首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以汶川地震为研究背景,针对震后典型钢筋混凝土框架结构进行地震易损性研究。基于Cornell理论框架结合汶川地质资料,拟合出考虑场地特点的地震危险性模型,同时定义损伤水平状态及限值指标,以概率解析易损性研究方法为基础,运用考虑地震动参数的解析易损性评估方法绘制汶川地区钢筋混凝土框架建筑的地震易损性曲线。研究结果表明:考虑地震动参数的概率解析易损性研究方法是一种有效的地震易损性评估方法;以PGA作为地震强度输入指标的结构反应,随自振周期的增大体系最大响应的相关性降低,结构各个损伤状态的失效概率均随之增大。  相似文献   

2.
Seismic safety of low ductility structures used in Spain   总被引:1,自引:0,他引:1  
The most important aspects of the design, seismic damage evaluation and safety assessment of structures with low ductility like waffle slabs buildings or flat beams framed buildings are examined in this work. These reinforced concrete structural typologies are the most used in Spain for new buildings but many seismic codes do not recommend them in seismic areas. Their expected seismic performance and safety are evaluated herein by means of incremental non linear structural analysis (pushover analysis) and incremental dynamic analysis which provides capacity curves allowing evaluating their seismic behavior. The seismic hazard is described by means of the reduced 5% damped elastic response spectrum of the Spanish seismic design code. The most important results of the study are the fragility curves calculated for the mentioned building types, which allow obtaining the probability of different damage states of the structures as well as damage probability matrices. The results, which show high vulnerability of the studied low ductility building classes, are compared with those corresponding to ductile framed structures.  相似文献   

3.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
混凝土高层建筑结构地震破坏抗毁能力评估   总被引:4,自引:4,他引:0       下载免费PDF全文
许立强 《地震工程学报》2018,40(1):14-19,47
提出基于构件性能的混凝土高层建筑结构地震破坏抗毁能力评估方法,采用强度与延性法分析混凝土高层建筑构件强度和变形,以对强震作用下混凝土高层建筑结构性能实施准确描述。基于建筑结构性能以及多条地震波情况下高层建筑结构倒塌极限状态的分析规范,采用IDA方法设置建筑结构抗倒塌能力系数,并依据该系数获取基于构件性能的混凝土高层建筑结构地震破坏抗毁能力评估流程,实现建筑结构地震破坏抗毁能力的准确评估。实验结果说明,所提方法实现了混凝土高层建筑结构地震破坏抗毁能力的准确评估。  相似文献   

5.
The study presents probabilistic structural fragility assessment of public school buildings in Istanbul, which were constructed based on a standardized/typical project. The typical structure is a four-story, reinforced concrete shear wall building with moment resisting frames. Derivation of fragility functions rely on nonlinear dynamic analyses through Monte Carlo simulations. Nonlinear dynamic analyses are initially performed for a fully deterministic structural model based on the blueprints of the typical school building project. Uncertainties are introduced in different analysis cases following a modified version of the algorithm presented in Smyth et al. (2004) [21], which considers the effect of the random distribution of the parameters using a Monte Carlo approach. Aleatory uncertainties concerning material properties (i.e. compressive strength of concrete, yield strength of reinforcing steel and concrete density), geometrical characteristics (i.e. span lengths and story heights) and cross sectional dimensions of beams, columns and shear walls as well as epistemic uncertainty in the direction of ground motion excitation are considered. Statistical distributions for the parameters considered are obtained from in-situ measurements and material sampling tests. Fragility functions are produced in terms of peak ground acceleration and velocity as well as of the elastic spectral displacement at the first vibration period of the building. Mean damage ratios are calculated from the derived fragility functions. They are further compared to mean damage ratios calculated for similar building typologies provided in HAZUS-MH technical manual and in Istanbul building inventory.  相似文献   

