首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
In order to assess the importance of different pollution sources for the increase in element concentration and accumulation, historical changes in selected elements were studied in the annually laminated sediment of Lake Korttajärvi in Central Finland (62°20′N; 25°41′E). The sediment chronology based on varve counting (256 BC to AD 2005) provided a unique opportunity to explore and date signals of metal emissions, including the ancient metallurgical activities of the Roman Empire at the beginning of the Current Era. Records of this kind are mostly lacking in Finland and northernmost Europe. The stratigraphic sequence of element concentrations did not reflect any major changes in the lake, but changes in element accumulation rates provided distinct pollution signals caused by airborne fallout, catchment erosion, and to some extent municipal wastewater loading. The maximum bulk sedimentation recorded in the twentieth century was 11-fold and organic sedimentation 4-fold higher than the mean background sedimentation rate (256 BC to AD 1019). The increase in the accumulation rates of the majority of the elements, such as Cd, Sn, Pb, Si, Ni, B, Cu, Zn, Sr, Na, K, Sb, Ca, Cr, U and Mg, in descending order, was at least equal to that of bulk sedimentation or much greater, especially for Cd, Sn, and Pb. Changes in the accumulation of Co, Fe, Mn, Mo and As were small and mainly followed those of organic sedimentation. The earliest pollution signals were those of Pb recorded in AD 1055–1141. A weak signal of Pb pollution from the Roman Era was detected in metal concentrations, but this could not be confirmed by the accumulation rate data for Pb.  相似文献   

2.
An 11.6 m long continuous succession of annually laminated sediments from Lake Korttajärvi in central Finland was investigated for the isotopic composition of carbon and hydrogen in organic matter. The sequence covers a time period of 9590 years, and the varve chronology has been thoroughly described in earlier studies. From 7100 to 4400 BC the lake was part of the Ancient Lake Päijänne, but in 4400 BC it became separated and formed the present independent lake system. Two organic fractions were investigated. One fraction obtained by HCl-treatment was analyzed for δ13C and another HCl-HF-digested organic fraction was analyzed for both δ13C and δD. The isotopic data were compared to atomic C/N ratios, carbon contents, diatom-inferred pH values and other environmental parameters. The diatom-inferred pH values and organic carbon contents provide evidence for a long-term change towards more acidic conditions and lower productivity in Lake Korttajärvi. The inferred pH values decrease from 7.0 to 6.1, followed by a slight increase during the last millennia. Variations in pH are accompanied by an increase in the δ13CHCl-HF values of organic matter from ?31.6 to $-29.2\permilleAn 11.6 m long continuous succession of annually laminated sediments from Lake Korttaj?rvi in central Finland was investigated for the isotopic composition of carbon and hydrogen in organic matter. The sequence covers a time period of 9590 years, and the varve chronology has been thoroughly described in earlier studies. From 7100 to 4400 BC the lake was part of the Ancient Lake P?ij?nne, but in 4400 BC it became separated and formed the present independent lake system. Two organic fractions were investigated. One fraction obtained by HCl-treatment was analyzed for δ13C and another HCl-HF-digested organic fraction was analyzed for both δ13C and δD. The isotopic data were compared to atomic C/N ratios, carbon contents, diatom-inferred pH values and other environmental parameters. The diatom-inferred pH values and organic carbon contents provide evidence for a long-term change towards more acidic conditions and lower productivity in Lake Korttaj?rvi. The inferred pH values decrease from 7.0 to 6.1, followed by a slight increase during the last millennia. Variations in pH are accompanied by an increase in the δ13CHCl-HF values of organic matter from −31.6 to , followed by a subtle decrease to . The changes in pH and δ13CHCl-HF are closely related (r = − 0.91, P < 0.01), and apparently reflect changing environmental conditions in the lake and in its catchment area. δD values show a marked shift to higher values during the early Holocene, which may be partly related to a climatic amelioration leading to the Holocene Climatic Optimum in 6000–2500 BC. The Medieval Warm Period in AD 980–1250 is associated with a local maximum in δD, lending support for a significant warming during that time.  相似文献   

3.
We inferred past climate conditions from the δ13C and δ15N of organic matter (OM) in a sediment core (DP-2011-02) from the sub-alpine Daping Swamp, in the western Nanling Mountains, South China. In the study region, a 1000-m increase in altitude results in a ~0.75‰ decrease in δ13C and a ~2.2‰ increase in δ15N. Organic carbon stable isotope (δ13C) values of the dominant modern vegetation species, surface soils, and the core samples taken in the swamp exhibit a strong terrestrial C3 plant signature. Comprehensive analysis of the core indicates both terrestrial and aquatic sources contribute to the OM in sediment. Temperature and precipitation are most likely the critical factors that influence δ13C: warm and wet conditions favor lower δ13C, whereas a dry and cool climate leads to higher δ13C values. Higher δ15N values may result from greater water depth and increased primary productivity, promoted by large inputs of dissolved inorganic nitrogen, induced by high surface runoff. Lower δ15N values are associated with lower lake stage and reduced productivity, under drier conditions. Therefore, stratigraphic shifts in these stable isotopes were used to infer past regional climate. Measures of δ13C and δ15N in deglacial deposits, in combination with total organic carbon (TOC) and nitrogen (TN) concentrations, the TOC/TN ratio, coarse silt and sand fractions, dry bulk density and low-frequency mass magnetic susceptibility, reveal two dry and cold events at 15,400–14,500 and 13,000–11,000 cal a BP, which correspond to Heinrich event 1 and the Younger Dryas, respectively. A pronounced warm and wet period that occurred between those dry episodes, from 14,500 to 13,000 cal a BP, corresponds to the Bølling–Allerød. The δ13C and δ15N data, however, do not reflect a warm and wet early Holocene. The Holocene optimum occurred between ~8000 and 6000 cal a BP, which is different from inferences from the nearby Dongge cave stalagmite δ18O record, but consistent with our previous results. This study contributes to our understanding of climate-related influences on δ13C and δ15N in OM of lake sediments in South China.  相似文献   

