首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and dynamics of the ionosphere and plasmasphere at high solar activity under quiet geomagnetic conditions of June 2–3, 1979, and January 5–6, 1980, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The plasma drift velocity, determined by comparing the calculated and measured heights of the F 2 layer maximum (hmF2), and the correction of [N2] and [O2], found in the NRLMSISE-00 model, make it possible to coordinate the electron densities (NmF2) calculated at the hmF2 height and the measured anomalous variations in NmF2 over the Argentine Islands ionosonde as well as the calculated and measured NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that, if the interference of the diffusion velocities of O+(4S) and H+ ions is taken into account, the additional heating of plasmaspheric electrons leads to an increase in the flux of O+(4S) ions from the topside ionosphere to lower F 2 layer altitudes, as a result of which an anomalous nighttime increase in NmF2 6, observed on January 6, 1980, over Millstone Hill station, is mainly produced. The second component of the formation of anomalous night-time NmF2 is the plasma drift along the magnetic field caused by the neutral wind, which shifts O+(4S) ions to higher altitudes where the recombination rate of O+(4S) with N2 and O2 is lower and slows down a decrease in NmF2 in the course of time. It has been shown that the influence of electronically excited O+ ions and vibrationally excited N2 and O2 molecules on electron density (N e ) considerably differs under winter and summer conditions. This difference forms significant part of the winter anomaly in N e at heights of the F 2 region and topside ionosphere over Millstone Hill station.  相似文献   

2.
The structure and dynamics of the ionosphere and plasmasphere at low solar activity under quiet geomagnetic conditions on January 15–17, 1985, and July 10–13, 1986, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The detected correction of the model input parameters makes it possible to coordinate the measured and calculated anomalous variations in the electron density NmF2 at the height hmF2 of the ionospheric F2 layer over Argentine Islands ionosonde as well as the calculated and measured values of NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that vibrationally excited N2 and O2 molecules almost do not influence the formation of the winter anomaly under the conditions of low solar activity. A difference between the influence of electronically excited O+ on N e ions under winter and summer conditions forms not more than 11% of the N e winter anomaly event in the F 2 layer and topside ionosphere. The model without electronically excited O+ ions reduces the duration of the N e winter anomaly event. It has been shown that the seasonal variations in the composition of the neutral atmosphere form mainly the NmF2 winter anomaly event over the Millstone Hill radar at low solar activity.  相似文献   

3.
The behavior of the F2 layer at sunrise has been studied based on vertical-incidence ionospheric sounding data in Almaty (76°55′E, 43°15′N). Records with small amplitudes of electron density background fluctuations were selected in order to exactly estimate the onsets of a pronounced increase in the electron density at different altitudes. It has been indicated that the electron density growth rate is a function of altitude; in this case, the growth rate at the F2 layer maximum is much lower than such values at fixed altitudes of ~30–55 km below the layer maximum. The solar zenith angle (χ) and the blanketing layer thickness (h 0) at the beginning of a pronounced increase in the electron density at altitude h are linearly related to the h value, and these quantities vary within ~90° < χ < 100° and 180 km < h 0 < 260 km, respectively.  相似文献   

4.
We have analyzed the behavior of the F2 layer parameters during nighttime periods of enhanced electron concentration by the results of vertical sounding of the ionosphere carried out with five-minute periodicity in Almaty (76°55′ E, 43°15′ N) in 2001–2012. The results are obtained within the frameworks of the unified concept of different types of ionospheric plasma disturbances manifested as variations in the height and half-thickness of the layer accompanied by an increase and decrease of N m F2 at the moments of maximum compression and expansion of the layer. A good correlation is found between height h Am , which corresponds to the maximum increase, and layer peak height h m F, while h Am is always less than h m F. The difference between h Am and h m F linearly increases with increasing h m F. Whereas the difference is ~38 km for h m F = 280 km, it is ~54 km for h m F = 380 km. Additionally, the correlation is good between the increase in the electron concentration in the layer maximum ΔN m and the maximum enhancement at the fixed height ΔN; the electron concentration enhancement in the layer maximum is about two to three times lower than its maximum enhancement at the fixed height.  相似文献   

