首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seismic damages commonly observed on beam–column joints of old reinforced concrete structures, built with plain bars and without proper detailing, justifies the need to further study the behaviour of this type of structures. The response of these structures when loaded cyclically, as occurs during the earthquakes, is partially controlled by the bond properties between the reinforcing bars and the surrounding concrete. This paper presents the results of an experimental campaign of unidirectional cyclic tests carried out on six full‐scale beam–column joints built with plain bars. These joint specimens are representative of existing reinforced concrete structures, that is, built without adequate reinforcement detailing for seismic demands. For comparison, an additional specimen is built with deformed bars and tested. The seven specimens are designed and detailed to allow the investigation of the influence of bond properties, lapping of the longitudinal bars in columns and beams, bent‐up bars in the beams, slab contribution and concrete strength. The lateral force–drift relationships, global dissipated energy evolution, contribution of the joint, beams and columns to the global dissipated energy, ductility, equivalent damping, final damage observed, homogenized reinforced concrete damage index, displacement components, curvature evolutions and Eurocode requirements are presented and discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Cyclic tests of single concrete columns with smooth (plain) bars are not representative of building columns with lap splices at floor levels and story-long starter bars. Column specimens with fixity at top and bottom resemble building columns best, but few of those tested so far had smooth bars and even then without bar lap-splicing at floor level or FRP jackets at column ends. Empirical models based on single-column tests, especially the numerous ones with cantilever-type specimens, cannot be readily extended to columns with smooth bars in real-life buildings. Physical models of the Strut-and-Tie type are developed and are validated or calibrated through comparisons with laboratory tests. Their scope includes anchorage and splicing of bars with either 180° hooks or straight ends. Once validated, they are adapted to real-life multistory rectangular RC columns with smooth bars, in order to obtain the column properties of interest: the chord rotation at yielding and the cyclic ultimate chord rotation, with or without FRP jacketing. Different expressions apply to the top and bottom end of a column in a story, but a single one is used to estimate the column’s effective stiffness. Empirical alternatives fitted to the single-element test results have slightly less scatter than physical models, but caution is needed for their application to columns of real buildings. Simulations of the 3D seismic response of a plan wise asymmetric full size building, tested pseudo-dynamically before or after retrofitting all columns with FRPs or just two of them with RC jackets, provide certain confidence in the extension of the physical models for the estimation of the stiffness and ultimate deformation of columns with smooth bars in real-life buildings.  相似文献   

3.
钢筋混凝土结构震后损伤鉴定中,最常见的方式是鉴定者观察房屋破坏现象,根据经验给出震损等级。该方法直观高效,但对鉴定者的专业经验要求较高,且鉴定结果的主观差异较大。对此以RC框架柱为对象,开展了基于震损现象的震损量化鉴定方法研究:在RC框架柱震损现象量化试验基础上给出基于构件骨架曲线特征阶段的震损分级方法;对7个RC框架柱试件进行了改进Park-Ang损伤指数分析,建立了RC框架柱损伤指数-震损分级-震损现象的对应关系;基于RC框架柱的试验结果及典型震害编制了RC框架柱震损图集,并给出了使用图集进行框架柱震损鉴定的流程及方法。使用该方法对2个实际震害中的RC框架柱进行了震损鉴定,可为更加客观以及准确地开展钢筋混凝土结构的震损鉴定提供参考。  相似文献   

4.
钢筋混凝土分体柱的抗震机理   总被引:4,自引:0,他引:4  
为揭示钢筋混凝土分体柱的抗震机理,在以前模型试验基础上,考虑隔板与单元柱之间的非线性接触及钢筋与混凝土之间的黏结滑移,数值模拟了钢筋混凝土分体柱的抗震性能。结果表明:分体柱可实现变短柱为“长”柱的设想;分体柱具有理想的变形能力和延性,延性系数达到4.0;分体柱的刚度随变形增加呈指数衰减,后期刚度退化较为缓和;分体柱具有较高的耗能能力,其耗能系数达1.44;隔板与单元柱的切向接触应力较小,可忽略隔板对单元柱的变形协调作用。进一步验证了钢筋混凝土分体柱具有理想的抗震性能,完善和发展了钢筋混凝土分体柱的设计理论和应用技术。  相似文献   

