首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought is one of the major natural disasters occurring in China and causes severe impacts on agricultural production and food security. Therefore, agricultural drought vulnerability assessment has an important significance for reducing regional agricultural drought losses and drought disaster risks. In view of agricultural drought vulnerability assessment with the characteristics of multiple factors and uncertainty, we applied the fuzzy comprehensive evaluation framework to agricultural drought vulnerability model. The agricultural drought vulnerability assessment model was constructed based on the multi-layer and multi-index fuzzy clustering iterative method, which can better reveal the drought vulnerability (including sensitivity and adaptation capacity). Furthermore, the cycle iterative algorithm was used to obtain the optimal index weight vector of a given accuracy by setting the objective function. It provides a new approach to weight determination of agricultural drought vulnerability assessment. In this study, agricultural drought vulnerability of 65 cities (as well as leagues and states) in the Yellow River basin was investigated using a fuzzy clustering iterative model and visualized by using GIS technique. The results showed clear differences and regularities among the spatial distribution of agricultural drought vulnerability of different regions. A large number of the regions in the basin consisted of those exhibiting high to very high vulnerability and were mainly distributed throughout Qinghai, Gansu, northern Shaanxi, and southern Shanxi, accounting for 46 % of the total assessment units. However, the regions exhibiting very high vulnerability were not significantly affected by droughts. Most of the regions exhibiting moderate vulnerability (21.5 % of the assessment units) were mainly concentrated among agricultural irrigation areas, where agriculture is highly sensitive to droughts, and drought occurrence in these regions will likely cause heavy losses in the future. The regions exhibiting slight to low vulnerability were relatively concentrated, accounting for 32.3 % of the assessment units, and were mainly distributed in the plains of the lower reaches of the Yellow River, where the economy was rather well developed and the agricultural production conditions were relatively stronger.  相似文献   

2.
Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study   总被引:14,自引:6,他引:14  
Recent drought events in the United States and the magnitude of drought losses indicate the continuing vulnerability of the country to drought. Until recently, drought management in many states, including Nebraska, has been largely response oriented with little or no attention to mitigation and preparedness. In 1998, Nebraska began to revise its drought plan in order to place more emphasis on mitigation. One of the main aspects of drought mitigation and planning is the assessment of who and what is vulnerable and why. This paper presents a method for spatial, Geographic Information Systems-based assessment of agricultural drought vulnerability in Nebraska. It was hypothesized that the key biophysical and social factors that define agricultural drought vulnerability were climate, soils, land use, and access to irrigation. The framework for derivation of an agricultural drought vulnerability map was created through development of a numerical weighting scheme to evaluate the drought potential of the classes within each factor. The results indicate that the most vulnerable areas to agricultural drought were non-irrigatedcropland and rangeland on sandy soils, located in areas with a very high probability of seasonal crop moisture deficiency. The identification of drought vulnerability is an essential step in addressing the issue of drought vulnerability in the state and can lead to mitigation-oriented drought management.  相似文献   

3.
模拟作物适宜生长区的时空分布是分析气候变化对作物生长影响、提高作物生长适应能力的重要内容。选择影响主要粮食作物(小麦、玉米和水稻)生长的气候要素,结合地表土壤和地面高程要素与农业观测站数据,模拟和分析1953—2012年主要粮食作物适宜生长区的变动,评估气候变化下作物的适应能力。研究发现:(1)60年来3种粮食作物适宜生长区对气候变化响应程度从大到小依次是小麦、水稻和玉米。(2)同一时空尺度上,主要粮食作物适宜生长类型区在南方农区较北方农区多样化,在山地较盆地多样化,在高原较平原多样化。(3)小麦生长适应气候变化的能力在多数农区略有上升。玉米生长的适应能力在北方和南方农区分别略微提高和下降。水稻生长的适应能力在长江中下游区、西南区和华南区相对稳定,在黄淮海区和东北区分别下降和提高。(4)60年来,主要粮食作物综合生长适应气候变化的能力在黄淮海区和长江中下游区下降,在其余农区升高。(5)玉米和水稻适宜生长区分别与播种面积和作物产量显著相关,这为模拟未来不同气候情景下二者适宜生长区的分布提供了可行性。小麦适宜生长区与播种面积和产量均不显著相关,未来需要考虑更多因素精准识别小麦适宜生长区,以便更为有效地提高小麦生长对气候变化的适应能力。  相似文献   