5.
Using model simulations, the morphological picture (revealed earlier) of the disturbances in the F 2 region of the equatorial ionosphere under quiet geomagnetic conditions (Q-disturbances) is interpreted. It is shown that the observed variations in the velocity of the vertical E × B plasma drift, related to the zonal E y component of the electric field, are responsible for the formation of Q-disturbances. The plasma recombination at altitudes of the lower part of the F 2 region and the dependence of the rate of this process on heliogeophysical conditions compose the mechanism of Q-disturbance formation at night. The daytime positive Q-disturbances are caused exclusively by a decrease in the upward E × B drift, and this type of disturbances could be related to the known phenomenon of counter electrojet. Possible causes of formation of the daytime negative Q-disturbances are discussed.  相似文献   

6.
The 40-year period of observations of short-term variations (with characteristic times of up to 1–2 days) in the critical frequency of the ionospheric F2 layer (foF2) is analyzed. The continuous (with a step of 1 h) series of fluctuations (F) of the foF2 critical frequency (with eliminated daily variations) has been calculated using the hourly variations in foF2 at Moscow stations. The fractal dimension (FRH) of the fluctuations, characterizing short-term variations in foF2, has been determined and analyzed on a 30-day interval, using the Higuchi method. It has been established that FRH estimates substantially change in time. The 11-year cycle, which is in antiphase with the solar cycle, and the total annual and semiannual variations, similar to the variations observed in the normalized critical frequency of the E region and in the electron density of the D region, are clearly defined in these changes. Thus, the parameters of fast variations in the ionospheric F2 layer are affected by the phase of the 11-year solar cycle and by the position of the Earth in the orbit or seasonal variations in the atmosphere.  相似文献   

7.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.The forest was a net sink of atmospheric CO2 and sequestered ?449 g C·m?2 during the study period; ?278 and ?171 gC·m?2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were ?1332, ?1294 g C·m?2. and 1054, 1124 g C·m?2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.  相似文献   

8.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

9.
The relation of the long-period variations in the midnight and noon values of the critical frequency of the ionospheric F 2 layer at three midlatitude stations (Irkutsk, Moscow, and Boulder) to the daily mean index of geomagnetic activity in years of different solar activity has been studied. It has been found that the correlation coefficients between the above parameters depend on time of day, season, and solar activity level. The correlation coefficients are higher at night than in the daytime, especially at low solar activity. The highest absolute values of the correlation coefficient most often appear during equinoxes: April–May and September–October. It has been shown that the variability of the critical frequencies of the midlatitude ionospheric F 2 layer depends not only on geomagnetic activity but also (to a considerable degree) on the effect of the lower atmosphere.  相似文献   

10.
The behavior of the vertical structure of the ionospheric F2 layer, including the variations in the heights of the maximum and bottom of the layer, its half-thickness, and electron content at some fixed heights during postmidnight enhancements in the electron density at the F2 layer maximum (NmF2), has been studied based on the data of the ionospheric vertical sounding, conducted in Alma-Ata (76°55′ E, 43°15′ N) in 2005–2006. The analysis of the amplitude and phase relationships between the measured parameters of the layer made it possible to qualitatively complete the existing concepts of the mechanisms by which the discussed effect is maintained. It is shown that the accelerated decrease in the electron density of the layer within a short time interval preceding the beginning of the postmidnight increase in NmF2 is governed not only by recombination processes but also by the plasma redistribution over the increasing thickness of the layer. The regularly observed effect of the delay in the moment of reversal in the motion direction of the layer bottom relative to the corresponding moment for the layer maximum made it possible to conclude that the meridional wind asynchronously reverses its direction from the poleward daytime to the equatorward nighttime in the entire layer: the direction changes later with decreasing height.  相似文献   

11.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

12.
The consideration of the relation between the daytime and nighttime values of the critical frequency F2, foF2 of the ionospheric F2 layer, started in the previous publication of the authors, is continued. The main regularities in variations in the correlation coefficient R(foF2) characterizing this relation are confirmed using larger statistical material (more ionospheric stations and longer observational series). Long-term trends in the R(foF2) value are found: at all stations the negative value of R(foF2) increases with time after 1980.  相似文献   

