Dar al Gani 476, the 13th martian meteorite, was recovered from the Sahara in 1998. It is a basaltic shergottitic rock composed of olivine megacrysts reaching 5 mm (24 vol%) set in a finegrained groundmass of pyroxene (59 vol%) and maskelynitized plagioclase (12 vol%) with minor amounts of accessory phases (spinel, merrillite, ilmenite). Dar al Gani 476 is similar to lithology A of Elephant Moraine A79001 (EETA79001) in petrography and mineralogy, but is distinct in several aspects. Low‐Ca pyroxenes in the Dar al Gani 476 groundmass are more magnesian (En76Fs21 Wo3~En58Fs30Wo12) than those in lithology A of EETA79001 (En73Fs22Wo5~En45Fs43Wo12), rather similar to pyroxenes in lherzolitic martian meteorites (En76Fs21 Wo3~En63Fs22Wo15). Dar al Gani 476 olivine is less magnesian and shows a narrower compositional range (Fo76‐58) than EETA79001 olivine (Fo81‐53), and is also similar to olivines in lherzolitic martian meteorites (Fo74‐65). The orthopyroxene‐olivine‐chromite xenolith typical in the lithology A of EETA79001 is absent in Dar al Gani 476. It seems that Dar al Gani 476 crystallized from a slightly more primitive mafic magma than lithology A of EETA79001 and several phases (olivine, pyroxene, chromite, and ilmenite) in Dar al Gani 476 may have petrogenetic similarities to those of lherzolitic martian meteorites. Olivine megacrysts in Dar al Gani 476 are in disequilibrium with the bulk composition. The presence of fractured olivine grains in which the most Mg‐rich parts are in contact with the groundmass suggests that little diffusive modification of original olivine compositions occurred during cooling. This observation enabled us to estimate the cooling rates of Dar al Gani 476 and EETA79001 olivines, giving similar cooling rates of 0.03‐3 °C/h for Dar al Gani 476 and 0.05‐5 °C/h for EETA79001. This suggests that they were cooled near the surface (burial depth shallower than about 3 m at most), probably in lava flows during crystallization of groundmass. As is proposed for lithology A of EETA79001, it may be possible to consider that Dar al Gani 476 has an impact melt origin, a mixture of martian lherzolite and other martian rock (Queen Alexandra Range 94201, nakhlites?).  相似文献   

3.
Abstract— Dar al Gani 489 (DaG 489) is a meteorite fragment of 2146 g found in the Libyan Sahara by a meteorite finder during one of his search campaigns in 1997–98. It is a porphyritic rock with millimetersized olivine crystals (Fo79–59) set in a fine‐grained groundmass (average grain size 0.1 mm) consisting of pigeonite (En75–57 Wo5–15) crystals and interstitial feldspathic glass (An67–56 Or0–1). Minor phases include enstatite (En82–71 Wo2–4), augite (En48–52 Wo29–32), chromite, Ti‐chromite, ilmenite, pyrrhotite, merrillite, and secondary calcite and iron oxides. On the basis of mineralogical, petrographic, bulk chemical, O‐isotopic, and noble gas data, DaG 489 can be classified as a highly shocked martian meteorite (e.g., Fe/Mn(bulk) = 42.1, Ni/Mg(bulk) = 0.002; δ17O = 2.89, δ18O = 4.98, and Δ17O = 0.305), belonging to the basaltic shergottite subgroup. The texture and modal composition of DaG 489 are indeed those of basalts; nonetheless, the bulk chemistry, the abundance of large olivine and chromite crystals, and enstatitic pyroxene suggest some relationship with lherzolitic shergottites. As such, DaG 489 is similar to the hybrid shergottite Elephant Moraine (EET) A79001 lithology A; however, there are some relevant differences including a higher olivine content (20 vol%), the lack of orthopyroxene megacrysts, a higher molar Mg/(Mg + Fe)(molar) = 0.68, and a lower rare earth element content in the bulk sample. Therefore, DaG 489 has the potential of providing us with a further petrogenetic link between the basaltic and lherzolitic shergottites. Noble gases data show that DaG 489 has an ejection age of ~1.3 Ma. This young age lends support to the requirement of several ejection events to produce the current population of shergottites, nakhlites, and chassignites (SNC) meteorites. In terms of texture, mineral and bulk compositions, shock level, and weathering features, DaG 489 is essentially identical to DaG 476, another basaltic shergottite independently found ~25 km due northnortheast of DaG 489. Because DaG 489 also has the same exposure history as DaG 476, it is very likely that both meteorites are fragments of the same fall. In addition to the existing hypotheses on the petrogenesis of the similar EETA79001 lithology A and the identical DaG 476, we propose that DaG 489 could have formed through high‐degree partial melting of a lherzolite‐like material.  相似文献   

