首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in situ high pressure X-ray diffraction study on synthetic pure ilvaite powder has been performed using a diamond anvil cell. A phase transition from monoclinic to orthorhombic (Pbnm) has been observed at 2.25 Gpa, which can be described as a λ-transition.  相似文献   

2.
Summary Synthesis of Mn-bearing ilvaites, CaFe 2–x 2+ MnxFe3+ [Si2O7/O/(OH)], with 0 x 0.19, have been performed under hydrothermal conditions at 2 and 3 kbars, T = 300 -400°C and at oxygen fugacities defined by the Fe2O3/Fe3O4 - and the Ni/NiO -buffer. As shown by X-ray diffraction, the substitution of Fe2+ by Mn2+ decreases the monoclinic angle and causes a phase transition from monoclinic to orthorhombic at x = 0.19. The Fe-distribution has been determined by Mössbauer spectroscopy.
Synthese und Charakterisierung von Mn-haltigem Ilvait CaFe 2–x 2+ MnxFe3+ [Si2O7/O/(OH)]
Zusammenfassung Mn-haltiger Ilvait CaFe 2–x 2+ Mnx Fe3+ [Si2O7/O/(OH)] wurde unter hydrothermalen Bedingungen bei Drucken von 2 und 3 kbar, Temperaturen zwischen 300 und 400°C und bei Sauerstoff Fugazitäten, die durch Festkörperpuffer (Fe2O3/Fe3O4 und Ni/NiO) kontrolliert wurden, hergestellt. Röntgenbeugungsuntersuchungen zeigen, daß mit steigendem Mn-Einbau der monokline Winkel kleiner wird, und daß bei x = 0.19 ein Phasenübergang von der monoklinen zur orthorhombischen Struktur erfolgt. Die Fe-Verteilung wurde mit Mössbauer-Spektroskopie bestimmt.


With 4 Figures  相似文献   

3.
The dependence of the electronic and the crystallographic structure on temperature of synthetic Mnbearing ilvaites CaFe2+ 2-xMn2+ xFe3+ [Si2O7/O/OH] with 0≤x≤0.19 has been investigated. The change of the electronic structure was studied by 57Fe Mössbauer spectroscopy. The spectra show an increasing valence fluctuation rate between Fe2+ and Fe3+ in the double chain of edge-sharing octahedra with increasing temperature resulting in a mixed valent state of iron. The valence fluctuation rate is distinctly increased by the Mnsubstitution. The temperature of the crystallographic phase transition T x as studied by a high temperature Guinier method is distinctly lowered by the Mn-substitution (x = 0.0, T x=390K; x = 0.12, T x =370K; x = 0.19, T x=295K). The reasons for this behaviour are discussed in terms of Fe2 +, Fe3 + cation order-disorder, electronic relaxation rate, and relaxation of the lattice. In the monoclinic phase there is electron hopping between Fe2 +, Fe3 + pairs whereas in the orthorhombic phase there is extended electron delocalization via a narrow, d-band mechanism.  相似文献   

4.
Summary The mixed valent iron silicate ilvaite CaFe 2 2 +Fe3+ [Si2O7/O/(OH)] has been synthesized under hydrothermal conditions at temperatures between 300 and 500°C, pressures between 1.5 and 4 Kbars and oxygen fugacities controlled by the solid state buffers Fe3O4/Fe2O3, Fe/Fe3O4 and Ni/NiO. All these ilvaites are monoclinic (P21/a with cell parameters a0 = 13.0065 (9) Å, b0 = 8.8073 (7) Å, c0 = 5.8580 (4) Å, and = 90.332 (6)°. The quality of the samples has been checked by Mössbauer spectroscopy. Scanning electron microscopic pictures show small euhedral crystals with a size up to 30 .
Synthese und Charakterisierung des gemischt valenten Eisensilikates Ilvait, CaFe3 [Si2O7/ 0/(OH)]
Zusammenfassung Das gemischt valente Eisensilikat Ilvait CaFe 2 2 +Fe3+ [Si2O7/0/(OH)] wurde unter hydrothermalen Bedingungen bei Temperaturen zwischen 300 und 500 °C, Drucken zwischen 1,5 und 4,0 Kbar und bei Sauerstoff-Fugazitäten, die durch Festkörperpuffer (Fe3O4/Fe2O3, Fe/Fe3O4 and Ni/NiO) kontrolliert wurden, hergestellt. Diese Ilvaite sind alle monoklin mit den Zellparameters a0=13,0065 (9) Å, b0 = 8,8073 (7) Å, c0 = 5,8580 (4) Å und = 90,332 (6)°. Die Qualität der Proben wurde mit Mössbauer Spektroskopie überprüft. Rasterelektronenmikroskopische Aufnahmen zeigten idiomorphe Kristalle mit einer Größe bis 30 .


