首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flux-rope-fibre model of solar magnetic fields is developed further to cover post-spot evolution of the fields, faculae, and the influence of magnetic fields on some convective motions. (i) Unipolar magnetic regions of a strongly dominant polarity are explained, as are some fields outside the network, and some tiny reversed polarity fields. (ii) The migration of magnetic regions is explained: the following regions to the poles where most of the flux just vanishes and the preceding towards the equator. (iii) The model explains the rotation of the gross pattern of background fields with a period of 27 days. It explains the puzzling features of active longitudes and of magnetic longitudes extending across the equator. (iv) The magnetic model provides a framework for the various chromospheric fine structures, the rosettes, bushes, double chains, mottles and spicules. It provides qualitative models of these features and points the way to a very complicated quantitative model of the network. (v) Several new convective patterns are described and explained in terms of magnetic stresses. The first is the moat around sunspots, which replaces the supergranule motions there. The second is the long-lived (4–7 days) supergranule cell enclosed by strong fields. The third is a small-scale () convective motion, and the fourth is aligned or long granules, both caused by small-scale magnetic fields. (vi) Photospheric line faculae and photospheric continuum faculae are different phenomena. The former, like the chromospheric faculae, are caused by Alfvén-wave heating. The latter are caused by a new small-scale convective motion. (vii) A model of the 3-min oscillation is described.  相似文献   

2.
Solar meridional drift motions are vitally important in connection with the origin of magnetic fields, the source of differential rotation, and perhaps convection. A large body of observational evidence is collated with the following conclusions. (i) Sunspot motions reveal latitudinal drifts (Figures 2 and 3) of a few metres per second which vary with latitude and have a strong 11-yr periodicity. There may also be a 22-yr component polewards during even cycles and equatorwards during odd. (ii) Various other tracers, all basically magnetic structures, show the 11-yr drifts at mid- and high latitudes up to the polar caps, motion being polewards during the three years starting just before minimum activity (Figure 4). (iii) The earlier evidence for giant cells or Rossby-type waves is shown to be merely misinterpretation of the hydromagnetic motions of tracers. Evidence against such giant eddies is found in the great stability of other tracer structures. (iv) From the various tracer motions a four cell axisymmetric meridional drift system is determined (Figure 5 (b)) with an 11-yr period of oscillation and amplitude a few metres per second. (v) These meridional oscillations must be a basic component of the activity cycle. They add to the difficulties of the dynamo theory, but may explain the emergence of stitches of flux ropes to form relatively small bipolar magnetic regions. (vi) The two cells also throw light on thetwo sunspot zones in each hemisphere, discussed earlier by Becker and by Antalová and Gnevyshev.  相似文献   

3.
The traditional model of solar magnetic fields is based on convection which dominates generally weak, diffuse fields and so tends to create increasingly tangled fields. Surplus fields must be eliminated by merging of opposite polarities; for example a solar dynamo of period≈10 yr requires fields to be reduced to a scale of<100 km or diffusivity to be increased by a factor of≈107 over molecular diffusivity. It is now shown that the true requirements of any diffuse-field theory are far more stringent, and that surplus fields must be eliminated within a single eddy period of 1 day (10 min) for the supergranules (granules). The reason is that during that period fresh fields are created with flux and energy comparable with those of the old fields. The numerical models of Weiss and Moss are used to confirm this result which is fatal to all diffuse-field theories. The basic error in these theories is found in the assumption that because heat and other passive properties of a fluid diffuse much faster in the presence of turbulence, passive magnetic fields should do likewise. The error is that the heat content of an eddy is not increased by the motion while the magnetic flux and energy are increased rapidly. It is shown that the observed concentrations of surface fields into strengths of?100 G cannot be accounted for by observed surface motions. Nor are they accounted for by the numerical models of turbulence of Weiss or Moss whatever values of the magnetic Reynolds number are assumed. A detailed comparison is made between both small-scale and large-scale surface magnetic features and the predictions of the diffuse-field theory. The differences appear irreconcilable and the features only explicable in terms of the twisted flux-rope model.  相似文献   