4.
The fall and recovery of the Tissint meteorite in 2011 created a rare opportunity to examine a Martian sample with a known, short residence time on Earth. Tissint is an olivine‐phyric shergottite that accumulated olivine antecrysts within a single magmatic system. Coarse olivine grains with nearly homogeneous cores of Mg# >80 suggest slow re‐equilibration. Many macroscopic features of this sample resemble those of LAR 06319, including the olivine crystal size distribution and the presence of evolved oxide and olivine compositions. Unlike LAR 06319, however, no magmatic hydrous phases were found in the analyzed samples of Tissint. Minor and trace element compositions indicate that the meteorite is the product of closed‐system crystallization from a parent melt derived from a depleted source, with no obvious addition of a LREE‐rich (crustal?) component prior to or during crystallization. The whole‐rock REE pattern is similar to that of intermediate olivine‐phyric shergottite EETA 79001 lithology A, and could also be approximated by a more olivine‐rich version of depleted basaltic shergottite QUE 94201. Magmatic oxygen fugacities are at the low end of the shergottite range, with log fO2 of QFM‐3.5 to ‐4.0 estimated based on early‐crystallized minerals and QFM‐2.4 estimated based on the Eu in pyroxene oxybarometer. These values are similarly comparable to other depleted shergottites, including SaU 005 and QUE 94201. Tissint occupies a previously unsampled niche in shergottite chemistry: containing olivines with Mg# >80, resembling the enriched olivine‐phyric shergottite LAR 06319 in its crystallization path, and comparable to intermediate olivine‐phyric shergottite EETA 79001A, depleted olivine‐phyric shergottite DaG 476, and depleted basaltic shergottite QUE 94201 in its trace element abundances and oxygen fugacity. The apparent absence of evidence for terrestrial alteration in Tissint (particularly in trace element abundances in the whole‐rock and individual minerals) confirms that exposure to the arid desert environment results in only minimal weathering of samples, provided the exposure times are brief.  相似文献   

5.
Abstract— We present the results of a combined mineralogic‐petrologic and ion microprobe study of two martian meteorites recently recovered in the Lybian Sahara, Dar al Gani 476 (DaG 476) and Dar al Gani 489 (DaG 489). Having resided in a hot desert environment for an extended time, DaG 476 and DaG 489 were subjected to terrestrial weathering that significantly altered their chemical composition. In particular, analyses of some of the silicates show light rare earth element (LREE)‐enrichment resulting from terrestrial alteration. In situ measurement of trace element abundances in minerals allows us to identify areas unaffected by this contamination and, thereby, to infer the petrogenesis of these meteorites. No significant compositional differences between DaG 476 and DaG 489 were found, supporting the hypothesis that they belong to the same fall. These meteorites have characteristics in common with both basaltic and lherzolitic shergottites, possibly suggesting spatial and petrogenetic associations of these two types of lithologies on Mars. However, the compositions of Fe‐Ti oxides and the size of Eu anomalies in the earliest‐formed pyroxenes indicate that the two Saharan meteorites probably experienced more reducing crystallization conditions than other shergottites (with the exception of Queen Alexandra Range (QUE) 94201). As is the case for other shergottites, trace element microdistributions in minerals of the DaG martian meteorites indicate that closed‐system crystal fractionation from a LREE‐depleted parent magma dominated their crystallization history. Furthermore, rare earth element abundances in the orthopyroxene megacrysts are consistent with their origin as xenocrysts rather than phenocrysts.  相似文献   