With 6 Figures  相似文献   

5.
6.
The temperature dependence of the absorption spectra of ilvaite, Ca(Fe2+,Fe3+)Fe2+Si2O8(OH), shows strongly one dimensional transport behaviour with no singularity at the Pnam-P21/a phase transition point near 335 K. Polarized single crystal transmission measurements were carried out between 300 K and 450 K in a frequency range between 600 and 23 000 cm−1. No Drude —absorption at low energies was found at any temperature. A macroscopic, thermodynamic model based on Landau-Ginzburg theory is given which accounts for the observed macroscopic properties of the structural phase transition and its coupling with the Fe2+-Fe3+ ordering. This ordering scheme is discussed on an atomistic level and compared with the behaviour of magnetite and trans-(CH) x .  相似文献   

7.
Mn3+-bearing piemontites and orthozoisites, Ca2(Al3-pMn3+ p)-(Si2O7/SiO4/O/OH), have been synthesized on the join Cz (p = 0.0)-Pm (p = 3.0) of the system CaO-Al2O3-(MnO·MnO2)-SiO2-H2O atP = 15 kb,T= 800 °C, and \(f_{O_2 } \) of the Mn2O3/MnO2 buffer. Pure Al-Mn3+-piemontites were obtained with 0.5≦p≦1.75, whereas atp=0.25 Mn3+-bearing orthozoisite (thulite) formed as single phase product. The limit of piemontite solid solubility is found near p=1.9 at the above conditions. Withp>1.9, the maximum piemontite coexisted with a new high pressure phase CMS-X1, a Ca-bearing braunite (Mn 0.2 2+ Ca0.8)Mn 6 3+ O8(SiO4), and quartz. Al-Mn3+-piemontite lattice constants (LC),b 0,c 0,V 0, increase with increasingp:
  相似文献   

8.
The distribution of Fe3+ and Ga3+ between the two tetrahedral sites in three synthetic melilites has been studied by using 57Fe Mössbauer spectroscopy. In the melilite, (Ca2Ga2SiO7)50 (Ca2Fe3+GaSiO7)50 (mol %), the distribution of Fe3+ and Ga3+ in T1 and T2 sites is apparently random, which can be explained in terms of the electrostatic valence rule. However in the melilites, (Ca2MgSi2O7)52 (Ca2Fe3+GaSiO7)42 (Ca2Ga2SiO7)6 and (Ca2MgSi2O7)62 (Ca2Fe3+GaSiO7)36 (Ca2Ga2SiO7)2 (mol %), Fe3+ shows preference for the more ionic T1 site and Ga3+ for the more covalent T2 site. If the electronegativity of Ga3+ is assumed to be larger than that of Fe3+, the mode of distribution of Fe3+ and Ga3+ can be explained in terms of our previous hypothesis that a large electronegativity induces a stronger preference for the more covalent T2 site.  相似文献   

9.
New equilibrium experiments have been performed in the 20–27 kbar range to determine the upper thermal stability limit of endmember deerite, Fe 12 2+ Fe 6 3+ [Si12O40](OH)10. In this pressure range, the maximum thermal stability limit is represented by the oxygen-conserving reaction: deerite(De)=9 ferrosilite(Fs)+3 magnetite(Mag)+3 quartz(Qtz)+5 H2O(W) (1). Under the oxygen fugacities of the Ni-NiO buffer the breakdown-reduction reaction: De=12 Fs+2 Mag+5 W+1/2 O2 (10) takes place at lower temperatures (e.g. T=63° at 27 kbar). The experimental brackets can be fitted using thermodynamic data for ferrosilite, magnetite and quartz from Berman (1988) and the following 1 bar, 298 K data for deerite (per gfw): Vo=55.74 J.bar-1, So=1670 J.K-1, H f o =-18334 kJ, =2.5x10-5K-1, =-0.18x10-5 bar-1. Using these data in conjunction with literature data on coesite, grunerite, minnesotaite, and greenalite, the P-T stability field of endmember deerite has been calculated for P s=P H 2O. This field is limited by 6 univariant oxygenconserving dehydration curves, from which three have positive dP/dT slopes, the other three negative slopes. The lower pressure end of the stability field of endmember deerite is thus located at an invariant point at 250±70°C and 10+-1.5 kbar. Deerite rich in the endmember can thus appear only in environments with geothermal gradients lower than 10°C/km and at pressures higher than about 10 kbar, which is in agreement with 4 out of 5 independent P-T estimates for known occurrences. The presence of such deerite places good constraints on minimum pressure and maximum temperature conditions. From log f O 2-T diagrams constructed with the same data base at different pressures, it appears that endmember deerite is, at temperatures near those of its upper stability limit, stable only over a narrow range of oxygen fugacities within the magnetite field. With decreasing temperatures, deerite becomes stable towards slightly higher oxygen fugacities but reaches the hematite field only at temperatures more than 200°C lower than the upper stability limit. This practically precludes the coexistence deerite-hematite with near-endmember deerite in natural environments.  相似文献   

