首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8′E) close to a hydrothermal vent (49°39′E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at ~9.0 km is the bottom of a layer (2–3 km thick); the Moho (at depth of ~6–7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by ~15 km, the 660 discontinuity is elevated by ~18 km, and a positive thermal anomaly between 182 and 237 K is inferred.  相似文献   

2.
Research on gas hydrate has increased recently as an alternative to fossil fuel. This study of marine controlled source electromagnetics (CSEM) is motivated by this increase, particularly in deep waters, and examines representative models. We present 2D models and test their efficacy in detection and characterization of gas hydrates. Earlier modeling studies used a horizontal transmitter to study the CSEM response??two electrical and one magnetic component??for resistive subsurface layers. Here we use six components??three electrical and three magnetic??and show that the proposed method reduces ambiguity in interpretation. Additionally, we show results utilizing the transmitter dipole in a borehole and receivers at the sea bottom. We found that CSEM response from a vertical transmitter helps us characterize resistive layers more confidently than from a transmitter moving horizontally at sea bottom. We conclude that in a complex environment, combining horizontal and vertical movements of the transmitter with sea-bottom receivers helps us delineate the subsurface structure more clearly and may help reduce drilling costs. Our models closely match the gas hydrate region in the Gulf of Mexico??Walker Ridge Block-313. Although this study examines gas hydrate, the methodology is applicable to other areas??for example, in monitoring gas diffusion at subsurface depths, which may help in CO2 sequestration.  相似文献   

3.
Hydrothermal plume is an important constituent of seabed hydrothermal circulation and is also one of the characteristics of active hydrothermal vents. Portable Miniature Autonomous Plume Recorders (MAPR) attached to a towed deep-sea instrument was used to search for hydrothermal plumes and hydrothermal vents. We introduced the basic principle of MAPR based on deep towing technology to detect plumes, then analyzed the factors affecting the quality of the MAPR data and presented a data correction method for MAPR, including instrument location correction, noise reduction processing, system error elimination and seawater background reduction. Finally we applied the method to analyze MAPR data obtained during the Chinese DY115-21 cruise on R/VDayang Iin the “Precious Stone Mountain” hydrothermal field on the Gala-pagos Microplate. The results provided a better understanding of the distribution of the hydrothermal activ-ity in this field, indicating the presence of a new hydrothermal vent.  相似文献   

4.
Sensitive Ocean Bottom Implanted Tiltmeters (OBITs) with a sophisticated data retrieval system have been developed in order to observe directly the subduction of oceanic lithosphere. The OBIT is the first long-term geophysical instrument which was designed to be deployed by a manned deep-sea submersible. When the OBIT is put on oceanic lithosphere which is bending and is about to subduct under a deep sea trench, the OBIT records the subduction by observing the tilt of the surface of the lithosphere. The OBIT system has a sensitivity of 10-8 radian, which is enough to detect the ongoing subduction in months or years. The OBIT may give an answer to the question whether there are fluctuations in the subduction rate.Two OBITs were successfully deployed on a seaward slope of the Kuril Trench by the newly built French deep submersible, Nautile. The OBITs were installed on the northwest shoulder of Erimo seamount, at a depth of 3930 m, in the Kuril Trench. In order to attain stable long-term observations of crustal deformations, the sensing unit was cemented onto bare rock by mortar. We have not yet had an opportunity to recover the data.The life of the instruments is expected to be more than five years. An acoustic data transmission system has been developed for the OBIT data recovery. The stored data can be retrieved at any moment during the observation period, with no need to retrieve the instruments nor to interrupt the observation, by use of the acoustic system. The acoustic system has a high data transmission rate as well as extremely low power consumption. This will be the first long-term crustal deformation measurement on the sea floor.  相似文献   