6.
Northwest Africa (NWA) 10414 is an unusual shergottite with a cumulate texture. It contains 73% coarse prismatic pigeonite, plus 18% interstitial maskelynite, 2% Si‐rich mesostasis, 2% merrillite, and minor chromite‐ulvöspinel. It contains no olivine, and only ~3% augite. Phase compositions are pigeonite (En68‐43Fs27‐48Wo5‐15) and maskelynite An~54‐36, more sodic than most maskelynite in shergottites. Chromite‐ulvöspinel composition plots between the earliest and most fractionated spinel‐group minerals in olivine‐phyric shergottites. NWA 10414 mineralogically resembles the contact facies between Elephant Moraine 79001 lithologic units A and B, with abundant pigeonite phenocrysts, though it is coarser grained. Its most Mg‐rich pigeonite also has a similar composition to the earliest crystallized pyroxenes in several other shergottites, including Shergotty. The Shergotty intercumulus liquid composition crystallizes pigeonite with a similar composition range to NWA 10414 pigeonite, using PETROLOG. Olivine‐phyric shergottite NWA 6234, with a pure magma composition, produces an even better match to this pigeonite composition range, after olivine crystallization. These observations suggest that after the accumulation of olivine from an olivine‐phyric shergottite magma, the daughter liquid could precipitate pigeonite locally to form this pigeonite cumulate, before the crystallization of overlying liquid as a normal basaltic shergottite.  相似文献   

7.
Larkman Nunatak (LAR) 12095 and LAR 12240 are recent olivine‐phyric shergottite finds. We report the results of petrographic and chemical analyses of these two samples to understand their petrogenesis on Mars. Based on our analyses, we suggest that these samples are likely paired and are most similar to other depleted olivine‐phyric shergottites, particularly Dar al Gani (DaG) 476 and Sayh al Uhaymir (SaU) 005 (and samples paired with those). The olivine megacryst cores in LAR 12095 and LAR 12240 are not in equilibrium with the groundmass olivines. We infer that these megacrysts are phenocrysts and their major element compositions have been homogenized by diffusion (the cores of the olivine megacrysts have Mg# ~70, whereas megacryst rims and groundmass olivines typically have Mg# ~58–60). The rare earth element (REE) microdistributions in the various phases (olivine, low‐ and high‐Ca pyroxene, maskelynite, and merrillite) in both samples are similar and support the likelihood that these two shergottites are indeed paired. The calculated parent melt (i.e., in equilibrium with the low‐Ca pyroxene, which is one of the earliest formed REE‐bearing minerals) has an REE pattern parallel to that of melt in equilibrium with merrillite (i.e., one of the last‐formed minerals). This suggests that the LAR 12095/12240 paired shergottites represent the product of closed‐system fractional crystallization following magma emplacement and crystal accumulation. Utilizing the europium oxybarometer, we estimate that the magmatic oxygen fugacity early in the crystallization sequence was ~IW. Finally, petrographic evidence indicates that LAR 12095/12240 experienced extensive shock prior to being ejected from Mars.  相似文献   

8.
Crystal size distribution (CSD) and spatial distribution pattern (SDP) analyses are applied to the early crystallizing phases, olivine and pyroxene, in olivine‐phyric shergottites (Elephant moraine [EET] 79001A, Dar al Gani [DaG] 476, and dhofar [Dho] 019) from each sampling locality inferred from Mars ejection ages. Trace element zonation patterns (P and Cr) in olivine are also used to characterize the crystallization history of these Martian basalts. Previously reported 2‐D CSDs for these meteorites are re‐evaluated using a newer stereographically corrected methodology. Kinks in the olivine CSD plots suggest several populations that crystallized under different conditions. CSDs for pyroxene in DaG 476 and EET 79001A reveal single populations that grew under steady‐state conditions; pyroxenes in Dho 019 were too intergrown for CSD analysis. Magma chamber residence times of several days for small grains to several months for olivine megacrysts are calculated using the CSD slopes and growth rates inferred from previous experimental data. Phosphorus imaging in olivines in DaG 476 and Dho 019 indicate rapid growth of skeletal, sector‐zoned, or patchy cores, probably in response to delayed nucleation, followed by slow growth, and finally rapid dendritic growth with back‐filling to form oscillatory zoning in rims. SPD analyses indicate that olivine and pyroxene crystals grew or accumulated in clusters rather than as randomly distributed grains. These data reveal complex solidification histories for Martian basalts, and are generally consistent with the formation at depth of olivine megacryst cores, which were entrained in ascending magmas that crystallized pyroxenes, small olivines, and oscillatory rims on megacrysts.  相似文献   