4.
We used elemental carbon, nitrogen, phosphorus and hydrogen ratios (C/N, N/P and H/C) with total organic carbon (TOC) and total phosphorus (TP) as well as stable carbon and nitrogen isotopes (δ13C and δ15N) to investigate the source and depositional conditions of organic matter in sediments from Zeekoevlei, the largest freshwater lake in South Africa. Typical C/N (10–12), H/C ratios (≥1.7) and δ13Corganic values (−22 to −19‰) together with the increase in TOC concentration indicate elevated primary productivity in lower middle (18–22 cm) and top (0–8 cm) sections of the sediment cores. Seepage of nutrients from a nearby waste water treatment plant, rapid urbanization and heavily fertilized farming in the catchments are responsible for the increased productivity. Consistent with this, measured δ15Norganic values (∼11‰) indicate increased raw sewage input towards the top-section of the core. Although cyanobacterial blooms are evident from the low δ15N values (∼3‰) in mid-section of the core, they did not outnumber the phytoplankton population. Low N/P ratio (∼0) and high TP (100–2,200 mg l−1) support cyanobacterial growth under N limited condition, and insignificant input of macrophytes towards the organic matter pool. Dredging in 1983, caused sub-aerial exposure of the suspended and surface sediments, and affected organic matter preservation in the upper mid-section (12–14 cm) of the core.  相似文献   

5.
Historically, the Sanpoil River, Washington (USA) produced spawning runs of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (O. mykiss). Lake Roberta is connected to the Sanpoil River and local oral history suggests it may have supported anadromous sockeye salmon (O. nerka) until the completion of Grand Coulee Dam in the 1940s. Post-spawning mortality of anadromous salmon provides large pulses of marine-derived nutrients to aquatic and terrestrial ecosystems in the vicinity of spawning sites. Unique isotopic ratios of these marine-derived nutrients are often transferred to freshwater algae and archived in lake sediments. However, marine-derived isotope signatures may be overpowered by large inputs of other nutrient sources such as agricultural fertilizers, reactive nitrogen deposition, nitrogen fixation, or poor trophic transfer to freshwater algae. We compared nitrogen and sulfur isotope compositions for pre-1940 and post-1940 sediments to those collected from a control lake with no history of anadromy to investigate the possible historic presence of anadromous salmon in Lake Roberta. We also analyzed carbon isotopes, carbon:nitrogen ratios, and sediment accumulation rates to determine if changes in the lake sediments resulted from eutrophication rather than salmon exclusion. If sockeye did spawn in Lake Roberta historically, and if excessive nitrogen inputs did not overpower the marine-derived signal, we would expect pre-1940 sediment organic matter isotope compositions indicative of the large pulses of marine nutrients from decomposing salmon carcasses. Isotope results and land use in the Lake Roberta watershed present no conclusive evidence to support anecdotal accounts of anadromy. There is some evidence to suggest that marine-derived nutrients transferred to riparian communities within the lake’s watershed may have moved downstream to the lake. However, most of the evidence suggests eutrophication and a switch to increased autochthonous productivity are the main causes of changes in the lake sediment isotope composition.  相似文献   

6.
Sediment core PI-6 from Lake Petén Itzá, Guatemala, possesses an ~85-ka record of climate and environmental change from lowland Central America. Variations in sediment lithology suggest large and abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. We measured stable carbon isotope ratios of total organic carbon and long-chain n-alkanes from the core, the latter representing a largely allochthonous (terrestrial) source of organic matter, to reveal past shifts in the relative proportion of C3–C4 terrestrial biomass. We sought to test whether stable carbon isotope results were consistent with other paleoclimate proxies measured in the PI-6 core, and if extraction and isotope analysis of n-alkanes is warranted. The largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the last glacial maximum indicate moderate precipitation with little fluctuation. The deglacial was a period of pronounced climate variability, e.g. a relatively warm and moist Bølling–Allerød, but a cool and dry Younger Dryas. Arid periods of the deglacial were inferred from samples with high δ13C values in total organic carbon, which reflect times of greater proportions of C4 plants. These inferences are supported by stable isotope measurements on ostracod shells and relative abundance of grass pollen from the same depths in core PI-6. Similar trends in carbon stable isotopes measured on bulk organic carbon and n-alkanes suggest that carbon isotope measures on bulk organic carbon in sediments from this lake are sufficient to infer past climate-driven shifts in local vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号