5.
为讨论近断层地震动下摇摆-自复位(Rocking Self-Centering, RSC)桥墩连续梁的地震反应及其抗震优缺点。基于OpenSees有限元分析平台讨论了RSC桥墩三维建模方法,通过对6个试验构件的模拟,比较模拟与试验桥墩滞回曲线、预应力筋最大应力等指标,验证了模型准确性。建立设置RSC桥墩和普通钢筋混凝土(Reinforced Concrete, RC)桥墩的上部结构相同的两座连续梁桥,输入3组含有强速度脉冲的近断层地震波进行非线性动力时程分析,对比其抗震性能。结果表明:在0.4 g近断层地震动下,RSC桥墩与普通RC桥墩相比,RSC桥墩的最大位移角为普通RC桥墩的78.1%~97.6%,墩底曲率延性系数仅为普通RC桥墩的24.0%~34.0%,减小了桥墩的最大变形,也减轻了桥墩地震损伤,不利的一点是使用RSC桥墩会导致支座位移增大。RSC桥墩震后的残余位移较小,且预应力筋处于弹性受力阶段,为实现震后桥梁功能的快速恢复提供了条件。  相似文献   

6.
简要介绍了改善钢筋混凝土短柱抗震性能的若干措施。为进一步提高短柱的抗震性能,本文提出了内藏“斜向劲性核心束”矩形截面混凝土短柱,并进行了7根短柱的抗震性能试验研究,试验表明,内藏“斜向劲性核心束”矩形截面混凝土短柱比普通矩形截面短柱的抗震性能显著提高。  相似文献   

7.
基于能量平衡原理,对多层钢筋混凝土框架结构的地震输入能量的分布及耗散规律进行了研究。选用8条天然地震波和2条人工波,运用Perform-3D软件,对多层钢筋混凝土框架结构模型在7度罕遇地震作用下的弹塑性能量进行数值仿真计算。计算了钢混框架结构在不同地震波下的地震总输入能量、滞回耗能、阻尼耗能以及滞回耗能占总耗能的比例时程,分析了地震能量在各分量中的分布及分配规律;分析了阻尼比和延性比对地震输入能量的影响,确定了滞回耗能随阻尼比和延性比的变化规律;研究了钢筋混凝土框架结构梁柱构造和竖向侧移刚度变化对地震输入能及其分量的影响,确定了多层钢筋混凝土框架结构滞回耗能沿竖向的分布规律及沿横向在框架构件中的分配,研究了框架结构存在薄弱层情况下的滞回耗能的分布规律。揭示了多自由度钢筋混凝土框架结构地震输入能量及其分布规律,可为基于能量平衡原理的抗震设计理论在工程实际中的运用提供有益的参考。  相似文献   

8.
基于OpenSees的CFRP加固RC短柱抗震性能数值模拟   总被引:3,自引:1,他引:2  
采用地震工程开源模拟软件OpenSees对CFRP加固RC短柱进行了静力Push over分析和低周往复加载分析,并与通用有限元软件ANSYS模拟结果进行对比研究.研究结果表明:利用CFRP进行加固,不仅阻止了RC短柱的脆性剪切破坏,而且使破坏模式转化为延性弯曲破坏,增强了结构延性,进而有效地提高其抗震性能;同ANSYS相比,OpenSees可以宏观的反映CFRP与混凝土共同作用的非线性力学特征,有效地对构件和结构进行加固后的承载力及抗震性能分析.  相似文献   