9.
Abstract— Antarctic meteorite QUE 94201 is a new basaltic shergottite that is mainly composed of subequal amounts of maskelynite and pyroxenes (pigeonite and augite) plus abundant merrillite and accessory phases. It also contains impact melt. Complex zoning patterns in QUE 94201 pyroxenes revealed by elemental map analyses using an electron microprobe suggest a crystallization sequence from Mg-rich pigeonite (En62Fss30Wog) to extremely Fe-rich pigeonite (En5Fs81Wo14) via {110} Mg-rich augite bands (En44Fs20Wo36) in a single crystal. These textures, along with the abundant plagioclase (maskelynite), indicates single-stage rapid cooling (>5 °C/year) of this rock from a supercooled magma. Transition from Mg-rich augite to Fe-rich pigeonite reflects the onset of plagioclase crystallization. Enrichment of late-stage phases in QUE 94201 implies crystallization from an evolved magma and suggests a different parent magma composition from the other basaltic shergottites. Lithology B of EETA79001 basaltic shergottite contains pyroxenes that show complex zoning with augite bands similar to those in QUE 94201 pyroxene, which suggests similar one-stage rapid cooling. Lithology B of EETA79001 also resembles QUE 94201 in its coarse-grained texture of silicates and its high abundance of maskelynite, although QUE 94201 probably crystallized from a more fractionated magma. We also note that some Apollo lunar mare basalts (e.g., 12020 and 12021) have similar mineralogy and petrology to QUE 94201, especially in pyroxene zoning. All these basaltic rocks with complex pyroxene zoning suggest rapid metastable crystallization from supercooled magmas.  相似文献   

10.
Abstract— We report on major and trace element analyses obtained by, respectively, inductively coupled plasma‐atomic emission spectrometry (ICP‐AES) and inductively coupled plasma‐mass spectrometry (ICP‐MS) of three different aliquots of the new Saharan shergottite Dar al Gani (DaG) 476. The new analyses are in excellent agreement with previous data (Zipfel et al., 2000). Ba, Sr and U abundances, together with the presence of carbonate, suggest that the sample has been significantly weathered. Three rare earth element (REE) patterns (normalized to CI) determined on three different aliquots of the sample all show similar shapes. The heavy REEs are flat with a slight depletion at the heavy end and a strong depletion from Dy to Pr. All of the patterns display an upturn to La which we interpret as being caused by the introduction of a terrestrial component. Taking the terrestrial contamination into account, this study demonstrates that DaG 476 is one of the most depleted of the shergottites, and, just like Queen Alexandra Range (QUE) 94201 (Dreibus et al., 1996), displays very low Zr/Hf ratios. It appears that the Zr/Hf ratios of shergottites are not uniform, and have been significantly fractionated by martian mantle processes.  相似文献   

