首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The complete solution is presented for the transient effects of pumping fluid from a point sink embedded in a saturated, porous elastic half-space. It is assumed that the medium is homogeneous and isotropic with respect to its elastic properties and homogeneous but anisotropic with respect to the flow of pore fluid. The soil skeleton is modelled as a linear elastic material obeying Hooke's law, while the pore fluid is assumed to be incompressible with its flow governed by Darcy's law. The solution has been evaluated for a particular value of Poisson's ratio of the solid skeleton, i.e. 0.25, and the results have been presented graphically in the form of isochrones of excess pore pressure and surface profile for the half-space. The solutions presented may have application in practical problems such as dewatering operations in compressible soil and rock masses.  相似文献   

2.
The theory of consolidation is extended to partly saturated clay soils, and formulated for finite element analyses. This formulation couples the effects of both stress and flow. It takes account of variations of this permeability of the soil and compressibility of the pore fluid with changes in void ratio, and the non-linear stress–strain behaviour of soil. The Cam Clay model is revised to model the stress–strain behaviour of compacted soils. The compressibility of pore fluid is derived using Boyle's Law and Henry's Law, taking into account the effect of surface tension. An empirical equation is developed for permeability of pore fluid. An example of settlement of a footing on partly saturated soil is described and discussed.  相似文献   

3.
A theoretical formulation and a numerical solution method are proposed for the problem of the time dependent consolidation of an elasto-plastic soil subject to finite deformations. The soil is assumed to be a two-phase material with a skeleton which may yield according to a general yield criterion with plastic flow governed by a general flow law, and whose pore fluid flows according to Darcy's Law. Governing equations are cast in a rate form and constitutive laws are expressed in a frame indifferent manner. The method of analysis is illustrated by several examples of practical interest for both a soil with an elastic skeleton and a soil with an elasto-plastic skeleton which obeys a Morh–Coulomb yield criterion and a non-associated flow law.  相似文献   

4.
基于Biot固结理论,考虑了土体和孔隙流体压缩性,通过对控制方程的解耦,得到在横观各向同性饱和土体中圆形隧洞边界上作用随时间变化的轴对称荷载或流体压力所引起的应力、位移和孔隙水压力场在拉普拉斯变换域中的解析表达式,运用拉普拉斯数值逆变换进行算例分析,得到在时间域中的解,讨论了单级加载和循环加载对计算结果的影响,并与瞬时加载条件下的结果进行了比较。同时也分析了土体的横观各向同性性质对应力、位移和孔隙水压力场的影响。  相似文献   

