首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Sixteen texturally different (porphyritic, barred, radial, cryptocrystalline) FeO‐rich chondrules from the unequilibrated ordinary chondrites Brownfield, Frontier Mountain (FRO) 90003 and FRO 90032 were characterized by optical and scanning electron microscopy and then thoroughly studied by transmission and analytical electron microscopy. Nanotextural and nanochemical data indicate similar thermal evolution for chondrules of the same textural groups; minor, yet meaningful differences occur among the different groups. Olivine is the earliest phase formed and crystallizes between 1500 and 1400 °C. Protoenstatite crystallizes at temperatures higher than 1350–1200 °C; it later inverts to clinoenstatite in the 1250–1200 °C range. Enstatite is surrounded by pigeonitic or (less frequently) augitic rims; the minimal crystallization temperature for the rims is 1000 °C; high pigeonite later inverts to low pigeonite, between 935 and 845 °C. The outer pigeonitic or augitic rims are constantly exsolved, producing sigmoidal augite or enstatite precipitates; sigmoidal precipitates record exsolution temperatures between 1000 and 640 °C. Cooling rate (determined using the speedometer based upon ortho‐clinoenstatite intergrowth) was in the order of 50–3000 °C/h at the clinoenstatite‐orthoenstatite transition temperature (close to 1250–1200 °C), but decreased to 5–10 °C/h or slower at the exsolution temperature (between 1000 and 650 °C), thus revealing nonlinear cooling paths. Nanoscale observations indicate that the individual chondrules formed and cooled separately from 1500 °C down to at least 650 °C. Accretion into chondritic parent body occurred at temperatures lower than 650 °C.  相似文献   

2.
Abstract— Transmission-electron-microscopy (TEM) and optical data suggest that chondrules in the Chainpur (LL3.4) chondrite experienced varied thermal and deformation histories prior to the final agglomeration of the meteorite. Chainpur may be regarded as an agglomerate or breccia that experienced little deformation or heating during and after the final accumulation and compaction of its constituents. One chondrule in Chainpur was impact-shocked to high pressures (~ 20–50 GPa), almost certainly prior to final agglomeration, either while it was an independent entity in space or while it was in the regolith of a parent body. However, most (>85%) of the chondrules in Chainpur were evidently not significantly shock-metamorphosed subsequent to their formation. The dearth of shock effects implies that most chondrules in Chainpur did not form by shock melting, although some chondrules may have formed by this process. Dusty-metal-bearing olivine grains, which are widely interpreted to have escaped melting during chondrule formation, contain moderate densities of dislocations (~ 108 cm?2). The dislocations in these grains were introduced before or during the last episode of melting in at least one chondrule. This observation can be explained if olivine was impact-deformed before or during chondrule formation, or if olivine was strained by reduction or thermally-induced processes during chondrule formation. Low-Ca pyroxene grains in chondrules are often strained. In most cases this strain probably arose as a by-product of polytype transformations (protoenstatite → clinoenstatite/orthoenstatite and clinoenstatite → orthoenstatite) that occurred during the igneous crystallization and static annealing of chondrules. Droplet chondrules with glassy mesostases were minimally annealed, consistent with an origin as relatively rapidly cooled objects in an unconfined, cold environment. Some irregular chondrules and at least one droplet chondrule were thermally metamorphosed prior to final agglomeration, either as a result of moderately slow cooling (~ 100 °C/hr) from melt temperatures (during autometamorphism) or as a result of reheating episodes. Two of the most annealed chondrules contain relatively abundant plagioclase feldspar, and one of these has a uniform olivine composition appropriate to that of an LL4 chondrite.  相似文献   

3.
Abstract— Cooling rates of chondrules provide important constraints on the formation process of chondrite components at high temperatures. Although many dynamic crystallization experiments have been performed to obtain the cooling rate of chondrules, these only provide a possible range of cooling rates, rather than providing actual measured values from natural chondrules. We have developed a new model to calculate chondrule cooling rates by using the Fe‐Mg chemical zoning profile of olivine, considering diffusional modification of zoning profiles as crystals grow by fractional crystallization from a chondrule melt. The model was successfully verified by reproducing the Fe‐Mg zoning profiles obtained in dynamic crystallization experiments on analogs for type II chondrules in Semarkona. We applied the model to calculating cooling rates for olivine grains of type II porphyritic olivine chondrules in the Semarkona (LL3.00) ordinary chondrite. Calculated cooling rates show a wide range from 0.7 °C/h to 2400 °C/h and are broadly consistent with those obtained by dynamic crystallization experiments (10–1000 °C/h). Variations in cooling rates in individual chondrules can be attributed to the fact that we modeled grains with different core Fa compositions that are more Fe‐rich either because of sectioning effects or because of delayed nucleation. Variations in cooling rates among chondrules suggest that each chondrule formed in different conditions, for example in regions with varying gas density, and assembled in the Semarkona parent body after chondrule formation.  相似文献   