6.
This study describes the seismic performance of an existing five storey reinforced concrete building which represents the typical properties of low-rise non-ductile buildings in Turkey. The effectiveness of shear walls and the steel bracings in retrofitting the building was examined through nonlinear static and dynamic analyses. By using the nonlinear static analysis, retrofitted buildings seismic performances under lateral seismic load were compared with each other. Moreover, the performance points and response levels of the existing and retrofitting cases were determined by way of the capacity-spectrum method described in ATC-40 (1996). For the nonlinear dynamic analysis the records were selected torepresent wide ranges of duration and frequency content. Considering the change in the stiffness and the energy dissipation capacities, the performance of the existing and retrofitted buildings were evaluated in terms of story drifts and damage states. It was found that each earthquake record exhibited its own peculiarities, dictated by frequency content, duration, sequence of peaks and their amplitude. The seismic performance of retrofitted buildings resulted in lower displacements and higher energy dissipation capacity depending mainly on the properties of the ground motions and the retrofitting strategies. Moreover, severe structural damage (irreparable or collapse) was observed for the existing building. However, buildings with retrofit alternatives exhibited lower damage levels changing from no damage to irreparable damage states.  相似文献   

7.
As urban systems become more highly sophisticated and interdependent, their vulnerability to earthquake events exhibits a significant level of uncertainties. Thus, community-level seismic risk assessments are indispensable to facilitate decision making for effective hazard mitigation and disaster responses. To this end, new frameworks for pre- and post-earthquake regional loss assessments are proposed using deep learning methods. First, to improve the accuracy of the response prediction of individual structures during the pre-earthquake loss assessment, a widely used nonlinear static procedure is replaced by the recently developed probabilistic deep neural network model. The variabilities of the nonlinear responses of a structural system given the seismic intensity can be quantified during the loss assessment process. Second, to facilitate near-real-time post-earthquake loss assessments, an adaptive algorithm, which identifies the optimal number and locations of sensors in a given urban area, is proposed. Using a deep neural network that estimates area-wide structural damage given the spatial distribution of the seismic intensity levels as a surrogate model, the algorithm adaptively places additional sensors at property lots at which errors from surrogate estimations of the structural damage are the greatest. Note that the surrogate model is constructed before earthquake events using simulated datasets. To test and demonstrate the proposed frameworks, the paper introduces thorough numerical investigations of two hypothetical urban communities. The proposed frameworks using the deep learning methods are expected to make critical advances in pre- and post-earthquake regional loss assessments.  相似文献   

8.
A computing environment for the seismic performance assessment of reinforced concrete frames has been developed in Matlab in combination with OpenSees. It includes several functions which provide calculations of the moment-rotation relationship of plastic hinges in columns and beams, rapid determination of simplified nonlinear structural models, the post-processing of the results of analyses and structural performance assessment with different methods. The user can add new functions to the PBEE toolbox in order to support additional procedures for the seismic performance assessment of RC frames, or can just change the rules for determining the moment-rotation relationship of plastic hinges in columns and beams, which are the main source of uncertainty in simplified nonlinear models. In the paper, the capabilities of the computing environment (PBEE toolbox) are first explained by focusing on the procedures for determining the moment-rotation relationship of plastic hinges. Different examples are then presented, starting with a comparison between the calculated response of a four-storey RC frame building and the response obtained in a pseudo-dynamic experiment. The calculated response was determined with the two different structural models which are later on used for the demonstration of the seismic performance assessment of the same structure by the N2 method. Lastly, seismic performance assessment of an eight-storey frame is performed by using incremental dynamic analysis with consideration of the modelling uncertainties.  相似文献   

9.
In this paper earthquake damage scenarios for residential buildings (about 4200 units) in Potenza (Southern Italy) have been estimated adopting a novel probabilistic approach that involves complex source models, site effects, building vulnerability assessment and damage estimation through Damage Probability Matrices. Several causative faults of single seismic events, with magnitude up to 7, are known to be close to the town. A seismic hazard approach based on finite faults ground motion simulation techniques has been used to identify the sources producing the maximum expected ground motion at Potenza and to generate a set of ground motion time histories to be adopted for building damage scenarios. Additionally, site effects, evaluated in a previous work through amplification factors of Housner intensity, have been combined with the bedrock values provided by hazard assessment. Furthermore, a new relationship between Housner and EMS-98 macroseismic intensity has been developed. This relationship has been used to convert the probability mass functions of Housner intensity obtained from synthetic seismograms amplified by the site effects coefficients into probability mass function of EMS-98 intensity. Finally, the Damage Probability Matrices have been applied to estimate the damage levels of the residential buildings located in the urban area of Potenza. The proposed methodology returns the full probabilistic distribution of expected damage, thus avoiding average damage index or uncertainties expressed in term of dispersion indexes.  相似文献   