4.
Drought, a frequent environmental disaster in the monsoon region of east China, significantly affects the agricultural economy. In recent years, researchers have emphasised drought risk management. This paper presents a preliminary method to analyse the risk of agricultural drought with regard to the loss of three main crops in individual prefecture-level cities in the monsoon region of east China. In this study, the agricultural drought risk is assessed by developing the index of consecutive rainless days and establishing loss rate curves based on the historical drought data from 1995 to 2008. The results show that the North China is seriously affected by drought hazard. Northeast China is the most sensitive to drought due to its large sown crop areas and weak irrigation. Approximately 11 % of the cities are in the extreme risk category; this category includes 26 % of the cultivated land area and 11 % of the total crop yields in the region. Twenty-three per cent of the cities, accounting for 28.5 % of the total cultivated land area and 26.4 % of the crop yields of the study area, are in high-risk areas, and 77 % of the cities with high and extreme risk levels are distributed in North and Northeast China. Moreover, 64 % of the cities in the monsoon region of East China are in moderate- and low-risk levels. These cities are primarily located south of the Yangtze River. In conclusion, minimising the risk of agricultural drought must be emphasised in northern China because of the high level of risk.  相似文献   

5.
Risk assessment to China’s agricultural drought disaster in county unit   总被引:14,自引:7,他引:7  
Hao  Lu  Zhang  Xiaoyu  Liu  Shoudong 《Natural Hazards》2012,61(2):785-801
China faces drought disaster risk under the changing climate. Risk analysis is a suitable approach in order to design ex-ante measure able to anticipate effects of drought on agricultural production. In this article, with the support of historic drought disaster data from 583 agro-meteorological observations (1991–2009), a risk analysis method based on information diffusion theory was applied to create a new drought risk analysis model, and the risk of China’s agriculture drought disaster was evaluated on higher spatial resolution of county unit. The results show that in more than three hundred counties of China, risk probability was biyearly or annually when Drought Affected Index (DAI) was over 5%. When DAI was up to 40%, more than one hundred counties were prone to drought disaster annually or once every 5 years. This showed that the impact of drought disaster on China’s agriculture, whether in frequency or intensity, was large. With the different level of DAI, China’s agricultural drought risk pattern showed variable pattern characteristics. When DAI was low, the distribution of county agricultural drought risk in China presented the East–West pattern of differentiation, and high risk mainly lied in the eastern, low risk mainly in the western. On the other hand, when DAI was high, the distribution of county risk appeared a pattern of high in center, and the north areas higher than the south, increased gradually from southwest to northeast. Drought risk presents a clear zonal differentiation that may be result from stepped topography, different precipitation and hazard-affected bodies. Spread of high value area of drought risk in northern may be related to the southeast monsoon and ecological degradation in northern Ecotone.  相似文献   

6.
Simulating the temporal-spatial distribution of areas suitable for crops is an important part of analyzing the effects of climate change on crop growth, reducing the vulnerability of crop growth, and assessing the adaptability of crop growth to climate change. This study selected climate factors that affect the growth of wheat, maize and rice, and it combined surface soil and ground elevation factors as environment variables, as well as data from agricultural observation stations as species variables. The MaxEnt ecological model was used to identify suitable areas for these three crops during the period of 1953-2012. The areas suitable for the three crops were analyzed to determine the temporal-spatial distribution of major food crops and to estimate the difference in crop growth adaptability under climate change. The results showed the following: The response to climate change of the areas suitable for food crops could be ranked from strongest to weakest as follows: wheat, rice, and maize. On the same space-time scale, for the growth of wheat and rice, the southern agricultural regions, mountainous areas and plateaus were relatively unsuitable for a wider variety of crops than the northern agricultural regions, plains and basins. The adaptability of wheat increased in the major agricultural regions slightly. The adaptability of maize increased in the northern agricultural regions and decreased in the southern agricultural regions, respectively. The adaptability of rice was stable in the southern agricultural regions, and it decreased in the Huang-Huai-Hai region and increased in the northeastern region. Over 60 years, the ability of the major food crops to adapt to climate change increased in the northeast region, Gansu-Xinjiang region, Southwest region and Loess Plateau region, but the adaptability of major food crops decreased in the Huang-Huai-Hai region and the Mid-and-Lower Reaches of the Yangtze River. The suitable areas of maize and rice were significantly correlated with planting areas and yields, respectively, which provided feasibility for simulating the distribution of suitable areas on maize and rice in different climate scenarios in the future. The suitable area of wheat is not significantly related to the planting area and yield. In the future, we will take more factors to model the suitable area of wheat accurately.  相似文献   