5.
A novel variation of the geophysical technique known as MOSES, for Magnetometric Off-Shore Electrical Sounding, has been developed to map the electrical properties of the sea floor in Aretic regions. The particular target is the permafrost layer under the Beaufort Sea, a layer containing frozen or partially frozen sediment from 100 to 600 m thick underlying shallow sea water, typically 10 to 100 m deep, and several tens of metres of soft sediment. A detailed knowledge of the location and physical properties of the permafrost layer is essential for accurate interpretation of reflection seismic data. The permafrost can contain pockets, regions or layers of gas hydrate. The latter is both a possible resource and a hazard to drilling operations or hydrocarbon production. A local map of the permafrost zone is essential geotechnical information required prior to the construction of an offshore structure or pipeline.The MOSES method is particularly suitable for offshore electrical mapping as it can be made relatively insensitive to the shielding effects of the highly conductive sea water, in sharp contrast to many other electrical techniques. The transmitter is a vertical, long-wire bipole, extending from the sea surface to the sea floor. A commutated current is fed to two large electrodes: one near the sea surface and the other on the sea floor. The return current is through the sea water and the subjacent sediment. The receiver consists of two horizontal orthogonal coils located on the sea floor, and the data are measurements of two components of the magnetic field as a function of frequency and transmitter-receiver horizontal separation.The electrical conductivity of a sample of frozen material is much smaller than that of unfrozen or partially frozen sediment of the same type. Frozen and unfrozen thin layers are often observed sequentially throughout the geological section. The resistivity measured as a function of depth by an electrical logging tool is consequently highly variable. The resulting depth-averaged resistivity, the resistivity resolved by a surface electrical method, is macro-an-isotropic. An experimental design study reveals that both the vertical and horizontal averaged resistivities could be determined in a MOSES sounding without vertical scale distortion.A test of the methodology in very shallow water was conducted in the spring of 1986 at a site, approximate coordinates (70° N, 134.5° W), 85 km north-west of the town of Tuktoyaktuk. The instrumentation was lowered and subsequently recovered through holes in the ice which covers the Beaufort Sea at that time of the year. The transmitter power was obtained from a single lead-acid battery. Transmitter-receiver separations ranged from 10 to 300 m. A rapid increase in sediment resistivity with depth was observed. The higher resistivity values are consistent with those expected for a partially frozen zone.  相似文献   

6.
Oceanographic instrumentation towed from a surface platform is normally subjected to unwanted vertical motion imparted by the rolling, heaving, and pitching of the platform. This motion can cause severe shock-loading conditions in the tow cable and induces unplanned depth variations that reduce the instruments' resolution. This article discusses a unique motion-compensation system for use with towed instrumentation that eliminates shock loading and minimizes depth variation. The system is operational in sea states as high as 5 and effectively decouples 96% of the vessel's motion.  相似文献   

7.
超慢速扩张洋中脊具有不同于其他扩张速率洋中脊的特征,表现为剧烈变化的洋壳厚度和典型的非岩浆段。本文对前人研究的洋中脊岩浆形成关键因素和迁移聚集模式进行综合分析,结合实际地球物理和地球化学的观测数据,探讨了超慢速扩张洋中脊岩浆从地幔源区形成、迁移汇聚、形成洋壳的整个地质过程,进一步指出了影响洋壳结构的关键控制因素。研究结果表明,超慢速扩张洋中脊沿轴洋壳厚度的变化受岩浆补给量和迁移汇聚的共同制约。其中,岩浆补给量受控于洋中脊的地幔潜热、地幔成分和扩张速率的变化;岩浆迁移和汇聚过程则与超慢速扩张洋中脊密集的分段特征和阻渗层的空间结构密切相关。  相似文献   

8.
It is generally accepted that the stationary wind circulation in the lower layer of a two-layer sea is negligibly weak even if the bottom topography is taken into account. This opinion is true for the oceanic scales where the bottom topography has no global slope along the meridian. However, in the case of circulation in closed and semiclosed seas, the trenchlike structure of the bottom topography together with the beta-effect can significantly affect the intensity of currents in the bottom layer of the sea. In the present work, we use a simple model to consider an example of intensification of deep-water wind-induced circulation under the influence of the meridional slope of the bottom. The discovered effect enables us, in particular, to make an assumption that the deep-water circulation in the Black Sea is much more intense than it was supposed earlier. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 3–10, March–April, 2005.  相似文献   

9.
This paper describes a pop-up ocean bottom seismograph designed primarily for refraction surveys both on the continental shelf and in deep sea. Its development is the extension of our system based on seismic detectors located on the sea floor with radio transmission of seismic signals and used for seismic refraction studies on the continental shelf. The seismic detectors (vertical geophone or hydrophone and two orthogonally mounted horizontal geophones) are located outside of the pressure vessel on the main frame. Optionally, the seismic sensors may be decoupled from the main frame assembly. This decoupling is performed by a mobile arm positioning the separate three component sensor package on the sea floor.Contribution No. 455 of the Département Scientifique, Centre Océanologique de Bretagne.  相似文献   