11.
Abstract— Quantitative petrographic analysis, using the crystal size distribution (CSD) method, provides a novel approach for examining the crystallization histories of basaltic shergottites. Grain number densities at different sizes are plotted against grain size, and the resulting curve relates to the geologic processes involved with the crystallization of the grain population. Most basaltic shergottites are dominated by pigeonite and augite; and because plagioclase is primarily interstitial, and therefore constrained in its growth by the surrounding pyroxenes, we limited our size measurements to the pyroxene phases. The groundmasses of Elephant Moraine (EET) A79001 lithology A and Dar al Gani (DaG) 476 are fine grained with cumulus pyroxene and interstitial plagioclase glass. Their simple linear CSD plots record a single stage of pyroxene crystallization under steady‐state conditions of continuous nucleation and growth. The textures of Queen Alexandra Range (QUE) 94201 and EETA79001 lithology B are quite different from the other shergottites, with intergrown pyroxene and plagioclase. Likewise, their CSD plots are also distinct, with curved trends that suggest a lack of large grains, most likely because of interference between simultaneously growing silicate phases. However, the CSD plot shapes are smooth, also implying a single stage of growth. Shergotty and Zagami, with coarser cumulus textures, display CSD plots that are generally linear over most grain sizes. This implies that conditions of nucleation and growth were dominant during formation of the pyroxene populations. Both plots, however, also display kinks, implying multiple stages of growth. A similar kink is also visible in a CSD plot of only the Mg‐rich cores of Shergotty pyroxenes, which suggests the feature represents changes in conditions during core crystallization, rather than an event coincident with the change in composition to the Fe‐rich rims. The plot may be interpreted as representing two stages of core growth with an intervening short hiatus of nucleation, with continued crystallization associated with ascent of the magma. Eruption onto the surface probably triggered the compositional change to Fe‐rich rims. The CSD analysis of products from a controlled crystallization study agree with experimental and petrologic estimates that cooling rates for Zagami were on the order of a few tenths of a degree per hour. Growth rates derived from these cooling rates suggest crystallization of Shergotty and Zagami pyroxenes occurred over a period of a few weeks to months.  相似文献   

12.
Abstract— Mixing models using major and trace elements show that the bulk composition of lithology A (xenocryst-bearing magnesian basalt) of Elephant Moraine A79001 (EETA79001) can be reasonably approximated as a simple mixture of ~44% EETA79001 lithology B (ferroan basalt) and ~56% of Allan Hills A77005 (ALHA7705) light lithology (incompatible element-poor lherzolite). Micro-instrumental neutron activation analysis (INAA) data on xenocryst-free groundmass samples of lithology A show that about 20–25% of the melt phase could be dissolved lherzolite. The bulk and groundmass samples of lithology A have excesses in Au, which indicates either meteoritic contamination or addition by some unknown martian geochemical process. Previous workers have suggested that lithology A was formed by either assimilation of cumulates (like ALHA77005), by a basalt (like lithology B), or by mixing of basaltic and lherzolitic magmas. The former scenario is energetically improbable and unlikely to explain the normal Fe/Mg zonation in lithology A groundmass pyroxenes, whereas the latter scenario is unlikely to satisfy the constraints of the mixing model indicating the ultramafic component is poor in incompatible elements. We suggest rather that EETA79001 lithology A is an impact melt composed dominantly of basalt like lithology B and lherzolitic cumulates like the trace-element-poor fraction of ALHA77005 or Y-793605. This model can satisfy the energetic, petrologic, and geochemical constraints imposed by the samples. If EETA79001 lithology A is an impact melt, this would have considerable consequences for current models of martian petrologic evolution. It would call into question the generally accepted age of magmatism of martian basalts and preclude the use of lithology A groundmass as a primary martian basalt composition in experimental studies. Regardless, the latter is required because lithology A groundmass is a hybrid composition.  相似文献   