7.
Kim  Ji Eun  Yu  Jisoo  Ryu  Jae-Hee  Lee  Joo-Heon  Kim  Tae-Woong 《Natural Hazards》2021,109(1):707-724

Due to the complex characteristics of drought, drought risk needs to be quantified by combining drought vulnerability and drought hazard. Recently, the major focus in drought vulnerability has been on how to calculate the weights of indicators to comprehensively quantify drought risk. In this study, principal component analysis (PCA), a Gaussian mixture model (GMM), and the equal-weighting method (EWM) were applied to objectively determine the weights for drought vulnerability assessment in Chungcheong Province, located in the west-central part of South Korea. The PCA provided larger weights for agricultural and industrial factors, whereas the GMM computed larger weights for agricultural factors than did the EWM. The drought risk was assessed by combining the drought vulnerability index (DVI) and the drought hazard index (DHI). Based on the DVI, the most vulnerable region was CCN9 in the northwestern part of the province, whereas the most drought-prone region based on the DHI was CCN12 in the southwest. Considering both DVI and DHI, the regions with the highest risk were CCN12 and CCN10 in the southern part of the province. Using the proposed PCA and GMM, we validated drought vulnerability using objective weighting methods and assessed comprehensive drought risk considering both meteorological hazard and socioeconomic vulnerability.

  相似文献   

8.
The recurrent flooding during monsoon and subsequent waterlogging in the northern Bihar plains and the magnitude of losses due to these hazards indicate the continuing vulnerability of the region to flood and waterlogging. Management of floods and waterlogging hazards in highly flood-prone regions of India, including Bihar state has been largely response oriented with little or no attention to mitigation and preparedness. This paper presents a method for spatial, Geographic Information Systems-based assessment of flood and waterlogging vulnerability and risk in northern Bihar plains. Multitemporal satellite data was used to evaluate the area statistics and dynamics of waterlogging over the period from 1975 to 2008. The flood proneness is evaluated at district level with reference to flood inundation during a period from 1998 to 2008. Census data were used to examine the socio-economic characteristics of the region through computation of population density, cultivators, agricultural labourers, sex ratio, children in age group 0–6 years and literates. The geohazard map derived by combining area prone to waterlogging and flood inundation was multiplied with socio-economic vulnerability map to derive the flood-waterlogging risk map of the region. The result shows that flood and water-logging pose highest risk to the central districts in the northern Bihar plains with 50.95% of the total area under high and very high risk.  相似文献   

9.
Lawal  Olanrewaju  Adesope  M. Olufemi 《GeoJournal》2021,86(2):831-842

The fifth assessment report (AR5) predicted that land temperatures would rise faster over Africa than other global averages while changes in rainfall are uncertain across Sub-Saharan Africa. These portend water availability challenges with direct impacts on agricultural production. Existing studies on yield vulnerability in Nigeria are mostly at a national scale, which is not adequate for local decision making. This study provides a spatially explicit model of Maize yield vulnerabilities across the growing areas (GA). Thereby, turning available data into actionable information to support development actions. Yield vulnerability index was constructed as a relationship among exposure, yield sensitivity and adaptive capacity. Exposure was computed as the ratio between long and short-term climatic factors. Yield sensitivities were expressed as the ratio between expected and actual yield. Adaptive capacity was captured using a combination of socio-economic proxies. The result shows that Maize yields were vulnerable to climate variability across most of the GAs. Exposure values indicate a very high level of climate variability with the northern region more exposed. Yield sensitivity ranges between ranges 0.47 and 0.95, and highest along the northern extremes, moderate sensitivities were observed across large tracts of the north-west, northeast, south-east and south–south geopolitical regions. Adaptive capacity is highly variable ranging between 0.27 and 1. Yield vulnerability ranges between 0.46 and 1.51. The general assumption of a north–south divide for yield vulnerability was invalidated. Vulnerability is more disparate beyond latitudinal differences. The model presented, creates a framework to support targeted response, and opportunity for building resilience to climate change impact for crop yield.