10.
Sonar performance predictions in shallow water are strongly dependent on good knowledge of the geoacoustic and scattering properties of the seabed. One technique to extract information about the bottom is to use a towed source and a towed horizontal array. This towed system has been shown to be applicable for characterizing the bottom properties locally by inversion of the acoustic signals received directly on the towed array at short ranges. The same towed system has also been applied to extract bottom properties from long-range reverberation data providing effective bottom properties over a large area. However, independent geoacoustic inversion of the short-range propagation and long-range reverberation data can introduce low sensitivity and uncertainty in the extracted bottom properties. An attempt to resolve this low sensitivity and ambiguity is made by a simultaneous geoacoustic inversion of short-range propagation and long-range reverberation data with the intention of constraining the possible solutions of the bottom properties.   相似文献   

11.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

12.
深水声学拖曳系统   总被引:2,自引:0,他引:2  
介绍了我国自主设计和研制的深水声学拖曳系统,它的最大工作水深4000m,安装有高分辨率测深侧扫声纳,可在近海底工作获得高分辨率的海底地形地貌和温盐深等数据.它的测深覆盖范围600m,侧扫覆盖范围800m,垂直航迹分辨率5cm,最小可检测高度10cm,测深分辨率高于目前的多波束测深系统.该系统已进行了湖试和海上锚泊试验.该系统的研制成功将对开展大陆架勘查,探测和开发国际海底资源发挥重要作用,拖曳系统中高分辨率测深侧扫声纳还可装船安装,在大陆架水域进行高分辨率海底地形地貌测绘.  相似文献   

13.
In recent years significant interest has emerged regarding bottom currents and sediment dispersal over continental shelves and shallow marine waters. Although many papers have been written on sediment dispersal mechanisms, they include relatively few long-term observations of bottom currents and/or sediment transport. Lack of observational data is related to the hostile nature of the environment, and the difficulty associated with placing and retrieving instruments on the floor of the continental shelf during some seasons and environmental conditions.This paper describes an instrumentation system designed for use on the floor of the continental shelf. It can remain submerged for periods of one month continuously recording water speed and direction 1 m from the sea bed, differential pressure, and bed nature by means of half-hourly photographs. Four of these systems are presently in use in arrays across the continental shelf of Washington.  相似文献   

14.
采用二维的全球高分辨率(1/4°×1/4°)的自由表面诊断模型结合动力计算估算全球大洋环流,模拟结果与其他模拟结果非常相似。流函数的分布表明,全球大洋中的主要流系均得到体现,包括大洋环流的西向强化的现象(黑潮、湾流等)。黑潮主轴的流量约54Sv(1Sv=10^6m^3/s),非常接近实测值:各层水平流场分布情况显示,各大洋的一些基本流系都能得到很好的再现。如黑潮和南极绕极流可深达底层。湾流不能到达深层,大约在1000~2000m之间海流即已转向。  相似文献   

15.
As an interoceanic arc, the Kyushu-Palau Ridge(KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR,especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detail...  相似文献   

16.
A 250 km2 area of abyssal hills in the vicinity of 14°N, 126°W (between the Clarion and Clipperton Fracture Zones in the Equatorial Pacific) was surveyed in detail using an instrument package towed close to the deep sea floor, the MPL Deep Tow device. Both topography and near bottom magnetic field are lineated perpendicular to the major fracture zones. Except for a few localized depressions, the sediment surface is generally smooth and of low relief with maximum elevation differences of 200 m and slopes of six degrees. Several small graben-like troughs and depressions were observed, most of them near the crest of one abyssal hill. The largest trough is two kilometers long, 250 m wide and 50 m deep with steep sides (>30°). These troughs are tentatively interpreted as the result of tensional separation at the tops of the hills caused by down-slope creep and consolidation of the pelagic sediments.Contribution of the Scripps Institution of Oceanography, new series.  相似文献   