13.
We studied the effects of expected end-of-the-century pCO2 (1000 ppm) on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp. PCC7002 during the lag, exponential, and stationary growth phases. Elevated pCO2 significantly stimulated growth, and enhanced the maximum cell density during the stationary phase. Under ambient pCO2 conditions, the lag phase lasted for 6 days, while elevated pCO2 shortened the lag phase to two days and extended the exponential phase by four days. The elevated pCO2 increased photosynthesis levels during the lag and exponential phases, but reduced them during the stationary phase. Moreover, the elevated pCO2 reduced the saturated growth light (Ik) and increased the light utilization efficiency (α) during the exponential and stationary phases, and elevated the phycobilisome:chlorophyll a (Chl a) ratio. Furthermore, the elevated pCO2 reduced the particulate organic carbon (POC):Chl a and particulate organic nitrogen (PON):Chl a ratios during the lag and stationary phases, but enhanced them during the exponential phase. Overall, Synechococcus showed differential physiological responses to elevated pCO2 during different growth phases, thus providing insight into previous studies that focused on only the exponential phase, which may have biased the results relative to the effects of elevated pCO2 in ecology or aquaculture.  相似文献   

14.
This study uses macroseismic data and wave equations to solve the problem of ultra long propagation of felt ground motion (over 9000 km from the epicenter) due to the Sea-of-Okhotsk earthquake. We show that the principal mechanism of this phenomenon could be excitation of a previously unknown standing radial wave as a mode of the Earth’s free oscillations, 0S0, due to the superposition of an incident and a reflected spherical P wave in the epicentral area of the Sea-of-Okhotsk earthquake. The standing wave generates slowly attenuating P waves that travel over the earth’s surface that act as carrying waves; when superposed on these, direct body waves acquire the ability to travel over great distances. We show previously unknown parameters of the radial mode 0S0 for the initial phase of earth deformation due to the large deep-focus earthquake. We used data on the Sea-of-Okhotsk and Bolivian earthquakes to show that large deep-focus earthquakes can excite free oscillations of the Earth that are not only recorded by instrumental means, but are also felt by people, with the amplification of the macroseismic effect being directly related to the phenomenon of resonance for multistory buildings.  相似文献   

15.
Results of the study of the behavior of the F 2 region and topside ionosphere during the magnetic storm on November 7–10, 2004, which was a superposition of two sequent Severe magnetic disturbances (Kp = 9–) are presented. The observations were conducted by the incoherent scatter radar at Kharkov. Considerable effects of a negative ionospheric disturbance are registered, including a decrease in the electron density in the F 2-layer maximum by a factor of 6–7 and of the total electron content up to a height of 1000 km by a factor of 2, a lifting up of the ionospheric F 2 layer by 300 km at night and by 150–180 km in the daytime, unusual nighttime heating of the plasma with an increase of the ion and electron temperatures up to 2000 and 3000 K, respectively, and a decrease in the relative density of hydrogen ions N(H+)/N e by a factor of up to 3.5 because of the emptying of the magnetic flux tube passing over Kharkov. The effects usually observed in the high-latitude ionosphere, including the coherent echoes, are detected during the main phase of the storm. The results obtained manifest a shift of the large-scale structures of the high-latitude ionosphere (the auroral oval, main ionospheric trough, hot zone, etc.) down to latitudes close to the latitude of the Kharkov radar.  相似文献   

16.
Using the foF2 database obtained from satellites and ground-based ionospheric stations, we have constructed a global empirical model of the critical frequency of the ionospheric F2-layer (SDMF2—Satellite and Digisonde Data Model of the F2 layer) for quiet geomagnetic conditions (Kp < 3). The input parameters of this model are the geographical coordinates, UT, day, month, year, and the integral index F10.7 (day, τ = 0.96) of solar activity for a given day. The SDMF2 model was based on the Legendre method for the spatial expansion of foF2 monthly medians to 12 in latitude and 8 in longitude of spherical harmonics. The resulting spatial coefficients have been expanded by the Fourier method in three spherical harmonics with respect to UT. The effect of the saturation of critical frequency of the ionospheric F2-layer at high solar activity was described in the SDMF2 model by foF2 as a logarithmic function of F10.7 (day, τ = 0.96). The difference between the SDMF2 and IRI models is a maximum at low solar activity as well as in the Southern Hemisphere and in the oceans. The testing on the basis of ground-based and satellite data has indicated that the SDMF2 model is more accurate than the IRI model.  相似文献   