4.
Abstract— The liquidus temperatures of chondrules range from about 1200 °C to almost 1900 °C, based on the calculation of Herzberg (1979). Dynamic melting and crystallization experiments with no external seeding suggest that some chondrule textures formed with initial temperatures below the liquidus (e.g., porphyritic, granular) and some were completely melted (e.g., excentroradial, glassy). Type I and III chondrules in carbonaceous chondrites in this interpretation consist of incompletely melted magnesian chondrules, completely melted silica-rich chondrules and intermediate composition chondrules with both porphyritic and nonporphyritic textures. A similar pattern for ordinary chondrites, with data also for Type II porphyritic and barred olivine chondrules, suggests that few chondrules with liquidus temperatures over 1750 °C were completely melted and few with under 1400 °C were incompletely melted. The range of liquidus temperatures for barred olivine chondrules, for which initial temperatures appear to have been essentially at the liquidus, is similar. Most chondrules may therefore have been heated to temperatures of 1400–1750 °C and, because of a peak in the distribution of barred olivine chondrule temperatures at 1500–1550 °C, the temperatures appear normally distributed within this range. Given a narrow range of temperatures, bulk composition is at least as important as initial temperature in controlling chondrule textures. Truly granular (not microporphyritic) Type I and truly glassy Type II and III chondrules appear under-represented in nature according to this model, based on internal nucleation experiments. External heterogeneous nucleation, or seeding due to droplet-dust collisions, is likely to occur in a dusty nebula and has been shown to reproduce chondrule textures experimentally. Generally high initial temperatures (1600–1800 °C), coupled with dust-seeding of superheated droplets of less refractory composition is an alternative explanation of chondrule textures. Cooling rates of 100–1000 °C/hr are required for chondrules, which must have been mass produced in clouds with sufficient particle density to buffer cooling rate and perhaps also initial temperature. Melting precursor particles in a thick clump and/or the nebular mid-plane would provide evaporation and thus explain the high oxidation state and volatile content of chondrules, relative to the bulk hydrogen-rich nebula, as well as the nature of the cooling.  相似文献   

5.
Abstract— Dynamic crystallization experiments on the ordinary chondrite Queen Alexandra Range (QUE) 97008 document textural features that occur in partially melted chondrules with changes in the degree of partial melting and cooling rate. We carried out a matrix of experiments, at peak temperatures of 1250, 1350, 1370, and 1450 °C, and cooling rates of 1000, 100, and 10 °C/h, and quenched. All experimentally produced textures closely resemble textures of porphyritic chondrules. Because peak temperatures were well below the liquidi for typical chondrule compositions, the textural similarities support an incomplete melting origin for most porphyritic chondrules. Our experiments can be used to determine the extent of melting of natural chondrules by comparing textural relationships among the experimental results with those of natural chondrules. We used our experiments along with X‐ray computerized tomography scans of a Semarkona chondrule to evaluate two other methods that have been used previously to quantify the degree of melting: nominal grain size and convolution index. Proper applications of these methods can result in valid assessments of a chondrule's degree of melting, but only if accompanied by careful interpretation, as chondrule textures are controlled by more than just the extent of melting. Such measurements of single aspects of chondrule textures might be coupled with qualitative analysis of other textural aspects to accurately determine degree of melting.  相似文献   

6.
Abstract— Dynamic crystallization experiments performed with different container materials (Fe crucible, pure Pt wire loop, presaturated Pt wire loop) demonstrate the strong influence of Fe loss on texture, mineralogy and chemical zoning in olivine. The use of pure Pt wire loops results in severe Fe loss and prevents the development of strong Fe/Mg zoning in olivine in slower cooled runs (≤ 100 °C/h). Presaturated Pt wire loops reduce Fe loss to some extent but not completely. If severe Fe loss from the melt is avoided by the use of Fe crucibles, then cooling rates between 2000 and 1.2 °C/h yield textures, modal mineral abundances and Fe/Mg zoning in olivine comparable to natural porphyritic olivine chondrules. However, Fe gain from the crucible may possibly enhance Fe/Mg zoning in olivine for cooling rates < 10 °C/h. Therefore, it is concluded that the lower limit of cooling rates of porphyritic olivine chondrules derived from dynamic crystallization experiments is 10 °C/h, perhaps it is even lower, on the order of a few degrees Celsius per hour. This value is not significantly different from estimates for subsolidus temperatures based on the microstructure of chondrule minerals (Weinbruch and Müller, 1995). The lower limit of chondrule cooling rates of 100 °C/h advocated by Hewins (1988) and Radomsky and Hewins (1990) seems to be an artifact of the experimental technique, as their samples were crystallized in pure Pt wire loops.  相似文献   