9.
Reinforced concrete (RC) structures in low to moderate seismic regions and many older RC structures in high seismic regions include columns with steel reinforcement details not meeting the requirements of modern seismic design codes. These columns typically fail in shear or in a brittle manner and their behavior must be accurately captured when RC structures are modeled and analyzed. The total lateral displacement of a low ductility or shear critical RC column can be represented as the sum of three displacement components: (1) flexural displacement, (2) displacement due to slippage of the reinforcing bars at column ends, and (3) shear displacement. In this study, these three displacement components are separately modeled and then combined together following a proposed procedure based on the expected overall behavior of the column and its failure mechanism. A simplified slip model is proposed. The main objective of this research is to develop an easy-to-apply method to model and capture the cyclic behavior of RC columns considering the shear failure mechanism. The proposed model is validated using the available data from RC column and frame experiments.  相似文献   

10.
为实现地震作用下锈蚀钢筋混凝土柱精细化数值模拟分析,基于已有研究成果建立往复荷载作用下锈蚀钢筋与混凝土间的黏结滑移本构模型:结合课题组前期试验结果,采用ABAQUS有限元分析软件对建立的黏结滑移本构模型进行有效性验证,通过对数值计算结果与试验结果之间误差分析,进一步对黏结滑移模型中的摩擦黏结应力系数和退化系数进行修正,最终建立更为合理的锈蚀钢筋与混凝土间黏结滑移本构模型。通过数值计算结果与试验结果的再次比较,验证修正后黏结滑移本构模型的有效性。结果表明:修正后的锈蚀钢筋与混凝土间黏结滑移模型可更好地反映往复荷载作用下锈蚀钢筋混凝土柱的滞回性能。该成果可为地震作用下锈蚀钢筋混凝土结构的数值分析计算提供理论参考。  相似文献   

11.
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.  相似文献   

12.
Past experimental studies have shown that existing precast segmental concrete bridge columns possess unsatisfactory hysteretic energy dissipation capacity, which is an undesirable feature for applications in seismic regions. In this research, we propose new methods of precast segment construction for tall concrete bridge columns to enhance the columns' hysteretic energy dissipation capacity and lateral strength. This is accomplished by adding bonded mild steel reinforcing bars across the segment joints, strengthening the joint at the base of the column and increasing the height of the base segment (hinge segment). Four large‐scale column specimens were fabricated and tested with lateral cyclic loading in the laboratory. Each specimen consisted of a foundation and 9 or 10 precast column segments. Test results of specimens with the proposed design concepts showed ductile behavior and satisfactory hysteretic energy dissipation capacity. In addition to the experimental study, an analytical study using the finite element method was conducted to understand the bond conditions, strain contours and deformation patterns of the specimens tested. Good agreement was found between the experimental observations and the results of the calibrated analytical study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
型钢高强混凝土柱抗震性能的试验研究   总被引:5,自引:3,他引:5  
通过14根型钢高强混凝土柱的低周反复加载试验,得到了型钢高强混凝土柱在压、弯、剪共同作用下的主要破坏形态,并探讨了剪跨比、配箍率、混凝土强度对型钢高强混凝土柱滞回曲线、耗能能力以及延性的影响。试验结果表明,型钢高强混凝土柱具有抵御二次地震作用的能力,其抗震性能优于钢筋混凝土柱。  相似文献   

14.
In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes. In the first part, a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally. The damage states, ductility and energy dissipation parameters, stiffness degradation and shear strength of the piers are studied and compared with each other. The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure. The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking, and in some cases, rupturing of spiral bars. In the second part, modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software. A set of models with different parameters is selected and evaluated through comparison with experimental results. The influences of the shear retention coefficients between concrete cracks, the Bauschinger effect in longitudinal reinforcement, the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretic curves are discussed. Then, a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones. This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.  相似文献   

15.
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load- deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.  相似文献   

16.
Mathematical models and three-dimensional non-linear dynamic analysis procedures are described for determining the seismic response of long, curved (or straight), multiple-span, reinforced concrete highway bridges. Under the action of strong earthquakes, the columns (or piers) of such structures may experience large cyclic inelastic deformations of a coupled form. Also, cyclic slippage of the Coulomb type can take place in the expansion joints of the deck causing multiple impacts and separations to occur. These separations may be sufficiently large to cause tensile yielding of the longitudinal expansion joint restrainer bars (or cables) and, if not controlled, can permit deck spans to fall off their supports resulting in partial or total collapse of the structure. In this paper, a three-dimensional elasto-plastic mathematical model suitable for representing the coupled inelastic flexural behaviour of reinforced concrete columns under cyclic deformations is presented along with a non-linear mathematical model for simulating the non-linear discontinuous behaviour of expansion joints. The procedures used for non-linear seismic response analysis are described and a numerical example is given to illustrate the method.  相似文献   