10.
The paper describes the earthquake performance assessment of two historical buildings located in Istanbul exposed to a Mw = 7+ earthquake expected to hit the city and proposes solutions for their structural rehabilitation and/or strengthening. Both buildings are unreinforced clay brick masonry (URM) structures built in 1869 and 1885, respectively. The first building is a rectangular-shaped structure rising on four floors. The second one is L-shaped with one basement and three normal floors above ground. They survived the 1894, Ms = 7.0 Istanbul Earthquake, during which widespread damage to URM buildings took place in the city. Earthquake ground motion to be used in performance assessment and retrofit design is determined through probabilistic and deterministic seismic hazard assessment. Strength characteristics of the brick walls are assessed on the basis of Schmidt hammer test results and information reported in the literature. Dynamic properties of the buildings (fundamental vibration periods) are measured via ambient vibration tests. The buildings are modelled and analyzed as three-dimensional assembly of finite elements. Following the preliminary assessment based on the equivalent earthquake loads method, the dynamic analysis procedure of FEMA 356 (Pre-standard and commentary for the seismic rehabilitation of buildings, American Society of Civil Engineers, Reston, 2000) and ASCE/SEI 41-06 (Seismic rehabilitation of existing buildings, American Society of Civil Engineers, Reston, 2007) is followed to obtain dynamic structural response of the buildings and to evaluate their earthquake performance. In order to improve earthquake resistance of the buildings, reinforced cement jacketing of the main load carrying walls and application of fiber reinforced polymer bands to the secondary walls are proposed.  相似文献   