  相似文献   

10.
Despite a recent increase in the number of vulnerability analyses there has been relatively little discussion of vulnerability assessment of social–environment system, especially when they face multiple hazards. In this study, we developed an applicable and convenient method to assess vulnerability of social–environment system at a regional scale. Vulnerability is quantified by measuring three critical elements (i.e. hazards, sensitivity, and resilience) through some key variables. The results showed that vulnerability is high in Miaofeng Mountain in Mengtougou District, the hills of Pinggu County and the riparian zones of the lower courses of the Beiyun and Yongding Rivers; but low in the city of Beijing and the southwestern part of the Fangshan District. Areas of very high, high, medium, and low-vulnerability account for 6.19, 25.48, 33.06, and 35.27% of the total area, respectively. The degree of vulnerability decreases in a northwest direction in mountainous areas and declines from watercourses to riparian zones along a lateral direction in the plain. Some adaptive strategies are also proposed.  相似文献   

11.
Integrated risk assessment of multi-hazards in China   总被引:1,自引:0,他引:1  
Maps of population exposure, vulnerability and risk to natural hazards are useful tools for designing and implementing disaster risk mitigation programs in China. The ranking of provinces by relative risk to natural hazards would provide a metric for prioritizing risk management strategies. Using provinces as our study unit, from the perspectives of hazard exposure, susceptibility, coping capacity and adaptive capacity, this study first constructed China’s disaster risk index for five types of major natural hazards: earthquakes, floods, droughts, low temperatures/snow and gale/hail. Then, the relative risk level at the provincial scale in China was assessed. Finally, the hotspots with the highest hazard exposure, vulnerability and risk were identified. The results showed that high exposure was a significant risk driver in China, whereas high vulnerability, especially social vulnerability, amplified the risk levels. Similar to the population exposure to disasters, the relative risk levels in the southwestern, central and northeastern regions of China were significantly higher than those in the eastern, northern and western regions. The high-risk regions or hotspots of multi-hazards were concentrated in southern China (less-developed regions), while the low-risk regions were mainly distributed in the eastern coastal areas (well-developed regions). Furthermore, a nonlinear relationship existed between the disaster risk level and poverty incidence as well as per capita GDP, demonstrating that disaster losses in middle-income areas are likely to increase if economic policies are not modified to account for the rising disaster risk. These findings further indicated that research on disaster risk should focus not only on hazards and exposure but also on the vulnerability to natural disasters. Thus, reducing vulnerability and population exposure to natural hazards would be an effective measure in mitigating the disaster risk at hotspots in China.  相似文献   

12.
Fengjin  Xiao  Lianchun  Song 《Natural Hazards》2011,58(3):1333-1344
The trends of global warming are increasingly significant, especially in the middle and high latitude regions of the northern hemisphere, where the impact of climate change on extreme events is becoming more noticeable. Northeast China is located in a high latitude region and is sensitive to climate change. Extreme minimum temperatures causing cold damage during the warm season is a major type of agro-meteorological disaster in Northeast China, which causes serious reductions in crop yield. In this paper, we analyzed the temporal and spatial trends in the frequency of extreme minimum temperatures during the warm season (from May to September) during 1956–2005 in Northeast China. Abrupt climatic changes were identified using the Mann–Kendall test. The results show that the frequency of extreme minimum temperature days during the warm season in Northeast China decreases significantly from 1956 to 2005 with a background of climate warming. The highest number of extreme minimum temperature days occurred in the 1970s and 1980s, and there was an abrupt climatic change in 1993. The spatial analysis identified that the north and southeast of the region experienced a larger decrease in the number of extreme low temperature days than the west and south of the region. Rice, sorghum, corn, and soybeans are most vulnerable to cold damage. In severe low temperature years, the average crop yield was reduced by 15.2% in Northeast China.  相似文献   

13.
Based on the natural disaster analysis theory, the spatial characteristics of agricultural drought risk in China were investigated at 10 × 10 km grid scale. It shows that agricultural drought risk in China has a clear southeast–northwest spatial pattern. High and very high risk mainly occur in the eastern part of Northeast Plain, the central of Inner Mongolian Plateau, the Loess Plateau, north Xinjiang, the north and south of Yangtze Plain, and Yunnan-Guizhou Plateau. Statistics also show that 19.5 % of the main crop planting area is exposed to low risk, 35.1 % of the area to moderate risk, 39.8 % of the area to high risk, and 5.6 % of the area to very high risk. Further investigation shows that 23 % of total wheat growing areas is located in high and very high risk class; corn and rice are 16 % and 14 % respectively. Comprehensive analysis shows that severely affected areas by drought in the history are mainly located in the high and very high risk areas.  相似文献   