17.
张家广  吴斌  梅洋 《地震学刊》2014,(5):637-642
提出了一种既有钢筋混凝土框架结构的抗震加固方法,该法采用防屈曲支撑提高框架结构体系的水平承载力和耗能能力,利用外包钢进一步提高柱子的抗弯和抗剪承载力。采用开源有限元程序OpenSees,分别建立空钢筋混凝土框架和防屈曲支撑加固钢筋混凝土框架的分析模型,对2榀钢筋混凝土框架的抗震性能进行模拟。防屈曲支撑采用了弹塑性桁架单元模型,加固框架柱混凝土考虑了外包钢的约束作用。将分析结果与拟静力试验结果进行比较,以检验分析模型的准确性,以及研究防屈曲支撑和外包钢对混凝土框架抗震性能的影响。分析结果表明,数值模拟与试验结果吻合较好,验证了基于OpenSees建立的数值模型的准确性;外包钢有效改善了框架柱的抗弯承载力和变形能力;防屈曲支撑显著提高了加固框架体系的水平刚度、水平承载力和耗能能力。  相似文献   

18.
宋丹  李林 《地震工程学报》2019,41(6):1671-1678
为避免震后建筑工程加固不合理导致再次受损,并为加固修复工程提供合理化建议,促进震后救灾工作顺利开展,提出震后建筑工程混凝土缺陷加固修复方法的研究。首先,对混凝土梁试件和混凝土柱试件进行设置,研究基于碳纤维布或外包钢套加固方法对混凝土梁和混凝土柱试件展开循环荷载试验;其次,通过混凝土梁试件滞回曲线、骨架曲线、延性及耗能情况,分析不同加固修复方法的混凝土梁试件抗震性能;最后,通过混凝土柱试件延性及耗能、刚度退化和承载力退化情况,分析采用不同加固方法修复的混凝土柱试件抗震性能。试验结果显示:高配筋率可提升混凝土梁试件滞回特性,外包钢套加固混凝土梁试件滞回饱满程度较高、耗能较少,碳纤维布加固梁试件可将加载位移由10 mm延缓至30 mm,提升延性;碳纤维布加固可提升混凝土柱延性,外包钢套加固重度缺陷混凝土柱可以良好抑制其刚度和承载力退化。试验结果验证了碳纤维加固可提升震后建筑工程混凝土结构延性,外包钢套加固可抑制混凝土结构刚度、承载力退化。  相似文献   

19.
为了对混凝土框架结构的地震破坏机制和抗震性能进行控制,在框架柱中配置高强钢筋,并将纤维增强混凝土(FRC)用于框架结构的预期损伤部位。结构柱中的高强钢筋用来减小结构的残余变形,FRC材料用来增加结构的耗能能力和损伤容限。设计了三个框架,采用动力弹塑性时程分析方法进行分析。研究结果表明,采用高强钢筋提高了结构的整体承载能力,在层间侧移角达到3%之前避免了柱铰的出现(包括底层柱底),并且减小了结构的残余变形;预期损伤部位采用FRC材料能够提高结构的塑性耗能。  相似文献   

20.
纤维加固混凝土圆截面短柱抗震性能试验研究   总被引:3,自引:0,他引:3  
通过对3根抗剪不足的混凝土圆截面短柱的拟静力试验,不仅验证了横向包裹的碳纤维布能提高短柱的抗剪承载力,改善混凝土的变形性能,从而提高短柱的抗震性能,同时验证了具有一定破损的短柱经碳纤维布强约束加固后,同样具有良好的抗震性能。文章最后对碳纤维布加固短柱的延性提高机理进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号