11.
The current formulation of Eurocode 8 Part 3 and the Italian building code for the seismic assessment of existing buildings accounts for epistemic (knowledge‐based) uncertainties by means of the identification of knowledge levels with associated values of the so‐called confidence factors, applied only as a reduction of material strengths. This formulation does not always produce consistent results and it does not explicitly account for other sources of uncertainty. The paper proposes a probabilistic methodology for the quantification of appropriately defined factors, allowing consideration of the different sources of uncertainty involved in the seismic assessment of masonry buildings by means of nonlinear static analyses. This simple approach, also including an alternative formulation of the confidence factors related with material properties, allows to obtain results which are consistent with the acquired level of knowledge and correctly account for the different sources of uncertainty without requiring to carry out any stochastic nonlinear analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A primary goal of earthquake engineering is to protect society from the possible negative consequences of future earthquakes. Conventionally, this goal has been achieved indirectly by reducing seismic damage of the built environment through better building codes, or more comprehensibly, by minimizing seismic risk. However, the effect that building damage has on occupants is not explicitly taken into account while designing infrastructure. Consequently, this paper introduces a conceptual framework and numerical algorithm to assess earthquake risk on building occupants during seismic events, considering the evacuation process of the structure. The framework combines probabilistic seismic hazard analysis, inelastic structural response analysis and damage assessment, and couples these results with the response of evacuating agents. The results are cast as probability distributions of variables that measure the overall performance of the system (e.g., evacuation times, number of injured people, and repair costs) for specific time windows. As a testbed, the framework was applied to the response of a reinforced concrete frame building that exemplifies the use of all steps of the methodology. The results suggest that this seismic risk evaluation framework of structural systems that combine the response of a physical model with human agents can be extended to a wide variety of other situations, including the assessment of mitigation actions in communities and people to improve their earthquake resilience. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Between the late nineteenth century and the early twentieth century, Barcelona was expanded, occupying the terrains connecting the old walled city and the nearby towns of the plateau of Barcelona. At that time, a large number of unreinforced masonry buildings were constructed and nowadays many of them are still used as dwellings. Though built individually, these buildings are connected to adjacent buildings, forming blocks composed of aggregates. In order to analyze the seismic behavior of isolated buildings and aggregates, two typical central buildings and one typical corner building have been chosen. The two central buildings and the corner building are referred as C1, C2, and E buildings. Two corner buildings and two central buildings have been connected in order to simulate a block side. This aggregate is referred as AGG and it is composed by the following sequence of individual buildings: E-C1-C2-E. Original plans and drawings of existing buildings are then used to model these buildings. The modeled buildings have five stories. Standard pushover analyses lead to evaluate their seismic performance by means of capacity spectra and fragility curves. The analysis has been carried out in the parallel (Ux) and transversal (Uy) directions to the street. Then, a capacity spectrum based method is used to analyze the seismic behavior of these buildings considered as individual buildings and as an aggregate. Two earthquake scenarios are considered. The first one is a deterministic scenario which is based on a historical earthquake occurred in 1,824, 25 km away from the city and the second one is a probabilistic scenario, which represents the ground motion with a probability of occurrence of 10% in 50 years. The soil local effects have been also considered and both scenarios have been used to assess the expected damage. Four non-null damage states are considered: slight (1), moderate (2), severe (3) and extensive-to-collapse (4). For the type of soil where most of the buildings are, and in the Ux direction, the four buildings show a similar behavior. The mean damage grade is 2.3 for the deterministic scenario and 2.7 for the probabilistic one. This means that moderate to severe damage is expected in both cases; furthermore, in the case of the deterministic scenario more than 10% of the buildings would suffer extensive-to-collapse damage and nearly 20% for the probabilistic scenario, confirming the high vulnerability of such buildings. The differences in the expected damage are due to the significant different characteristics of the response spectra of the earthquake scenarios in the range of the fundamental periods of the buildings.  相似文献   

14.
The seismic evaluation of existing buildings is a more difficult task than the seismic design of new buildings. Non-linear methods are needed if realistic results are to be obtained. However, the application to real complex structures of various evaluation procedures, which have usually been tested on highly idealized structural models, is by no means straightforward. In the paper, a practice-oriented procedure for the seismic evaluation of building structures, based on the N2 method, is presented, together with the application of this method to an existing multi-storey reinforced concrete building. This building, which is asymmetric in plan and irregular in elevation, consists of structural walls and frames. It was designed in 1962 for gravity loads and a minimum horizontal loading (2% of the total weight). The main results presented in terms of the global and local seismic demands are compared with the results of non-linear dynamic response-history analyses. As expected, the structure would fail if subjected to the design seismic action according to Eurocode 8. The shear capacity of the structural walls is the most critical. If the shear capacity of these elements was adequate, the structure would be able to survive the design ground motion according to Eurocode 8, in spite of the very low level of design horizontal forces. The applied approach proved to be a feasible tool for the seismic evaluation of complex structures. However, due to the large randomness and uncertainty which are involved in the determination of both the seismic demand and the seismic capacity, only rough estimates of the seismic behaviour of such structures can be obtained.  相似文献   

15.
This paper investigates the seismic response of multi‐storey cross‐laminated timber (CLT) buildings and its relationship with salient ground‐motion and building characteristics. Attention is given to the effects of earthquake frequency content on the inelastic deformation demands of platform CLT walled structures. The response of a set of 60 CLT buildings of varying number of storeys and panel fragmentation levels representative of a wide range of structural configurations subjected to 1656 real earthquake records is examined. It is shown that, besides salient structural parameters like panel aspect ratio, design behaviour factor, and density of joints, the frequency content of the earthquake action as characterized by its mean period has a paramount importance on the level of nonlinear deformations attained by CLT structures. Moreover, the evolution of drifts as a function of building to ground‐motion periods ratio is different for low‐ and high‐rise buildings. Accordingly, nonlinear regression models are developed for estimating the global and interstorey drifts demands on multi‐storey CLT buildings. Finally, the significance of the results is highlighted with reference to European seismic design procedures and recent assessment proposals.  相似文献   