7.
Abstract— The microstructure of Fe‐rich clinopyroxene from synthetic analogues of chondrules was studied by transmission electron microscopy. The samples were cooled at various rates from 1455 °C to the quench temperature of 1000 °C. Slow cooling at rates below approximately 50–60 °C/h leads to the development of coherent pigeonite/augite exsolution lamallae on (001). A final wavelength of 19.6 ± 1.1 nm was obtained at a cooling rate of 10 °C/h, and 17.4 ± 2.4 ran at a cooling rate of 50 °C/h. Faster cooling at rates between approximately 50 and 450 °C/h yields only modulated structures with a wavelength on the order of 17–19 nm for the (001) orientation. Coherent exsolution lamellae on (001) in clinopyroxene occur in chondrules of H, L, LL, and CV chondrites, indicating that slow cooling of chondrules at subsolidus temperatures is a widespread phenomenon. The variation of the lamellar wavelength observed in natural chondrules corresponds to a variation of the subsolidus cooling rates between ~0.1 and 50 °C/h. The low cooling rates at subsolidus temperatures deduced from the microstructure of Fe‐rich clinopyroxene point to nonlinear cooling, with cooling rates decreasing with decreasing temperature.  相似文献   

8.
To better understand the formation conditions of ferromagnesian chondrules from the Renazzo‐like carbonaceous (CR) chondrites, a systematic study of 210 chondrules from 15 CR chondrites was conducted. The texture and composition of silicate and opaque minerals from each observed FeO‐rich (type II) chondrule, and a representative number of FeO‐poor (type I) chondrules, were studied to build a substantial and self‐consistent data set. The average abundances and standard deviations of Cr2O3 in FeO‐rich olivine phenocrysts are consistent with previous work that the CR chondrites are among the least thermally altered samples from the early solar system. Type II chondrules from the CR chondrites formed under highly variable conditions (e.g., precursor composition, redox conditions, cooling rate), with each chondrule recording a distinct igneous history. The opaque minerals within type II chondrules are consistent with formation during chondrule melting and cooling, starting as S‐ and Ni‐rich liquids at 988–1350 °C, then cooling to form monosulfide solid solution (mss) that crystallized around olivine/pyroxene phenocrysts. During cooling, Fe,Ni‐metal crystallized from the S‐ and Ni‐rich liquid, and upon further cooling mss decomposed into pentlandite and pyrrhotite, with pentlandite exsolving from mss at 400–600 °C. The composition, texture, and inferred formation temperature of pentlandite within chondrules studied here is inconsistent with formation via aqueous alteration. However, some opaque minerals (Fe,Ni‐metal versus magnetite and panethite) present in type II chondrules are a proxy for the degree of whole‐rock aqueous alteration. The texture and composition of sulfide‐bearing opaque minerals in Graves Nunataks 06100 and Grosvenor Mountains 03116 suggest that they are the most thermally altered CR chondrites.  相似文献   

9.
Abstract– Seventy‐four macrochondrules with sizes >3 mm were studied. Considering the extraordinary size of the chondrules (occasionally achieving a mass of 1000 times (and more) the mass of a normal‐sized chondrule), the conditions in the formation process must have been somewhat different compared with the conditions for the formation of the common chondrules. Macrochondrules are typically rich in olivine and texturally similar to specific chondrule types (barred, radial, porphyritic, and cryptocrystalline) of normal‐sized chondrules. However, our studies show that most of the macrochondrules are fine‐grained or have elongated crystals (mostly BO, RP, and C), which lead to the assumption that they were once totally molten and cooled quite rapidly. Porphyritic chondrules belong to the least abundant types of macrochondrules. This distribution of chondrule types is highly unusual and just a reverse of the distribution of chondrule types among the typical‐sized chondrules in most chondrite groups except for the CH and CB chondrites. New chondrule subtypes (like radial‐olivine [RO] or multi‐radial [MR] chondrules) are defined to better describe the textures of certain large chondrules. Macrochondrules may have formed due to melting of huge precursor dust aggregates or due to rapid collisions of superheated melt droplets, which led to the growth of large molten spherules in regions with high dust densities and high electrostatic attraction.  相似文献   