5.
A numerical model, called CCPF1 (C onsolidation with C ompressible P ore F luid 1 ), is presented for one‐dimensional large strain consolidation of a saturated porous medium with compressible pore fluid. The algorithm includes all the capabilities of a previous large strain consolidation code, CS2, written for incompressible pore fluid. In addition, fluid density and fluid viscosity are functions of fluid pressure in CCPF1. Generalization of the numerical approach to accommodate these functions requires several modifications to the CS2 method, including phase relationships, intrinsic permeability, pore pressure, fluid potential, and mass flux. Inertial forces are neglected and isothermal conditions are assumed. The development of CCPF1 is first presented, followed by an example that illustrates the effects of pore fluid compressibility on the mechanics of consolidation of saturated porous media. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
An analytical solution is proposed for transient flow and deformation coupling of a fluid‐saturated poroelastic medium within a finite two‐dimensional (2‐D) rectangular domain. In this study, the porous medium is assumed to be isotropic, homogeneous, and compressible. In addition, the point sink can be located at an arbitrary position in the porous medium. The fluid–solid interaction in porous media is governed by the general Biot's consolidation theory. The method of integral transforms is applied in the analytical formulation of closed‐form solutions. The proposed analytical solution is then verified against both exact and numerical results. The analytical solution is first simplified and validated by comparison with an existing exact solution for the uncoupled problem. Then, a case study for pumping from a confined aquifer is performed. The consistency between the numerical solution and the analytical solution confirms the accuracy and reliability of the analytical solution presented in this paper. The proposed analytical solution can help us to obtain in‐depth insights into time‐dependent mechanical behavior due to fluid withdrawal within finite 2‐D porous media. Moreover, it can also be of great significance to calibrate numerical solutions in plane strain poroelasticity and to formulate relevant industry norms and standards. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
An exact steady‐state closed‐form solution is presented for coupled flow and deformation of an axisymmetric isotropic homogeneous fluid‐saturated poroelastic layer with a finite radius due to a point sink. The hydromechanical behavior of the poroelastic layer is governed by Biot's consolidation theory. Boundary conditions on the lateral surface are specifically chosen to match the appropriate finite Hankel transforms and simplify the transforms of the governing equations. Ordinary differential equations in the transformed domain are solved, and then the analytical solutions in the physical space for the pore pressure and the displacements are finally obtained by using finite Hankel inversions. The analytical solutions at some special locations such as the top and bottom surfaces, lateral surface, and the symmetrical axis are given and analyzed. And a case study for the consolidation of a water‐saturated soft clay layer due to pumping is conducted. The analytical solution is verified against the finite element solution. Meanwhile, an analysis of coupled hydromechanical behavior is carried out herein. The presented analytical solution is an exact solution to the practical poroelastic problem within an axisymmetric finite layer. It can provide us a better understanding of the poroelastic behavior of the finite layer due to fluid extraction. Besides, it can be applied to calibrate numerical schemes of axisymmetric poroelasticity within finite domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
An analytical solution to the two-dimensional wave propagation in fluid-saturated half-space subjected to a strip load with vertical harmonic oscillation at the surface is presented. The basic equations have been derived on the basis of Biot's linear theory of poro-elasticity and then solved using Fourier complex transform for the horizontal direction. The importance of a number of soil characteristics including compressibility, degree of saturation and soil permeability has been examined. It is shown that the effect of pore fluid is dominant only for fully saturated soils with incompressible solid grains and low permeability. For partially saturated, compressible or very permeable soils, the stresses would be mainly transferred to solid part and there will be considerable reduction in pore pressure amplitude.  相似文献   

9.
This paper presents an exact analytical solution to fully coupled axisymmetric consolidation of a semi‐infinite, transversely isotropic saturated soil subjected to a uniform circular loading at the ground surface. The analysis is under the framework of Biot's general theory of consolidation. First, the governing equations of consolidation are transformed into a set of equivalent partial differential equations with the introduction of two auxiliary variables. These partial differential equations are then solved using Hankel–Laplace integral transforms. Once solutions in the transformed domain have been obtained, the actual solutions in the physical domain for displacements and stress components of the solid matrix, pore‐water pressure and fluid discharge can be finally obtained by direct numerical inversion. The accuracy of the numerical solutions developed is confirmed by comparison with an existing exact solution for an isotropic and saturated soil that is a special case of the more general problem addressed. Numerical analyses are also presented to investigate the influence of the degree of material anisotropy on the consolidation settlement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
变荷载作用下轴对称饱和半空间均质地基Biot固结分析   总被引:3,自引:0,他引:3  
耿雪玉  蔡袁强 《岩土力学》2009,30(8):2264-2270
基于Biot固结理论,对随时间变化的变荷载作用下轴对称饱和半空间均质地基固结问题进行了分析。引入状态变量,利用Laplace-Haknel联合变换法,求解了状态方程,得到变荷载作用下饱和土骨架位移、应力、孔隙水压力及渗流量的一般积分形式解,通过算例详细分析了变荷载作用下二维地基固结问题。结果表明,对缓加荷载作用下地基,只有加载较快时,在地基较深处才有明显的Mandel-Cryer效应出现。在循环荷载作用下,多维固结情况下会出现负孔压现象。  相似文献   

11.
层状可压缩岩基三维固结问题的状态空间解   总被引:1,自引:0,他引:1  
胡云世  苏辉  成怡冲  艾智勇 《岩土力学》2011,32(Z1):176-180
采用状态空间法求解层状可压缩岩基的三维固结问题。首先从直角坐标系下考虑可压缩性的三维Biot固结问题的控制方程出发,通过Laplace-Fourier变换得到状态空间方程,解此方程并通过Cayley-Hamilton定理,得到单层可压缩岩基三维固结问题的传递矩阵;然后利用传递矩阵法,结合层间连续性条件和边界条件,得到了层状可压缩岩基三维固结问题在积分变换域内的解答;最后应用Laplace-Fourier逆变换技术,得到层状可压缩岩基三维固结问题在物理域内的理论解答。编制了相应的计算程序,进行了数值计算与分析,证明了压缩性对岩基固结问题的影响  相似文献   