10.
Summary Sonoraite, FeTeO3(OH)·H2O, is monoclinic,P 21/c, witha=10.984(2),b=10.268(2),c=7.917(2) Å, =108.49(2)°. For 8 formula units per cell the calculated density is 4.179(2) g/cm3; the observed value is 3.95(1) g/cm3. The Supper-Pace automated diffractometer was used to collect 1884 independent reflections which were corrected for absorption. The structure was determined by an automated symbolic addition procedure. It was refined to a residualR of 6.2% using anisotropic temperature factors for the cations and isotropic temperature factors for the oxygen atoms. Chains of octahedra about Fe extend along [101]; edge-sharing pairs of these octahedra are joined by corner sharing. The Fe–Fe distances across the shared edges are 3.05 and 3.20 Å, short enough to suggest magnetic interactions. All but one H2O are involved in the chains. The Te4+ ions have a pseudotetrahedral coordination, with three oxygen ions forming one face of the tetrahedron and the lone electron pair of Te occupying the fourth corner. The O–Te–O average bond angle is 95°. The Fe chains are tied together by Te–O bonds in all three dimensions.
Die Kristallstruktur von Sonorait, Fe3+Te4+O3(OH).H2O
Zusammenfassung Sonorait, FeTeO3(OH)·H2O, ist monoklin, P 21/c, mit den folgenden Zelldimensionen:a=10,984(2),b=10,268(2),c=7,917(2) Å, =108,49(2)°. Mit 8 Formel-Einheiten errechnet man eine Dichte von 4,179(2) g/cm3; die gemessene Dichte beträgt 3,95(1) g/cm3. Das Supper-Pace automatische Diffraktometer wurde zur Sammlung von 1884 unabhängigen Reflexen benutzt, welche für Absorption korrigiert wurden. Die Struktur wurde mit Hilfe eines vollständig automatischen Programms für symbolische Addition bestimmt. Mit anisotropen Temperaturfaktoren für die Kationen und mit isotropen Temperaturfaktoren für die Sauerstoff-Atome wurde ein Residuum von 6,2% erreicht. Ketten von Eisen-Oktaedern erstrecken sich entlang [101]; Oktaeder-Paare mit gemeinsamen Kanten sind über Eckenverknüpfung verbunden. Die Fe–Fe-Abstände über die gemeinsamen Kanten betragen 3,05 und 3,20 Å, kurz genug, um zu magnetischer Wechselwirkung führen zu können. Nur ein H2O-Molekül ist nicht Teil einer Kette. Die Te4+-Ionen befinden sich in pseudotetraedrischer Koordination; drei Sauerstoff-Ionen bilden eine Fläche des Tetraeders, die vierte Ecke wird durch das einsame Elektronenpaar von Te besetzt. Der Mittelwert des O–Te–O-Bindungswinkels beträgt 95° Die Fe-Ketten werden durch Te–O-Bindungen dreidimensional verbunden.


With 3 Figures  相似文献   

11.
Deerite, Fe 12 2+ Fe 6 3+ [Si12O40](OH)10, thus far known from ten localities in glaucophane schist terranes, was synthesized at water pressures of 20–25 kb and temperatures of 550–600 °C under the of the Ni/NiO buffer. The X-ray powder diagram, lattice constants and infrared spectrum of the synthetic phase are closely similar to those of the natural mineral. A solid solution series extends from this ferri-deerite end member to some 20 mole % of a hypothetical alumino-deerite, Fe 12 2+ Al 6 3+ [Si12O40](OH)10. The upper temperature breakdown of ferri-deerite to the assemblage ferrosilite +magnetite+quartz+water occurs at about 490 °C at 15 kb, and 610 °C at 25 kb fluid pressure for the of the Ni/NiO buffer. Extrapolation of these data to lower water pressures indicates that deerite can be a stable mineral only in very low-temperature, high-pressure environments.  相似文献   