4.
Recent developments in solar dynamo and other theories of magnetic fields and convection are discussed and extended. A basic requirement of these theories, that surplus fields are eliminated by turbulent or eddy diffusion, is shown to be invalid. A second basic requirement, that strong surface fields are created by granule or supergranule motions, is shown to be improbable. Parker's new thin-filament dynamo, based on the Petschek mechanism, is shown to provide the alternative possibilities: either the magnetic fields halt all convection or a steady state is reached in which the fields are a tangle of long, thin filaments. From the above and other considerations it is concluded that the dynamo and related diffuse-field theories are unacceptable, that solar magnetic fields are not dominated by convection, and that all the fields emerge as strong, concentrated fields (flux ropes) which were wound and twisted from a permanent, primordial field. The discussion may, incidentally, provide the physical elements of a deductive theory of hydromagnetic convection.  相似文献   

5.
Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail. The PRL anniversary gives us an opportunity to look back at past milestones and try to identify the main unsolved issues that will be addressed in the future.  相似文献   

6.
The concept of the solar general magnetic field is extended from that of the polar fields to the concept of any axisymmetric fields of the whole Sun. The poloidal and toroidal general magnetic fields are defined and diagrams of their evolutionary patterns are drawn using the Mount Wilson magnetic synoptic chart data of Carrington rotation numbers from 1417 to 1620 covering approximately half of cycle 19 and cycle 20. After averaging over many rotations long-term regularities appear in the patterns. The diagrams of the patterns are compared with the Butterfly Diagram of sunspots of the same period. The diagram of the poloidal field shows that the Sun behaves like a magnetic quadrupole, each hemisphere having two branches of opposite polarities with mirror images on the other hemisphere. This was predicted by a solar cycle model driven by the dynamo action of the global convection by Yoshimura and could serve as a verification of the model. The diagram of the toriodal field is similar to the Butterfly Diagram of sunspots. The slight differences which do exist between the two diagrams seems to show that the fields responsible for the two may originate from different zones of the Sun. Common or different characteristics of the three diagrams are examined in terms of dynamical structure of the convection zone referring to the theoretical model of the solar cycle driven by the dynamo action of the global convection.  相似文献   

7.
Jeffrey L. Linsky 《Solar physics》1989,121(1-2):187-196
This review of stellar magnetic field measurements is both a critique of recent spectral diagnostic techniques and a summary of important trends now appearing in the data. I will discuss both the Zeeman broadening techniques that have evolved from Robinson's original approach and techniques based on circular and linear polarization data. I conclude with an ambitious agenda for developing self-consistent models of the magnetic atmospheres of active stars.  相似文献   

8.
Solar force-free magnetic fields on and above the photosphere   总被引:1,自引:0,他引:1  
If the problem of a magnetic field being force-free with = constant ( 0) is solved by some previously published methods, then the field obtained in the whole exterior of the Sun cannot have a finite energy content and the solution cannot be determined uniquely from only one magnetic field component given at the photosphere. A magnetic field in the volume between two parallel planes has been investigated by us (Chen and Wang, 1986).Based on observational data we present in this paper a suitable physical model for a half-space and adopted an integral transform established by us (Chen, 1980, 1983) to solve this problem. We then obtain a unique analytical solution of the problem from only one magnetic field component (longitudinal field observed) given at the photosphere. Not only the uniqueness of the solution has been proved but also the finiteness of magnetic energy content in the half-space considered has been verified. We have demonstrated that there is no singular point in the solution. It enables us to describe analytically the configurations of magnetic fields on and above the photosphere.  相似文献   

9.
Solar convection     
Åke Nordlund 《Solar physics》1985,100(1-2):209-235
The hydrodynamics of solar convection is reviewed. In particular, a discussion is given of convection on the scale of granulation; i.e., the energy carrying convection patterns in the solar surface layers, and its penetration into the stable layers of the solar photosphere. Convection on global and intermediate scales, and interaction with rotation and magnetic fields is discussed briefly.  相似文献   