10.
Mg‐rich olivine is a ubiquitous phase in type I porphyritic chondrules in various classes of chondritic meteorites. The anhedral shape of olivine grains, their size distribution, as well as their poikilitic textures within low‐Ca pyroxene suggest that olivines suffer dissolution during chondrule formation. Owing to a set of high‐temperature experiments (1450–1540 °C) we determined the kinetics of resorption of forsterite in molten silicates, using for the first time X‐ray microtomography. Results indicate that forsterite dissolution in chondrule‐like melts is a very fast process with rates that range from ~5 μm min?1 to ~22 μm min?1. Forsterite dissolution strongly depends on the melt composition, with rates decreasing with increasing the magnesium and/or the silica content of the melt. An empirical model based on forsterite saturation and viscosity of the starting melt composition successfully reproduces the forsteritic olivine dissolution rates as a function of temperature and composition for both our experiments and those of the literature. Application of our results to chondrules could explain the textures of zoned type I chondrules during their formation by gas‐melt interaction. We show that the olivine/liquid ratio on one hand and the silica entrance from the gas phase (SiOg) into the chondrule melt on the other hand, have counteracting effects on the Mg‐rich olivine dissolution behavior. Silica entrance would favor dissolution by maintaining disequilibrium between olivine and melt. Hence, this would explain the preferential dissolution of olivine as well as the preferential abundances of pyroxene at the margins of chondrules. Incipient dissolution would also occur in the silica‐poorer melt of chondrule core but should be followed by crystallization of new olivine (overgrowth and/or newly grown crystals). While explaining textures and grain size distributions of olivines, as well as the centripetal distribution of low‐Ca pyroxene in porphyritic chondrules, this scenario could also be consistent with the diverse chemical, isotopic, and thermal conditions recorded by olivines in a given chondrule.  相似文献   

11.
Abstract— To constrain the metamorphic history of the H‐chondrite parent body, we dated phosphates and chondrules from four H6 chondritic meteorites using U‐Pb systematics. Reconnaissance analyses revealed that only Estacado had a sufficiently high 206Pb/204Pb ratio suitable for our purposes. The Pb‐Pb isochron date for Estacado phosphates is measured to be 4492 ± 15 Ma. The internal residue‐second leachate isochron for Estacado chondrules yielded the chondrule date of 4546 ± 18 Ma. An alternative age estimate for Estacado chondrules of 4527.6 ± 6.3 Ma is obtained from an isochron including two chondrules, two magnetically separated fractions, and four bulk chondrite analyses. This isochron date might represent the age of termination of Pb diffusion from the chondrules to the matrix. From these dates and previously established closure temperatures for Pb diffusion in phosphates and chondrules, we estimate an average cooling rate for Estacado between 5.5 ± 3.2 Myr/°C and 8.3 ± 5.0 Myr/°C. Using previously published results for Ste. Marguerite (H4) and Richardton (H5), our data reveal that the cooling rates of H chondrites decrease markedly with increasing metamorphic grade, in agreement with the predictions of the “onion‐shell” asteroid model. Several issues, however, need to be addressed before confirming this model for the H‐chondrite parent body: the discrepancies between peak metamorphic temperatures established by various mineral thermometers need to be resolved, diffusion and other mechanisms of element migration in polycrystalline solids must be better understood, and dating techniques should be further improved.  相似文献   

12.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   

13.
14.
Abstract— The microstructure and composition of the matrix of one carbonaceous inclusion (K1) in the Krymka LL3.1 chondrite were studied using transmission electron microscopy (TEM). K1 has previously shown an enigmatic nature and similarities with volatile‐rich, fine‐grained, dark inclusions of Krymka called “mysterite.” In the present study, four minerals were identified by TEM. Olivine, pyroxene, and pyrrhotite typically have grain sizes of one micrometer; graphite occurs as flakes of a similar size. Olivine shows a moderately high dislocation density most probably caused by shock. Pyroxene shows coexisting ortho‐ and clinoenstatite lamellae that probably originated from shear stress after a shock event or from the rapid cooling of the protoenstatite stability field. However, we demonstrate that in this case, a shock trigger is more likely. Pyrrhotite in the studied sample occurs as a 4C monoclinic superstructure. The graphite flakes in the fragment are well crystallized, as can be seen by discrete spots in the diffraction pattern. In graphite, the degree of crystallization increases with the metamorphic grade. Based on the microstructure of this mineral we conclude that after a first moderate shock event, the residual temperature between 300 °C and 500 °C led to thermal metamorphism. A second shock event, possibly at excavation from the parent body, is responsible for the shock features observed in olivine, pyroxene, and graphite.  相似文献   