12.
13.
14.
The phonon dispersions and vibrational density of state (VDoS) of the K2SiSi3O9-wadeite (Wd) have been calculated by the first-principles method using density functional perturbation theory. The vibrational frequencies at the Brillouin zone center are in good correspondence with the Raman and infrared experimental data. The calculated VDoS was then used in conjunction with a quasi-harmonic approximation to compute the isobaric heat capacity (C P ) and vibrational entropy ( $S_{298}^{0}$ ), yielding C P (T) = 469.4(6) ? 2.90(2) × 10 T ?0.5 ? 9.5(2) × 10 T ?2 + 1.36(3) × 10 T ?3 for the T range of 298–1,000 K and $S_{298}^{0}$  = 250.4 J mol?1 K?1. In comparison, these thermodynamic properties were calculated by a second method, the classic Kieffer’s lattice vibrational model. On the basis of the vibrational mode analysis facilitated by the first-principles simulation result, we developed a new Kieffer’s model for the Wd phase. This new Kieffer’s model yielded C P (T) = 475.9(6) ? 3.15(2) × 10 T ?0.5 – 8.8(2) × 10 T ?2 + 1.31(3) × 10 T ?3 for the T range of 298–1,000 K and $S_{298}^{0}$  = 249.5(40) J mol?1 K?1, which are in good agreement both with the results from our first method containing the component of the first-principles calculation and with some calorimetric measurements in the literature.  相似文献   

15.
Bulk and slab geometry optimizations and calculations of the electrostatic potential at the surface of both pyrophyllite [Al2Si4O10(OH)2] and talc [Mg3Si4O10(OH)2] were performed at Hartree–Fock and DFT level. In both pyrophyllite and talc cases, a modest (001) surface relaxation was observed, and the surface preserves the structural features of the crystal: in the case of pyrophyllite the tetrahedral and octahedral sheets are strongly distorted with respect to the ideal hexagonal symmetry (and basal oxygen are located at different heights along the direction normal to the basal plane), whereas the structure of talc deviates slightly from the ideal hexagonal symmetry (almost co-planar basal oxygen). The calculated distortions are fully consistent with those experimentally observed. Although the potentials at the surface of pyrophyllite and talc are of the same order of magnitude, large topological differences were observed, which could possibly be ascribed to the differences between the surface structures of the two minerals. Negative values of the potential are located above the basal oxygen and at the center of the tetrahedral ring; above silicon the potential is always positive. The value of the potential minimum above the center of the tetrahedral ring of pyrophyllite is ?0.05 V (at 2 Å from the surface), whereas in the case of talc the minimum is ?0.01 V, at 2.7 Å. In the case of pyrophyllite the minimum of potential above the higher basal oxygen is located at 1.1 Å and it has a value of ?1.25 V, whereas above the lower oxygen the value of the potential at the minimum is ?0.2 V, at 1.25 Å; the talc exhibits a minimum of ?0.75 V at 1.2 Å, above the basal oxygen.  相似文献   

16.
Drop calorimetric measurements of HT-H273 are reported for glassy and liquid albite and potassium tetrasilicate for the temperature interval 600–1500 K. Analysis of these observations as well as data for 13 other stable and supercooled silicate liquids suggests strongly that the isobaric heat capacities of stable and supercooled liquids are equal and thus temperature independent. Available evidence indicates that the isochoric heat capacities of liquid alkali silicates are also temperature independent within present experimental uncertainties.  相似文献   

17.
High-temperature x-ray powder diffraction study by the full pattern Rietveld method of orthorhombic CaGeO3 (Pbnm at ambient condition) perovskite confirms the previously observed phase transition at Tc=520 K. The measured volumetric thermal expansion coefficients are 3.1 x 10-5 (K-1) below Tc and 3.5x 10-5 (K-1) above Tc. The space group at T>Tc has been tentatively identified as Cmcm. Such a transition involves the disappearance of one of the two octahedral rotations in the (001) plane, and the doubling of the unit cell volume, with c axis unchanged. Although this transition should be of first order from symmetry considerations, the distortion of the Pbnm phase decreases continuously as the temperate approaches Tc and there is no observable volume discontinuity at Tc. The measured heat capacity places an upper limit on the enthalpy of transition of 50 J/mol, which is quite reasonable in terms of the crystallographic nature of this phase transition.A National Science Foundation Science and Technology Center  相似文献   