17.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   

18.
The dependence of the zonal geomagnetic indices (AE, Ap, Kp, Kn, and Dst) on the solar wind parameters (the electric field E y component, dynamic pressure P d and IMF irregularity σB) has been studied for two types of events: magnetic clouds and high-speed streams. Based on the empirical relationships, it has been established that the AE, Ap, Kp, and Kn indices are directly proportional to the E y value at E y < 12 mV m?1 and are inversely proportional to this value at E y > 12 mV m?1 for the first-type events. On the contrary, the dependence of Dst on E y is monotonous nonlinear. A linear dependence of all geomagnetic indices on E y is typical of the second-type events. It has been indicated that the specific features of geoeffectiveness of magnetic clouds and high-speed solar wind streams are caused by the dependence of the electric field potential across the polar cap on the electric field, solar wind dynamic pressure, and IMF fluctuations.  相似文献   

19.
The seasonal cycle of the main lunar tidal constituent M 2 is studied globally by an analysis of a high-resolution ocean circulation and tide model (STORMTIDE) simulation, of 19 years of satellite altimeter data, and of multiyear tide-gauge records. The barotropic seasonal tidal variability is dominant in coastal and polar regions with relative changes of the tidal amplitude of 5–10 %. A comparison with the observations shows that the ocean circulation and tide model captures the seasonal pattern of the M 2 tide reasonably well. There are two main processes leading to the seasonal variability in the barotropic tide: First, seasonal changes in stratification on the continental shelf affect the vertical profile of eddy viscosity and, in turn, the vertical current profile. Second, the frictional effect between sea-ice and the surface ocean layer leads to seasonally varying tidal transport. We estimate from the model simulation that the M 2 tidal energy dissipation at the sea surface varies seasonally in the Arctic (ocean regions north of 60°N) between 2 and 34 GW, whereas in the Southern Ocean, it varies between 0.5 and 2 GW. The M 2 internal tide is mainly affected by stratification, and the induced modified phase speed of the internal waves leads to amplitude differences in the surface tide signal of 0.005–0.0150 m. The seasonal signals of the M 2 surface tide are large compared to the accuracy demands of satellite altimetry and gravity observations and emphasize the importance to consider seasonal tidal variability in the correction processes of satellite data.  相似文献   

20.
The occurrence probabilities of the first and second anomalous nighttime local maximums in the diurnal variations in the electron density at a maximum of the ionospheric F 2 layer (NmF2) in the region where the crest (hump) of the equatorial anomaly originates in the northern geographic hemisphere have been studied using the data of the stations for vertical sounding of the ionosphere (Paramaribo, Dakar, Quagadougou, Ahmedabad, Delhi, Calcutta, Chongoing, Guangzhou, Taipei, Chung-Li, Okinawa, Yamagawa, Panama, and Bogota) from 1957 to 2004. It has been demonstrated that the anomalous nighttime NmF2 maximums are least frequently formed at ~53° geomagnetic longitude. The calculations have indicated that the studied probabilities are independent of solar activity. Geomagnetic activity weakly affects the rate of occurrence of the first nighttime NmF2 maximum at geomagnetic longitudes of approximately 140° to 358°. At geomagnetic longitudes of approximately 16° to 70° (i.e., in the longitudinal zone of a decreased occurrence frequency of anomalous nighttime maximums), the occurrence probability of the first anomalous nighttime NmF2 maximum under geomagnetically quiet conditions is pronouncedly lower than under geomagnetically disturbed conditions. The dependence of the occurrence probabilities of the first and second anomalous nighttime NmF2 maximums on the month number in a year has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号