10.
Observational astrophysics started when spectroscopy could be applied to astronomy. Similarly, observational work on stellar magnetic fields became possible with the application of spectro-polarimetry. In recent decades there have been dramatic advances in the observational tools for spectro-polarimetry. The four Stokes parameters that provide a complete representation of partially polarized light can now be simultaneously imaged with megapixel array detectors with high polarimetric precision (10?5 in the degree of polarization). This has led to new insights about the nature and properties of the magnetic field, and has helped pave the way for the use of the Hanle effect as a diagnostic tool beside the Zeeman effect. The magnetic structuring continues on scales orders of magnitudes smaller than the resolved ones, but various types of spectro-polarimetric signatures can be identified, which let us determine the field strengths and angular distributions of the field vectors in the spatially unresolved domain. Here we review the observational properties of the magnetic field, from the global patterns to the smallest scales at the magnetic diffusion limit, and relate them to the global and local dynamos.  相似文献   

11.
E. N. Parker 《Solar physics》1989,121(1-2):271-288
This presentation reviews selected ideas on the origin of the magnetic field of the Sun, the dynamical behavior of the azimuthal field in the convective zone, the fibril state of the field at the photosphere, the formation of sunspots, prominences, the spontaneous formation of current sheets in the bipolar field above the surface of the Sun, coronal heating, and flares.This work was supported in part by the National Aeronautics and Space Administration under NASA Grant NGL-14-001-001.  相似文献   

12.
We describe a method for the analysis of magnetic data taken daily at the Vacuum Telescope at Kitt Peak. In this technique, accurate position differences of very small magnetic features on the solar surface outside active regions are determined from one day to the next by a cross-correlation analysis. In order to minimize systematic errors, a number of corrections are applied to the data for effects originating in the instrument and in the Earth's atmosphere. The resulting maps of solar latitude vs central meridian distance are cross-correlated from one day to the next to determine daily motions in longitude and latitude. Some examples of rotation and meridional motion results are presented. For the months of May 1988 and October–November 1987, we find rotation coefficients A = 2.894 ± 0.011, B = - 0.428 ± 0.070, and C = -0.370 ± 0.077 in rad s–1 from the expansion = A + B sin2 + C sin4, where is the latitude. The differential rotation curve for this interval is essentially flat within 20 deg of the equator in these intervals. For the same intervals we find a poleward meridional motion a = 16.0 ± 2.8 m sec -1 from the relation v = a sin, where v is the line-of-sight velocity.Operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.  相似文献   

13.
Magnetic buoyancy is thought to play an important role in the dynamical behavior of the Sun's magnetic field in the convection zone. Magnetic buoyancy is commonly thought to cause inescapable rapid loss of toroidal flux from much of the convection zone, thereby suppressing effective operation of a solar dynamo. This paper re-examines the detailed character of magnetic buoyancy, especially as it is influenced by the magnetic field's effect on heat transport and temperature gradients in the convection zone. It is suggested that suppression of convective heat transport across strong magnetic flux tubes can alter the temperature within the tubes and can subdue, or even reverse, the effect of magnetic buoyancy.  相似文献   

14.
The CIV and SiIV resonance doublets of 43 Be stars are investigated. Measurements of the equivalent widths seem to reveal a correlation between the strenght of the lines and the projected rotational velocity (v sini). it is discussed whether this result indicate that the wind region is not spherically symmetric.  相似文献   

15.
Calculation similar to those of Mestel and Moss (1983) are performed to investigate the decay of a toroidal field through configurations satisfying the torque free condition, imposed by the presence of a poloidal field of dipolar form confined beneath the solar convection zone. It is found that initially stable field configurations diffuse into unstable configurations on time-scales of order a few x 108 yr. The results are similar to those of Tayler (1982) for a simpler field model without any dynamical constraints.  相似文献   

16.
Sturrock  P. A. 《Solar physics》1987,113(1-2):13-30
Solar Physics - This article is a very brief review and comparison of the observational properties of flares and theoretical concepts of models of flares, especially the concepts of magnetic...  相似文献   