15.
Abstract– We report trace element analyses from mineral phases in chondrules from carbonaceous chondrites (Vigarano, Renazzo, and Acfer 187), carried out by laser ablation inductively coupled plasma‐mass spectrometry. Results are similar in all three meteorites. Mesostasis has rare earth element (REE) concentrations of 10–20 × CI. Low‐Ca pyroxene has light REE (LREE) concentrations near 0.1 × CI and heavy REE (HREE) near 1 × CI, respectively. Olivine has HREE concentrations at 0.1–1 × CI and LREE around 10?2 × CI. The coarsest olivine crystals tend to have the most fractionated REE patterns, indicative of equilibrium partitioning. Low‐Ca pyroxene in the most pyroxene‐rich chondrules tends to have the lowest REE concentrations. Type I chondrules seem to have undergone a significant degree of batch crystallization (as opposed to fractional crystallization), which requires cooling rates slower than 1–100 K h?1. This would fill the gap between igneous calcium‐aluminum‐rich inclusions (CAIs) and type II chondrules. The anticorrelation between REE abundances and pyroxene mode may be understood as due to dilution by addition of silica to the chondrule melt, as in the gas‐melt interaction scenario of Libourel et al. (2006). The rapid cooling rate (of the order of 1000 K h?1) which seems recorded by low‐Ca pyroxene, contrasted with the more diverse record of olivine, may point to a nonlinear cooling history or suggest that formation of pyroxene‐rich chondrule margins was an event distinct from the crystallization of the interior.  相似文献   

16.
Abstract— Meteoritic data strongly suggest that most chondrules reached maximum temperatures in a range of 1650–2000 K and cooled at relatively slow rates of 100–1000 K/h, implying a persistence of external energy supply. The presence of fine‐grained rims around chondrules in most unequilibrated chondrites also indicates that a significant quantity of micron‐sized dust was present in chondrule formation regions. Here, we assume that the persistent external energy source needed to explain chondrule cooling rates consists primarily of radiation from surrounding heated chondrules, fine dust, and gas after the formation event. Using an approximate one‐dimensional numerical model for the outward diffusion of thermal radiation from such a system, the scale sizes of formation regions required to yield acceptable cooling rates are determined for a range of possible chondrule, dust, and gas parameters. Results show that the inferred scale sizes depend sensitively on the number densities of micron‐sized dust and on their adopted optical properties. In the absence of dust, scale sizes > 1000 km are required for plausible maximum chondrule number densities and heated gas parameters. In the presence of dust with mass densities comparable to those of the chondrules and with absorptivities and emissivities of ~0.01 calculated for Mie spheres with a pure mineral composition, scale sizes as small as ~100 km are possible. If dust absorptivities and emissivities approach unity (as may occur for particles with more realistic shapes and compositions), then scale sizes as small as ×10 km are possible. Considering all uncertainties in model parameters, it is concluded that small scale sizes (10–100 km) for chondrule formation regions are allowed by the experimentally inferred cooling rates.  相似文献   

17.
Abstract— We investigate the possible formation of chondrules by planetesimal bow shocks. The formation of such shocks is modeled using a piecewise parabolic method (PPM) code under a variety of conditions. The results of this modeling are used as a guide to study chondrule formation in a one‐dimensional, finite shock wave. This model considers a mixture of chondrule‐sized particles and micron‐sized dust and models the kinetic vaporization of the solids. We found that only planetesimals with a radius of ?1000 km and moving at least ?8 km/s with respect to the nebular gas can generate shocks that would allow chondrule‐sized particles to have peak temperatures and cooling rates that are generally consistent with what has been inferred for chondrules. Planetesimals with smaller radii tend to produce lower peak temperatures and cooling rates that are too high. However, the peak temperatures of chondrules are only matched for low values of chondrule wavelength‐averaged emissivity. Very slow cooling (<?100s of K/hr) can only be achieved if the nebular opacity is low, which may result after a significant amount of material has been accreted into objects that are chondrule‐sized or larger, or if chondrules formed in regions of the nebula with small dust concentrations. Large shock waves of approximately the same scale as those formed by gravitational instabilities or tidal interactions between the nebula and a young Jupiter do not require this to match the inferred thermal histories of chondrules.  相似文献   