16.
Seismic design of concrete structures is currently based on time-invariant capacity design criteria which do not account for environmental hazards. The significant progressive decay of strength and ductility of concrete structures exposed to damage, in particular due to reinforcing steel corrosion, shows that this approach should be revised to consider the deterioration over time of the seismic performance. This is important also for precast systems, for which most of structural members are often directly exposed to the atmosphere and environmental aggressiveness. This paper presents a probabilistic approach for the lifetime assessment of seismic performance of concrete structures considering the interaction of seismic and environmental hazards. The effectiveness of the proposed approach is shown by its application to multistory precast buildings exposed to corrosion. The results show that structures designed for the same seismic action could have different lifetime seismic performance depending on the environmental exposure. These results emphasize the importance of a life-cycle approach to both seismic assessment of existing buildings and seismic design of new structures, and indicate that capacity design criteria need to be properly revised to consider the severity of the environmental exposure.  相似文献   

17.
The structure's ability to survive an earthquake may be measured in terms of the expected state of damage of the structure after the earthquake. Damage may be quantified by using any of several damage indices defined as functions whose values can be related to particular structural damage states. A number of available response-based damage indices are discussed and critically evaluated for their applicability in seismic damage evaluation. A new rational approach for damage assessment is presented which provides a measure of the physical response characteristics of the structure and is better suited for non-linear structural analysis. A practical method based on the static pushover analysis is proposed to estimate the expected damage to structures when subjected to earthquakes of different intensities. Results of the analysis of ductile and non-ductile reinforced concrete buildings show that the proposed procedure for damage assessment gives a simple, consistent and rational damage indicator for structures. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The seismic performance assessment of existing masonry buildings involves many uncertainties, whose impact can be reduced to some extent by using non-destructive in-situ tests of such buildings, at least when destructive in-situ tests, which can provide more reliable results, cannot be performed. In this paper the extent of the potential beneficial effects achievable by calibration of a structural model of a building to its experimentally estimated vibration periods has been investigated. This was done by performing measurements of ambient and forced vibrations on an old two-storey masonry building, and by then assessing its seismic performance using a simplified nonlinear method. The results of numerical investigations revealed that the natural vibration periods of such buildings can be reproduced with sufficient accuracy, although it is possible that they will be overestimated or underestimated by analysts by up to around 40 %. This means that the accuracy of the prediction of the intermediate results of the seismic performance assessment of any particular building can be significantly increased by calibration of the structural model. Additionally, the beneficial effects of such calibration were observed even in the case of the final outcome of the nonlinear analysis, which is expressed through the near-collapse limit state capacity in terms of the peak ground acceleration.  相似文献   

19.
20.
An approximate seismic risk assessment procedure for building structures, which involves pushover analysis that is performed utilizing a deterministic structural model and uncertainty analysis at the level of the equivalent SDOF model, is introduced. Such an approach is computationally significantly less demanding in comparison with procedures based on uncertainty analysis at the level of the entire structure, but still allows for explicit consideration of the effect of record‐to‐record variability and modelling uncertainties. A new feature of the proposed pushover‐based method is the so‐called probabilistic SDOF model. Herein, the proposed methodology is illustrated only for reinforced concrete (RC) frames, although it could be implemented in the case of any building structure, provided that an appropriate probabilistic SDOF model is available. An extensive parametric analysis has been performed within the scope of this study in order to develop a probabilistic SDOF model, which could be used for the seismic risk assessment of both code‐conforming and old, that is, non code‐conforming RC frames. Based on the results of risk analysis for the four selected examples, it is shown that the proposed procedure can provide conservative estimates of seismic risk with reasonable accuracy, in spite of the employed simplifications and the relatively small number of Monte Carlo simulations with Latin hypercube sampling, which are performed at the level of the SDOF model. An indication of the possible default values of dispersion measures for limit‐state intensities in the case of low to medium‐height RC frames is also presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号