12.
苏万鑫  谢康和 《岩土力学》2010,31(8):2661-2665
对采用混合可压缩流体方法分析非饱和土一维固结问题的固结方程进行了求解,在得到的解析解的基础上,对影响非饱和土一维固结的因素进行了分析。分析结果表明,在采用混合流体方法计算非饱和土一维固结的孔隙水压力时,所用公式与计算饱和土一维固结的太沙基理论公式基本相同,不同之处在于引入Bishop有效应力系数来体现孔隙气对孔隙水的影响。而在非饱和土孔隙气压的计算公式中除了体现孔隙水对孔隙气的影响参数以外,还有体现孔隙气体的可压缩性对固结影响的参数。在所有影响因素中,影响非饱和土一维固结最重要的因素是孔隙流体的渗流路径。  相似文献   

13.
An analytical solution of the plane strain problem of the deformation of a homogeneous, isotropic, poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half‐space due to two‐dimensional seismic sources buried in the elastic half‐space has been obtained. The integral expressions for the displacements, stresses and pore pressure have been obtained using the stress function approach by applying suitable boundary conditions at the free surface and the interface. The solution obtained is in the Laplace–Fourier transform domain. The case of a vertical dip‐slip line dislocation for the oceanic crust model of Earth is studied in detail. Schapery's formula is used for the Laplace inversion and the extended Simpson's formula for the Fourier inversion. Diffusion of pore pressure in the layer is studied numerically. Contour maps showing the pore pressure in the poroelastic layer have been plotted. The effect of the compressibility of the solid and fluid constituents on pore pressure has also been studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The disturbance of a clay mass, due to either the installation of a driven pile or the expansion of a pressuremeter membrane, is often modelled as a cylindrical cavity expansion. In addition, it is usual (and convenient) to assume that the expansion occurs under conditions of plane strain. For this problem a method of analysis is presented which considers the soil to be a saturated two-phase material with a pore fluid which flows according to Darcy's Law. Non-linearity in material behaviour is permitted as long as the effective stress–strain law can be written in an incremental or rate form. The use of a consolidation analysis allows the changes in effective stress and pore pressure to be determined at any stage during both the cavity expansion and the subsequent period of reconsolidation. Expansions may occur at any prescribed rate, including the very fast (undrained) and the very slow (fully drained) case. The technique is illustrated by considering the expansion of a cavity in two different types of elastoplastic soil. It is shown how these solutions may be used to model the disturbance of the soil due to pile driving.  相似文献   

15.
The construction of diaphragm wall panels can cause the stress change and soil movements in adjacent ground. In this paper, the construction sequence of a typical diaphragm wall panel in saturated soft clay is simulated with a 3D finite element program. The soil is assumed to behave as an isotropic linear elastic/Mohr–Coulomb plastic material with a soil–water coupled consolidation response. Influence of the pore water pressure is concerned to consider the consolidation behavior of the saturated soft clay. The analysis shows that the changes in effective horizontal stress and pore water pressure during diaphragm wall installation depend on arching mechanism and permeability. The variation in stresses and movements of ground computed by the coupled consolidation analysis and the total stress analysis are compared. Influences of the permeability coefficient on the installation effects are discussed by parametric studies. Finally, a case study of a diaphragm wall construction in Shanghai, in which the ground settlements were monitored, is presented to illustrate the prediction procedure of coupled consolidation analysis.  相似文献   

16.
考虑非Darcy渗流时循环荷载下饱和黏土一维固结分析   总被引:1,自引:0,他引:1  
考虑到土体处于超固结状态下的压缩性一般要比正常固结状态下的低,引入描述非Darcy渗流的Hansbo方程,修正了Terzaghi饱和黏土一维固结方程,并将其推广到低频循环荷载作用的情况。采用有限体积法对该方程进行了求解,并讨论了非Darcy渗流参数、循环荷载周期以及超固结状态下土体压缩性对固结进程的影响。计算结果表明,在矩形波载作用下,按孔压定义和按变形定义的固结度都随时间增长而震荡增加,且按孔压定义的固结度的震荡幅度明显大于按变形定义的固结度。另外,非Darcy渗流减缓了地基的沉降速率,且循环荷载周期越短,或超固结状态下压缩性越高,地基的沉降速率就越慢。  相似文献   