18.
Abstract— Due to the discoveries in Antarctica, the number of known enstatite chondrites has doubled in the last few years, and many rare or previously unknown types have been collected, most notably many EL3 and EH3 chondrites. We have applied the five major enstatite chondrite thermometers to the new and previously known enstatite chondrites, the thermometers being: (1) kamacite-quartz-enstatite-oldhamite-troilite (KQEOT), (2) oldhamite, (3) alabandite-niningerite, (4) sphalerite, and (5) phosphide-metal. Measured temperatures based on the KQEOT and oldhamite systems are 800 °C-1000 °C with the type 3 enstatite chondrites having values similar to those of type 4–6. It seems likely that these temperatures relate to events prior to parent body metamorphism, such as nebula condensation or chondrule formation, and were not significantly reset by later events. Measured temperatures for alabandite-niningerite, metal-phosphide and sphalerite in EH chondrites increase from 300 °C-400 °C to 600 °C-800 °C with petrographic indications of increasing metamorphism. In contrast, measured temperatures for all EL chondrites, including the most heavily metamorphosed, are generally <400 °C. Apparently EL chondrites cooled more slowly than the EH chondrites regardless of metamorphism experienced. Measured temperatures for the alabandite-niningerite, metal-phosphide and sphalerite are actually closure temperatures for the last thermal event suffered by the meteorite, and the fast cooling rates indicated are most consistent with processes occurring in thick regoliths.  相似文献   

19.
Abstract Experimentally produced analogues of porphyritic olivine (PO) chondrules in ordinary chondrites provide an important insight into chondrule formation processes. We have studied experimental samples with PO textures grown at three different cooling rates (2, 5 and 100 *C/h), and samples that have been annealed at high temperatures (1000–1200 °C) subsequent to cooling. These are compared with natural chondrules of similar composition and texture from the ordinary chondrites Semarkona (LL3.0) and ALH 81251 (LL3.3). Zoning properties of olivine grains indicate that the Semarkona chondrules cooled at comparable rates to the experiments. Zoning in olivine from chondrules in ALH 81251 is not consistent with cooling alone but indicates that the chondrules underwent an annealing process. Chromium loss from olivine is very rapid during annealing and calculated diffusion coefficients for Cr in olivine are very similar to those of Fe-Mg interdiffusion coefficients under the same conditions. Annealed experimental samples contain an aluminous, low-Ca pyroxene which forms by reaction of olivine and liquid. No similar reaction texture is observed in ALH 81251 chondrules, and this may be evidence that annealing of the natural samples took place at considerably lower temperatures than the experimental analogues. The study supports the model of chondrule formation in a cool nebula and metamorphism of partly equilibrated chondrites during reheating episodes on the chondrite parent bodies.  相似文献   

20.
We report in situ LA‐ICP‐MS trace element analyses of silicate phases in olivine‐bearing chondrules in the Sahara 97096 (EH3) enstatite chondrite. Most olivine and enstatite present rare earth element (REE) patterns comparable to their counterparts in type I chondrules in ordinary chondrites. They thus likely share a similar igneous origin, likely under similar redox conditions. The mesostasis however frequently shows negative Eu and/or Yb (and more rarely Sm) anomalies, evidently out of equilibrium with olivine and enstatite. We suggest that this reflects crystallization of oldhamite during a sulfidation event, already inferred by others, during which the mesostasis was molten, where the complementary positive Eu and Yb anomalies exhibited by oldhamite would have possibly arisen due to a divalent state of these elements. Much of this igneous oldhamite would have been expelled from the chondrules, presumably by inertial acceleration or surface tension effects, and would have contributed to the high abundance of opaque nodules found outside them in EH chondrites. In two chondrules, olivine and enstatite exhibit negatively sloped REE patterns, which may be an extreme manifestation of a general phenomenon (possibly linked to near‐liquidus partitioning) underlying the overabundance of light REE observed in most chondrule silicates relative to equilibrium predictions. The silicate phases in one of these two chondrules show complementary Eu, Yb, and Sm anomalies providing direct evidence for the postulated occurrence of the divalent state for these elements at some stage in the formation reservoir of enstatite chondrites. Our work supports the idea that the peculiarities of enstatite chondrites may not require a condensation sequence at high C/O ratios as has long been believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号