17.
慢速?超慢速扩张洋脊的海底热液活动区多出露类型多样的蚀变岩石,记录了地壳深部的流体与围岩的相互作用,为研究深部热液流体特征以及循环过程提供了样本。本研究选取了中国大洋第30、34和40航次在超慢速扩张西南印度洋脊龙旂热液区(A区、B区和C区)利用电视抓斗采集的蚀变玄武岩、蚀变辉长岩、蚀变辉石岩和蛇纹岩等蚀变岩样品,利用光学显微镜、电子探针开展了岩相学和矿物化学分析。岩相学结果表明,龙旂热液区蚀变岩石样品约95%发生了地壳浅部的脆性变形作用,靠近龙旂1号热液区(A区)约有5%的蚀变岩石混合发育了脆性变形及脆性?塑性变形特征。研究区岩石蚀变属于中?低温变质作用,变质相近似绿片岩相,变质矿物组合为绿泥石?绿帘石?钠长石?阳起石?榍石。其中,A区的蚀变岩中的绿泥石形成温度(201~341℃)以及蛇纹石、阳起石、绿泥石等蚀变矿物的Fe元素含量(17.5%~27.5%)都高于龙旂3号热液区(B区和C区)的绿泥石形成温度(239~303℃)和Fe元素含量(16.8%~26.5%),这也与在该区观测到高温的热液喷口相符合。本研究认为龙旂热液区所在洋脊段发育的拆离断层为热液流体的向上运移提供了通道,洋壳扩张后期轴部的岩浆熔体在轴侧区域的岩浆侵入或喷发活动可能为热液循环提供了热源。  相似文献   

18.
The often poor quality of ocean bottom seismic data, particularly that observed on horizontal seismometers, is shown to be the result of instruments responding to motions in ways not intended. Instruments designed to obtain the particle motion of the ocean bottom are found to also respond to motions of the water. The shear discontinuity across the ocean floor boundary results in torques that cause package rotation, rather than rectilinear motion, in response to horizontal ground or water motion. The problems are exacerbated by bottom currents and soft sediments. The theory and data presented in this paper suggest that the only reliable way of obtaining high fidelity particle motion data from the ocean floor is to bury the sensors below the bottom in a package with density close to that of the sediment. Long period signals couple well to ocean bottom seismometers, but torques generated by bottom currents can cause noise at both long and short periods. The predicted effects are illustrated using parameters appropriate for the operational OBS developed for the U. S. Office of Naval Research. Examples of data from ocean bottom and buried sensors are also presented.  相似文献   

19.
Intensive hydrographic observations were carried out in the western part of the Gulf of Thailand and the east coastal sea of Peninsular Malaysia in September 1995 and April–May 1996. The characteristics of seasonal variation of oceanic condition in that area are discussed basis of an analysis of observed water temperature, salinity and density distributions in these cruises and NAGA cruises (Yanagi and Takao, 1998a). Stratification is most developed in March–May mainly due to large sea surface heating and weak sea surface wind, which weakened until September–October, vanishing in December–January. The horizontal distribution of bottom cold, saline and heavy water masses, which are found during the stratified season, is governed by the tidal mixing and the water depth. Water exchange between the Gulf of Thailand and the South China Sea becomes large in March–May due to a coupled effect of the intensified estuarine circulation and the Ekman transport by the southwest monsoon. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Two seismic refraction and gravity lines were obtained along and normal to the axis of the Aegir Rift, an extinct spreading centre in the Norway Basin. Velocity-depth solutions and crustal structure models are derived from ocean-bottom records using two-dimensional ray tracing and synthetic seismogram modelling techniques. Gravity data are used to generate models consistent with the lateral variations in thickness of the layers in the crustal models. The resulting models require considerable degree of lateral inhomogeneity along and perpendicular to the rift axis. Crust within the extinct spreading centre is found to be thinner and of low P-wave velocity when compared with the crust sampled off-axis. To explain reduced velocities of the lower crust we suggest that, due to the relationship between fracturing and seismic velocity, the decreasing spreading rate leading up to extinction let the mechanically strong layer thicken, so that faulting and fracturing extended to greater depths . Low velocities are also observed in the uppermost mantle underlying the extinct spreading ridge. This zone is attributed to hydrothermal alteration of upper mantle peridotites. Furthermore, after spreading ceased 32-26 my ago, ongoing passive hydrothermal circulation was accompanied by the precipitation of alteration products in open void spaces, thereby decreasing the porosity and increasing the velocity. Consequently the typical low velocities of layer 2 found at active mid-ocean ridges have been replaced by values typical of mature oceanic crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号