17.
P. A. Sturrock 《Solar physics》1982,113(1-2):13-30
This article is a very brief review and comparison of the observational properties of flares and theoretical concepts of models of flares, especially the concepts of magnetic topology and its evolution. We examine the environmental aspects of flare behavior. Some of these aspects must be consequences of unknown processes occurring below the photosphere. Other aspects involve structures--such as filaments--that are closely related to flares. We then examine properties of flares to try to distinguish the different phases of energy release that can occur in the course of a flare. Finally we offer a schematic scenario and attempt to interpret these phases in terms of this scenario.  相似文献   

18.
The search for non thermal radio emission from clusters of galaxies is a powerful tool to investigate the existence of magnetic fields on such large scale. Unfortunately, such observations are scarce thus far, mainly because of the very faint large scale radio emission expected in clusters of galaxies. In the present contribution we will first review the status of the radio observations of clusters of galaxies, carried out with the aim of detecting large scale radio emission.We will then focus on the large scale radio emission detected at 327 MHz and 610 MHz in the Coma cluster of galaxies. The features of the detected radio emission suggest that a magnetic field with an intensity of the order of ~ 10–7 Gauss must be present on a scale of about 2 Mpc (forH o = 100km s –1 Mpc –1). The morphology of the radio emission is similar to that of the most recent X-ray images derived with ROSAT, and follows the distribution of the galaxies in the cluster. All these pieces of information will be taken into account in the discussion on the possible origin of this large scale magnetic field.  相似文献   

19.
Coronal magnetic fields   总被引:1,自引:0,他引:1  
The observational evidence on the strength of the coronal magnetic field above active regions is reviewed. Recent advances in observations and plasma theory are used to determine which data are the more reliable and to revise some earlier estimates of field strength. The results from the different techniques are found to be in general agreement, and the relation 279-01, 1.02 R/R 10 is consistent with all the data to within a factor of about 3.The National Center for Atmospheric Research is supported by the National Science Foundation.  相似文献   

20.
Photospheric and heliospheric magnetic fields   总被引:1,自引:0,他引:1  
Schrijver  Carolus J.  DeRosa  Marc L. 《Solar physics》2003,212(1):165-200

The magnetic field in the heliosphere evolves in response to the photospheric field at its base. This evolution, together with the rotation of the Sun, drives space weather through the continually changing conditions of the solar wind and the magnetic field embedded within it. We combine observations and simulations to investigate the sources of the heliospheric field from 1996 to 2001. Our algorithms assimilate SOHO/MDI magnetograms into a flux-dispersal model, showing the evolving field on the full sphere with an unprecedented duration of 5.5 yr and temporal resolution of 6 hr. We demonstrate that acoustic far-side imaging can be successfully used to estimate the location and magnitude of large active regions well before they become visible on the solar disk. The results from our assimilation model, complemented with a potential-field source-surface model for the coronal and inner-heliospheric magnetic fields, match Yohkoh/SXT and KPNO/He?10830 Å coronal hole boundaries quite well. Even subject to the simplification of a uniform, steady solar wind from the source surface outward, our model matches the polarity of the interplanetary magnetic field (IMF) at Earth ~3% of the time during the period 1997–2001 (independent of whether far-side acoustic data are incorporated into the simulation). We find that around cycle maximum, the IMF originates typically in a dozen disjoint regions. Whereas active regions are often ignored as a source for the IMF, the fraction of the IMF that connects to magnetic plage with absolute flux densities exceeding 50 Mx cm?2 increases from ?10% at cycle minimum up to 30–50% at cycle maximum, with even direct connections between sunspots and the heliosphere. For the overall heliospheric field, these fractions are ?1% to 20–30%, respectively. Two case studies based on high-resolution TRACE observations support the direct connection of the IMF to magnetic plage, and even to sunspots. Parallel to the data assimilation, we run a pure simulation in which active regions are injected based on random selection from parent distribution functions derived from solar data. The global properties inferred for the photospheric and heliospheric fields for these two models are in remarkable agreement, confirming earlier studies that no subtle flux-emergence patterns or field-dispersal properties are required of the solar dynamo beyond those that are included in the model in order to understand the large-scale solar and heliospheric fields.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号