13.
Abstract— Sayhal Uhaymir (SaU) 094 is a 223.3 g, partially crusted, strongly to very strongly shocked melanocratic olivine-porphyric rock of the shergottite group showing a microgabbroic texture. The rock consists of pyroxene (52.0–58.2 vol%)—dominantly prismatic pigeonite (En60–68Fs20–27Wo7–9) associated with minor augite (En46–49Fs15–16Wo28–31)—brown (shock-oxidized) olivine (Fo65–69; 22.1–31%), completely isotropic interstitial plagioclase glass (maskelynite; An50–64Or0.3-0.9; 8.6–13.0%), chromite and titanian magnesian chromite (0.9-1.0%), traces of ilmenite (Ilm80–86), pyrrhotite (Fe92–100; 0.1-0.2%), merrillite (<<0.1%), and pockets (4.8-6.7%) consisting of green basaltic to basaltic andesitic shock glass that is partially devitrified into a brown to black product along boundaries with the primary minerals. The average maximum dimensions of minerals are: olivine (1.5 mm), pyroxene (0.3 mm) and maskelynite (0.3 mm). Primary melt inclusions in olivine and chromite are common and account for 0.1-0.6% of the rock. X-ray tomography revealed that the specimen contains ˜0.4 vol% of shock-melt associated vesicles, up to 3 mm in size, which show a preferred orientation. Fluidization of the maskelynite, melting and recrystallization of pyroxene, olivine and pyrrhotite indicate shock stage S6. Minor terrestrial weathering resulted in calcite-veining and minor oxidation of sulfides. The meteorite is interpreted as paired with SaU 005/008/051. The modal composition is similar to Dar al Gani 476/489/670/735/876, with the exception that neither mesostasis nor titanomagnetite nor apatite are present and that all phases show little zonation. The restricted mineral composition, predominance of chromite among the oxides, and abundance of olivine indicate affinities to the lherzolitic shergottites.  相似文献   

14.
Abstract— Magmatic inclusions occur in type II ureilite clasts (olivine‐orthopyroxene‐augite assemblages with essentially no carbon) and in a large isolated plagioclase clast in the Dar al Gani (DaG) 319 polymict ureilite. Type I ureilite clasts (olivine‐pigeonite assemblages with carbon), as well as other lithic and mineral clasts in this meteorite, are described in Ikeda et al.(2000). The magmatic inclusions in the type II ureilite clasts consist mainly of magnesian augite and glass. They metastably crystallized euhedral pyroxenes, resulting in feldspar component‐enriched glass. On the other hand, the magmatic inclusions in the large plagioclase clast consist mainly of pyroxene and plagioclase, with a mesostasis. They crystallized with a composition along the cotectic line between the pyroxene and plagioclase liquidus fields. DaG 319 also contains felsic lithic clasts that represent various types of igneous lithologies. These are the rare components not found in the common monomict ureilites. Porphyritic felsic clasts, the main type, contain phenocrysts of plagioclase and pyroxene, and their groundmass consists mainly of plagioclase, pyroxene, and minor phosphate, ilmenite, chromite, and/or glass. Crystallization of these porphyritic clasts took place along the cotectic line between the pyroxene and plagioclase fields. Pilotaxitic felsic clasts crystallized plagioclase laths and minor interstitial pyroxene under metastable conditions, and the mesostasis is extremely enriched in plagioclase component in spite of the ubiquitous crystallization of plagioclase laths in the clasts. We suggest that there are two crystallization trends, pyroxene‐metal and pyroxene‐plagioclase trends, for the magmatic inclusions and felsic lithic clasts in DaG 319. The pyroxene‐metal crystallization trend corresponds to the magmatic inclusions in the type II ureilite clasts and the pilotaxitic felsic clasts, where crystallization took place under reducing and metastable conditions, suppressing precipitation of plagioclase. The pyroxene‐plagioclase crystallization trend corresponds to the magmatic inclusions in the isolated plagioclase clast and the porphyritic felsic clasts. This trend developed under oxidizing conditions in magma chambers within the ureilite parent body. The felsic clasts may have formed mainly from albite component‐rich silicate melts produced by fractional partial melting of chondritic precursors. The common monomict ureilites, type I ureilites, may have formed by the fractional partial melting of alkali‐bearing chondritic precursors. However, type II ureilites may have formed as cumulates from a basaltic melt.  相似文献   