14.
The Andaman–Nicobar (A–N) Islands region has attracted many geo-scientists because of its unique location and complex geotectonic settings. The recent occurrence of tsunamis due to the megathrust tsunamigenic north Sumatra earthquake (Mw 9.3) with a series of aftershocks in the A–N region caused severe damage to the coastal regions of India and Indonesia. Several pieces of evidence suggest that the occurrence of earthquakes in the A–N region is related to its complex geodynamical processes. In this study, it has been inferred that deep-seated structural heterogeneities related to dehydration of the subducting Indian plate beneath the Island could have induced the process of brittle failure through crustal weakening to contribute immensely to the coastal hazard in the region. The present study based on 3-D P-wave tomography of the entire rupture zone of the A–N region using the aftershocks of the 2004 Sumatra–Andaman earthquake (Mw 9.3) clearly demonstrates the role of crustal heterogeneity in seismogenesis and in causing the strong shakings and tsunamis. The nature and extent of the imaged crustal heterogeneity beneath the A–N region may have facilitated the degree of damage and extent of coastal hazards in the region. The 3-D velocity heterogeneities reflect asperities that manifest what type of seismogenic layers exist beneath the region to dictate the size of earthquakes and thereby they help to assess the extent of earthquake vulnerability in the coastal regions. The inference of this study may be used as one of the potential inputs for assessment of seismic vulnerability to the region, which may be considered for evolving earthquake hazard mitigation model for the coastal areas of the Andaman–Nicobar Islands region.  相似文献   

15.
利用西北五省区137个测站的1961-2009年逐月降水量资料计算标准化降水指数(SPI), 统计了逐月、春末夏初、初夏、夏季及秋季的干旱、重旱、特旱的频率及面积率, 分析其时空变化特征.结果表明: 新疆北部、青海的中部及甘肃河西是西北地区干旱频率较高的区域, 干旱频率在15个月以上, 新疆南部除个别月份干旱发生频率较高外, 总体干旱发生频率较低;干旱发生区域随月份有由南到北、由西向东变化的趋势;除新疆、青海、及甘肃个别区域重旱频率超过5月外, 其他区域基本上都在5月以下;新疆南部重旱频率仍然较低;夏季发生范围高于其他季节;新疆北部、甘肃河西是特旱的高发区. 不同等级的月及季节干旱面积率其逐年变化具有相似的特征, 西北干旱面积率的变化总体上可以分为3个阶段: 1961-1980年干旱面积率比较高, 平均在35%左右;1981-1990年为转折期, 干旱面积率下降到15%左右;而1991-2009年为稳定期, 干旱面积率变化不大.全球气候变暖导致西北地区降水量、冰川融水量、河川径流量增加和湖泊水位上升、面积扩大, 是1987年以来干旱面积率下降的原因.  相似文献   

16.
中国旱灾农业承灾体脆弱性诊断与评价   总被引:9,自引:0,他引:9  
旱灾是世界上影响面最广、造成农业损失最大的自然灾害类型,世界近一半的国家干旱严重。中国旱灾频繁,每年旱灾损失占各种自然灾害损失的15%以上,随着人口和农业的快速发展,农业承灾体脆弱性对灾情的放大也在增加。基于灾害系统理论,从致灾因子和耕地承灾体的区域组合角度,在旱灾频发高值区,选择雨养农业、灌溉农业和水田农业为主要承灾体类型,构建了农业旱灾脆弱性生产压力和生活压力,灾前—灾中易损性和灾中—灾后适应性等农业旱灾承灾体脆弱性诊断指标体系。提出脆弱性评价的区域模型,即:雨养农业的易损—适应模型(兴和)、灌溉农业的生产—生活压力模型(邢台)和水田农业的需水—灌水模型(鼎城)。基于农业承灾体脆弱性评价,提出制定适应降水变化的波动土地利用结构调整区域政策、建立农业生态—生产范式、建立“水银行”管理机制、建立用水效益和开源节流的评估体系以及加强“截水—抽水—控水”为一体的灌溉系统工程建设,提高灌溉应急能力等对策,以期为农业旱灾的防御和区域粮食安全决策提供科学依据。  相似文献   