18.
Ephesite, Na(LiAl2) [Al2Si2O10] (OH)2, has been synthesized for the first time by hydrothermal treatment of a gel of requisite composition at 300≦T(° C)≦700 and \(P_{H_2 O}\) upto 35 kbar. At \(P_{H_2 O}\) between 7 and 35 kbar and above 500° C, only the 2M1 polytype is obtained. At lower temperatures and pressures, the 1M polytype crystallizes first, which then inverts to the 2M1 polytype with increasing run duration. The X-ray diffraction patterns of the 1M and 2M1 poly types can be indexed unambiguously on the basis of the space groups C2 and Cc, respectively. At its upper thermal stability limit, 2M1 ephesite decomposes according to the reaction (1) $$\begin{gathered} {\text{Na(LiAl}}_{\text{2}} {\text{) [Al}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{{\text{10}}} {\text{] (OH)}}_{\text{2}} \hfill \\ {\text{ephesite}} \hfill \\ {\text{ = Na[AlSiO}}_{\text{4}} {\text{] + LiAl[SiO}}_{\text{4}} {\text{] + }}\alpha {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}} {\text{ + H}}_{\text{2}} {\text{O}} \hfill \\ {\text{nepheline }}\alpha {\text{ - eucryptite corundum}} \hfill \\ \end{gathered}$$ Five reversal brackets for (1) have been established experimentally in the temperature range 590–750° C, at \(P_{H_2 O}\) between 400 and 2500 bars. The equilibrium constant, K, for this reaction may be expressed as (2) $$log K{\text{ = }}log f_{{\text{H}}_{\text{2}} O}^* = 7.5217 - 4388/T + 0.0234 (P - 1)T$$ where \(f_{H_2 O}^* = f_{H_2 O} (P,T)/f_{H_2 O}^0\) (1,T), with T given in degrees K, and P in bars. Combining these experimental data with known thermodynamic properties of the decomposition products in (1), the following standard state (1 bar, 298.15 K) thermodynamic data for ephesite were calculated: H f,298.15 0 =-6237372 J/mol, S 298.15 0 =300.455 J/K·mol, G 298.15 0 =-5851994 J/mol, and V 298.15 0 =13.1468 J/bar·mol.  相似文献   

19.
Magnetization and neutron diffraction measurements have been made on grunerite, Fe7Si8O22(OH)2, a monoclinic double-chain silicate with Fe2+ octahedral bands. The mineral orders antiferromagnetically at 47K into a collinear structure with a second transition at 8K to a canted arrangement. The magnetic susceptibility follows a Curie-Weiss Law above 120K, with a paramagnetic Curie temeprature ?p=67K. Magnetization measurements below 47K indicate a spin-flop or metamagnetic transition in an applied field of about 12KOe. Powder neutron diffraction measurements between 8–45K reveal that all the Fe2+ spins within an octahedral band are ferromagnetically coupled parallel to the b axis, with each band antiferromagnetically coupled to neighboring bands. Below 8K Fe2+ spins at the M1 and M4 sites are canted away from the b axis, whereas those at the M2 and M3 sites are not significantly affected. The ordered Fe2+ moment on the M4 site is substantially lower than those on the other sites, most likely indicating strong covalency effects, i.e. considerable spin transfer to neighboring oxygen atoms.  相似文献   

20.
利用尾矿砂制备镁铁氢氧化物实验研究   总被引:1,自引:0,他引:1  
以金川铜镍矿尾矿酸浸液为原料,根据矿物沉淀pH值区间的不同,分步分离Fe、Mg的沉淀物以及有价金属Al、Co、Ni、Cu的混合沉淀物,进而制备具有高附加值的Fe(OH)3和Mg(OH)2,同时富集Co、Ni、Cu等有价金属。结果表明,当溶液pH值为3.8时可沉淀分离出主要成分为施威特曼石(schwertmannite)的氢氧化铁前驱体,pH值达到9.8时沉淀富集出Al、Co、Ni、Cu的混合氢氧化物,随即得到只含有Mg离子的溶液。在60℃条件下,将施威特曼石在pH值为12的NaOH溶液中老化36h,可以得到Fe(OH)3。同时,以NaOH调节只含有Mg离子的溶液至pH值为12.4时可获得Mg(OH)2。本研究为金属矿山尾矿的资源化综合利用提供了新的思路与方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号