15.
Abstract— Elephant Moraine (EET) A79001 is the only Martian meteorite that consists of both an olivine‐phyric shergottite (lithology A) and a basaltic shergottite (lithology B). The presence of these lithologies in one rock has previously been ascribed to mixing processes (either magmatic or impact‐induced). Here we present data regarding phase changes across the contact between the lithologies. These data show that the contact is gradational and suggest that it is a primary igneous feature consistent with crystallization of a single cooling magma. We present a model to establish a petrogenetic connection between an olivine‐phyric and a basaltic shergottite through differentiation. The model involves the shallow or surface emplacement of a magma that contained pre‐eruptive solids (phenocrysts and minor xenocrysts). Subsequent differentiation via crystal settling and in situ crystallization (Langmuir 1989) resulted in a layered sequence of lithology A overlain by lithology B, with gradations in modal abundance of maskelynite (increasing from A to B) and pigeonite/maskelynite (decreasing from A to B), and a gradational change in pattern of pyroxene zonation (zones of magnesian augite separating magnesian and ferroan pigeonite appear and thicken into B) across the contact. A pigeonite phenocryst‐bearing zone near the contact in lithology B appears to be intermediate between lithology A and the bulk of lithology B (which resembles basaltic shergottite Queen Alexandra Range [QUE] 94201). Re‐examination of Sr isotopic compositions in lithology A and across the contact is required to test and constrain the model.  相似文献   

16.
Abstract— Microbeam studies of Martian meteorites Dar al Gani (DaG) 476 and Allan Hills (ALH) 77005 have been conducted to identify potential causes of disequilibrium exhibited in their Sm‐Nd isotopic systematics. Olivine and maskelynite mineral fractions on the DaG 476 isochron are displaced relative to their positions as dictated by measured mineral compositions. The olivine mineral fractions from ALH 77005 not only have a relatively low Sm/Nd ratio, but appear to contain an unradiogenic component that shifts the olivine mineral fraction off the isochron defined by the pyroxene and maskelynite mineral fractions. Trace components such as melt inclusions, impact melt, high‐Si mesostasis, and altered olivine were analyzed using scanning electron microscopy, quantitative electron microscopy, and secondary ion mass spectrometry to determine their potential for disturbing the isotopic systematics of the mineral fractions, assuming that the mineral fractions were not completely pure. Mixing models indicate that the presence of melt inclusions in the DaG 476 olivine mineral fraction lowered its Sm/Nd ratio. The maskelynite mineral fraction contains a related but more evolved mesostasis component that raised the Sm/Nd ratio of the fraction. The position of two olivine mineral fractions below the ALH 77005 isochron is interpreted to reflect small additions of impact melt with a light rare earth element enriched pattern and a non‐indigenous, unradiogenic Nd component. Furthermore, the presence of rare earth elements in olivine and maskelynite from both igneous and non‐igneous components such as melt inclusions, mesostasis, and impact melt is observed on a fine (<30 μm) scale. Despite the addition of this material, the Sm‐Nd ages are not affected. This study demonstrates that detailed mineral separation procedures as employed by modern geochronology laboratories permit reliable ages to be derived from shocked and altered samples.  相似文献   

17.
Abstract– Northwest Africa (NWA) 1068 is one of the few olivine‐phyric shergottites (e.g., NWA 1068, Larkman Nunatak [LAR] 06319, and Roberts Massif [RBT] 04262) that is not depleted in light rare earth elements (LREE). Its REE pattern is similar to that of the basaltic shergottite Shergotty, suggesting a possible connection between the olivine‐phyric and the basaltic shergottites. To test this possible link, we have investigated the high‐pressure near‐liquidus phase equilibria for the NWA 1068 meteorite bulk composition. Our results show that the NWA 1068 bulk composition does not represent an unmodified mantle‐derived melt; the olivine and pyroxene in our near‐liquidus experiments are more magnesian than in the rock itself, which suggests that NWA 1068 contains cumulate minerals (extra olivine). We have then used these experimental results combined with the pyroxene compositions in NWA 1068 to constrain the possible high‐pressure crystallization history of the parental magma. These results suggest that NWA 1068 had a complex polybaric history. Finally, we have calculated a model parental magma composition for the NWA 1068 meteorite. The calculated parental magma is an evolved basaltic composition which is too ferroan to be a primitive melt directly derived from the mantle. We suggest that it ponded and crystallized at approximately the base of the crust. This provided an opportunity for the magma to become contaminated by an “enriched” crustal component prior to crystallization. The results and modeling from these experiments are applicable not only to the NWA 1068 meteorite, but also to LAR 06319 and possibly any other enriched olivine‐phyric shergottite.  相似文献   