17.
二维饱和多孔介质因点汇诱发比奥固结的解析解   总被引:1,自引:0,他引:1  
李培超 《岩土力学》2011,32(9):2688-2691
给出了有限二维饱和多孔介质因点汇诱发的Biot固结的一个解析解。其中假设多孔介质为均匀各向同性和线弹性,假设孔隙压力场符合第1类边界条件,数学模型采用可压缩多孔介质模型。利用傅里叶和拉普拉斯变换及相应反演获得了双重无穷项级数和形式的精确解。然后特别探讨了定流量点汇诱发的稳态解析解,并用文献现有解析解进行了验证。所提出的解析解适合于验证数值解,并可用于深入分析有限二维多孔介质的流-固耦合行为。  相似文献   

18.
An analytical solution is presented in this paper to study the time‐dependent settlement behaviour of a rigid foundation resting on a transversely isotropic saturated soil layer. The governing equations for a transversely isotropic saturated soil, within Biot's poroelasticity framework, are solved by means of Laplace and Hankel transforms. The problem is subsequently formulated in the Laplace transform domain in terms of a set of dual integral equations that are further reduced to a Fredholm integral equation of the second kind and solved numerically. The developed analytical solution is validated via comparison with the existing analytical solution for an isotropic saturated soil case, and adopted as a benchmark to examine the sensitivities of the mesh refinement and the locations of truncation boundaries in the finite element simulations using ABAQUS. Particular attention is paid to the influences of the degree of soil anisotropy, boundary drainage condition, and the soil layer thickness on the consolidation settlement and contact stress of the rigid foundation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
变荷载下基于指数渗流双层地基一维固结分析   总被引:1,自引:0,他引:1  
在土中渗流服从指数形式的前提下,建立了变荷载作用下双层地基的一维固结控制微分方程。利用有限差分法求得孔隙水压力的数值解,并通过与解析解对比对其可靠性进行了验证。对双层地基在指数形式渗流时不同参数下的固结性状进行分析,结果表明:单面排水条件下,双层地基中上层土渗流指数的大小对固结速率起决定性作用,而下层土渗流指数大小对固结速率的影响很小;如果上、下两层土体的压缩性不同,则地基按变形定义的平均固结度和按孔压定义的平均固结度不再相等;地基中下层土与上层土的相对压缩性越低、相对渗透性越高,则地基的固结速率越快;增大压缩性小、渗透性高的土层相对厚度,会加快双层地基的固结速率。  相似文献   

20.
The goal of the paper is to determine the most efficient, yet accurate and stable, finite element nonlinear solution method for analysis of partially saturated deformable porous media at small strain. This involves a comparison between fully implicit, semi‐implicit, and explicit time integration schemes, with monolithically coupled and staggered‐coupled nonlinear solution methods and the hybrid combination thereof. The pore air pressure pa is assumed atmospheric, that is, pa=0 at reference pressure. The solid skeleton is assumed to be pressure‐sensitive nonlinear isotropic elastic. Coupled partially saturated ‘consolidation’ in the presence of surface infiltration and traction is simulated for a simple one‐dimensional uniaxial strain example and a more complicated plane strain slope example with gravity loading. Three mixed plane strain quadrilateral elements are considered: (i) Q4P4; (ii) stabilized Q4P4S; and (iii) Q9P4; “Q” refers to the number of solid skeleton displacement nodes, and “P” refers to the number of pore fluid pressure nodes. The verification of the implementation against an analytical solution for partially saturated pore water flow (no solid skeleton deformation) and comparison between the three time integration schemes (fully implicit, semi‐implicit, and explicit) are presented. It is observed that one of the staggered‐coupled semi‐implicit schemes (SIS(b)), combined with the fully implicit monolithically coupled scheme to resolve sharp transients, is the most efficient computationally. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号