17.
Seasonal water scarcity in southern China has been an issue of concern for many years. The increased frequency of low precipitation in the growing season of rice created a flurry of discussions in the academic and policy arenas. These events severely disrupted the supply of irrigation water for agriculture in paddy field areas and posed a substantial threat to farmers’ livelihoods. Within a broader context of accessing farmers’ resilience to agricultural drought, this paper focuses on the response mechanisms and adaptive strategies adopted by farming households in three types of areas (Plain, Hill, Mountain) in Dingcheng, Hunan Province. With the increasing drought frequency and the pressure from the demand for livelihood improvement, farmers’ response mechanisms have evolved, expanding from short-term adjustments to long-term adaptations, and switching focus from securing reliable water sources to improving irrigation efficiency and diversifying both on- and off- farm productions. The three types of geographic units have different resilience profiles and have developed diverse patterns of adaptive processes that update the conceptual model of Disaster Resilience of “Loss-Response” of Location. It presents a temporal dimension to the study of resilience, which is largely missing from the current literature and provides insights into how to enhance farmers’ response capacities in the face of agricultural drought in southern China.  相似文献   

18.
海洋  龙爱华  张沛  邓晓雅  李扬 《冰川冻土》2019,41(2):494-503
水资源紧缺是限制我国西北干旱区农业发展的主要瓶颈,正确评估地区农业用水效率及其影响机制,可为提高农业用水效率提供理论依据。以新疆为研究区,基于1988-2015年的长系列数据,分别计算出历年北疆、南疆、东疆典型作物(小麦、棉花)生产水足迹,并采用Cobb-Douglas生产函数定量分析气象因素(年降雨量、年日照时数、年均温度、年均风速、年均湿度)和技术因素(农机总动力、有效灌溉率、化肥施用折纯量)对作物生产水足迹的影响贡献率。结果表明: 1988年至2015年,东疆小麦、棉花生产水足迹显著高于北疆和南疆,在气候变化和技术进步的综合影响下,各地区典型作物生产水足迹逐年降低,其中技术进步对新疆典型作物单产水足迹影响显著高于气候因素,是驱动新疆各地区典型作物生产水足迹变化的主要控制因素。地区尺度上,北疆、南疆、东疆气候变化和农业技术发展均呈现显著的地区差异,总体来看,北疆气候条件最适宜作物生长,东疆气候最为恶劣,北疆、南疆农业技术发展速率整体上高于东疆。  相似文献   

19.
Assessment of physical vulnerability to agricultural drought in China   总被引:1,自引:0,他引:1  
Food security has drawn great attention from both researchers and practitioners in recent years. Global warming and its resultant extreme drought events have become a great challenge to crop production and food price stability. This study aimed to establish a preliminary theoretical methodology and an operational approach for assessing the physical vulnerability of two wheat varieties (“Yongliang #4” and “Wenmai #6”) to agricultural drought using Environmental Policy Integrated Climate model (EPIC). Drought hazard index was set up based on output variables of the EPIC water stress (WS), including the magnitude and duration of WS during the crop-growing period. The physical vulnerability curves of two wheat varieties to drought were calculated by the simulated drought hazard indexes and loss ratios. And the curve’s effect on drought disaster risk was defined as A, B and C sections, respectively. Our analysis results showed that (a) physical vulnerability curves varied between two wheat varieties, which were determined by genetic parameters of crops; (b) compared with spring wheat “Yongliang 4#” winter wheat “Wenmai 6#” was less vulnerable to drought under the same drought hazard intensity scenario; (c) the wheat physical vulnerability curve to drought hazard displayed a S shape, suggesting a drought intensity–dependent magnifying or reducing effect of the physical vulnerability on drought disasters; (d) the reducing effect was mainly in the low-value area of vulnerability curve, whereas the magnifying effect was in the middle-value area, and the farming-pastoral zone and the Qinling Mountain–Huaihe River zone formed important spatial division belts.  相似文献   

20.
The climate change in Tibet has induced complex water resource and geo-environmental changes. Tibet is located in a unique geographical zone with the characteristics of middle-low latitude, high altitude and very low average air temperature, and the climate there has been changed both in time and in space under the effect of global warming. Except for two regions without data, the changes of both air temperature and rainfall in the last 35 years in Tibet exhibit evident zonational patterns. In general, air temperature increases higher from east to west, whereas rainfall changes from decrease to increase from south to north. Except for some areas in southern Tibet, the general increase of rainfall accelerated the rate of water cycle, and caused an increase in the gross amount of water resources in Tibet. Moreover, under the impact of climate change, the frequency of occurrence of landslide and debris flow has slightly increased in the high mountain–canyon regions of eastern Tibet. Also, the debris flow due to ice lake outburst has evidently increased in the plateau mountain–lake basin regions of southern Tibet. By contrast, desertification in the western plateau–lake basin regions of northern Tibet has been intensified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号