18.
Abstract– The identification of adenine by surface enhanced Raman scattering (SERS) on different mineral phases of a Martian meteorite Dar al Gani (DaG) 670 has been adopted as a test to verify the capability of this technique to detect trace amounts of organic or biological substances deposited over, or contained in, extraterrestrial materials. Raman spectra of different phases of meteorite (olivine, pyroxene, and ilmenite), representative of Martian basaltic rocks, have been measured by three laser sources with wavelengths at 785, 632.8, and 514.5 nm, coupled to a confocal micro‐Raman apparatus. Adenine deposited on the Martian meteorite cannot be observed in the normal Raman spectra; when, instead, meteorite is treated with silver colloidal nanoparticles, the SERS bands of adenine are strongly enhanced, allowing an easy and simple identification of this nucleobase at subpicogram level.  相似文献   

19.
The Dar al Gani (DaG) olivine-phyric shergottites share mineralogical and geochemical characteristics, which confirm that these meteorites are derived from a single source. Bulk trace elements (La/Yb—0.12), in situ maskelynite 87Sr/86Sr (~0.7014) and redox estimates (FMQ ~ −2) indicate derivation from a depleted, reduced mantle reservoir; identical to all ~470 Ma shergottites ejected at 1.1 Ma. The DaG shergottites have been variably affected by terrestrial alteration, which precipitated carbonate along fractures and modified bulk-rock fluid mobile (e.g., Ba) elements. Nonetheless, sufficient data are available to construct a multi-stage formation model for the DaG shergottites and other 1.1 Ma ejection-paired shergottites that erupted at ~470 Ma. First, partial melting of a depleted mantle source occurred at 1540 ± 20°C and 1.2 ± 0.1 GPa, equivalent to > ~100 km depth. Then, initial crystallization in a staging chamber at ~85 km depth at the crust–mantle boundary took place, followed by magma evolution and variable incorporation of antecrystic olivine ± orthopyroxene. Subsequently, crystallization of olivine phenocrysts and re-equilibration of olivine antecrysts occurred within an ascending magma. Finally, magmas with variable crystal loads erupted at the surface, where varied cooling rates produced a range of groundmass textures. This model is similar to picritic flood basalt magmas erupted on Earth.  相似文献   

20.
Abstract— A composition approximating the lithology A groundmass of the Elephant Moraine (EET) 79001 martian basalt (Eg; McSween and Jarosewich, 1983) has been used to investigate the petrogenesis of the meteorite and the behavior of Cr and V at different oxygen fugacities. Crystallization experiments were carried out over a range of temperatures, and oxygen fugacities of either iron‐wüstite (IW) or IW + 2 (i.e., 1.5 log units below the quartz‐fayalite‐magnetite (QFM) buffer). Comparison of trace element concentrations (obtained by secondary ion mass spectrometry (SIMS) analysis) in experimental silicates with those of natural silicates supports the Fe‐Ti oxide‐derived oxygen fugacity of QFM ?1.8 ± 0.3 for this basalt (Herd et al., 2001). Experimental distribution coefficients, in conjunction with SIMS analyses of rims from the olivine and pyroxene xenocrysts in lithology A, as well as analyses of lithology A groundmass pigeonite cores, are used to calculate coexisting liquid concentrations of V and Cr. Liquid compositions derived from pigeonite xenocryst rims and groundmass pigeonite cores are similar, suggesting that the rims of orthopyroxene xenocrysts are overgrowths, which have not previously been accounted for when reconstructing the groundmass composition. This implies that the Eg composition requires modification. A similar exercise for the ferroan rims on olivine xenocrysts yields very different liquid compositions, indicating that these rims are not overgrowths but are part of the xenocryst assemblage. These results are shown to be consistent with the petrography of lithology A xenocrysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号