首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, more high quality zircon U-Pb ages have been obtained from Neoproterozoic strata in the South China continental block. A refined chronostratigraphic framework is being set up on these data. A basis of the high quality chronostratigraphic system is fundamental for global Precambrian study and strata correlation. Our recent geological studies focus on systematic SHRIMP zircon dating. We will refine the chronostratigraphic framework of the Neoproterozoic and the start time of the cover beds of the Shuangqiaoshan Group basing on the new SHRIMP zircon ages from the volcanic ash beds in the Hengyong and Anlelin formations. Accordingly, we will also discuss Neoproterozoic tectonostratigraphy in South China  相似文献   

2.
中国东北地区蛇绿岩   总被引:2,自引:10,他引:2  
我国东北地区位于中亚造山带的东段,经历了复杂的增生造山过程,其所属微陆块的基底属性及拼贴位置、洋-陆转换一直是地学界研究的热点。根据近年来的研究进展,我们将东北地区微陆块划分为额尔古纳地块、兴安增生地体、松嫩-锡林浩特地块和佳木斯地块。同时综述了东北地区蛇绿岩/蛇绿混杂岩带的时空分布、年代学及地球化学的新资料,讨论了其构造背景及俯冲-增生过程。东北地区增生造山不仅涉及古亚洲洋和古太平洋,还可能与泛大洋有关,包括早奥陶世-晚三叠世古亚洲洋主洋盆及古亚洲洋分支——新元古代-晚寒武世新林-喜桂图洋、早寒武世-晚石炭世嫩江洋、新元古代-晚志留世黑龙江洋和晚二叠世-中侏罗世牡丹江洋的演化。早石炭世末-晚石炭世初,东北地区古亚洲洋分支洋盆全部闭合,所有微陆块完成聚合形成统一的东北陆块群。晚二叠世-早三叠世时期,古亚洲洋主洋盆沿索伦-西拉木伦-长春-延吉缝合带自西向东从早到晚以剪刀式最终闭合,完成东北陆块群与华北板块的拼接。晚三叠世-早侏罗世时期古太平洋板块俯冲启动,东北地区进入古太平洋俯冲增生构造体系。  相似文献   

3.
The recently identified Huashan ophiolitic melange was considered as the eastern part of the Mianliie suture in the Qinling orogenic belt. SHRIMP zircon U-Pb geochronology on gabbro from the Huashan ophiolite and granite intruding basic volcanic rocks indicates crystallization ages of 947±14 Ma and 876±17 Ma respectively. These ages do not support a recently proposed Hercynian Huashan Ocean, but rather favor that a Neoproterozoic suture assemblage (ophiolite) is incorporated into the younger (Phanerozoic) Qinling orogenic belt.  相似文献   

4.
5.
A number of geological studies have already been conducted on the Zambales Ophiolite Complex (ZOC), a north-south trending complete ophiolite sequence exposed in the western portion of Central Luzon, Philippines. Previous works recognized the ZOC as being made up of two blocks, the Acoje and the Coto, acting as an arc-back arc pair sometime during the Eocene.  相似文献   

6.
薛怀民  马芳  宋永勤  谢亚平 《岩石学报》2010,26(11):3215-3244
江南造山带东段发育了一系列新元古代的花岗岩类侵入体,本文用LA-ICP-MS锆石U-Pb法对区内出露的主要岩体(包括许村岩体、歙县岩体、休宁岩体、灵山岩体、莲花山岩体、石耳山岩体)进行了定年,并分析了这些岩体代表性样品的主量和微量元素含量。结果表明,区内的花岗岩类侵入体分属S-型和A-型两类,前者属于同造山的岩浆岩,成分主要为花岗闪长质;后者为晚造山的岩浆岩,成分为花岗质。S-型花岗闪长质岩浆是在碰撞、地壳加厚后由不成熟的变质沉积-火山岩系经减压熔融形成的。由同造山到晚造山阶段,随着地壳应力由挤压转为拉张,所形成的A-型花岗岩中有明显的新生地幔物质的加入。两类岩体的空间分布有明显的规律,且随时间具有明显的向南(大洋侧)迁移的趋势。同造山的S-型花岗闪长质侵入体均分布在皖南蛇绿混杂岩带的北侧(及缝合带内),其中空间位置最北突的许村岩体的侵位时间最早,为850±10Ma;位于皖南蛇绿混杂岩带内,具有同构造特点的歙县岩体的侵位时间为838±11Ma;同样侵位于该缝合带内,具有晚构造特点的休宁岩体的侵位时间为826±6Ma。而晚造山的A型花岗岩均分布在该缝合带的南侧,其中灵山岩体和莲花山岩体的侵位年龄分别为823±18Ma和814±26Ma,两者的侵位时间在误差范围内一致。后造山裂谷环境下形成的石耳山花岗斑岩的年龄为785±11Ma。我们认为江南造山带形成于新元古代,造山过程具有多岛弧拼贴、多缝合的特点。不同缝合带上洋盆闭合的时间存在着差异,最早闭合的可能是赣东北带(蛇绿岩套)、其次是江山-绍兴带,最后是皖南带(歙县蛇绿岩套)。不同缝合带上发育的岛弧型火山岩在地球化学性质上存在着明显的差异,前两者是在洋壳基础上发育起来的,而后者是在不成熟的陆壳基础上发育起来的。江南造山带形成后不久,其南侧即遭受到后造山裂谷(南华裂谷系?)作用的破坏,只是到了早古生代末期(加里东期)扬子克拉通与华夏地块之间的裂谷才最终闭会形成华南统一大陆。  相似文献   

7.
在赣东北蛇绿岩带中的樟树墩地区新发现新元古代高镁安山岩,其LA-ICP-MS锆石U-Pb法年龄为794.8±6.0 Ma。它们的Si O2介于54.90%~58.45%,Al2O3介于15.31%~16.77%(平均小于16%);Ca O为2.46%~6.73%,Fe OT/Mg O变化于0.87~1.20,具有高Mg O(6.39%~8.76%)、高Mg#(64~71)特点;富集轻稀土元素且具弱负Eu异常,明显富集LILE而亏损HFSE,Sr含量(普遍200×10-6)和Sr/Y比值(4.11~7.29)均较低,具有典型高镁安山岩的地球化学特征,类似于日本Setouchi火山带的Sanukitoids。锆石εHf(t)值介于10.23~17.79之间,反映它们起源于亏损地幔。主、微量及同位素特征均表明,本区高镁安山岩是被俯冲板片释放的含水流体交代的地幔楔部分熔融的产物,形成于大洋岛弧(洋内弧)环境,指示赣东北地区在约800Ma前时仍存在洋壳俯冲,双溪坞弧尚未增生到扬子东南缘,暗示扬子和华夏两大陆块此时尚未碰撞拼合。  相似文献   

8.
新元古时期中国华南和华北陆块的相对位置及构造意义   总被引:2,自引:0,他引:2  
张文治 《华北地质》2002,25(2):120-128
作者试图抛开Rodinia超大陆的概念,从我国现有的新元古-早古生代的古地磁数据出发,利用挪威地质调查所提供的"GMAP程序作图,探讨新元古时期华南和华北陆块的古位置及它们之间的关系,以及与澳大利亚的相对位置.  相似文献   

9.
扬子和华夏两大陆块是构成华南大陆的最基本单元, 但它们的拼合带位置(尤其是西延位置)是人们长期争论的焦点。本文以国家专项“深部探测技术与实验研究”探测得到的深反射地震剖面以及华南大陆的地质资料为约束, 对重、 磁异常作地壳构造融合解译, 追踪扬子—华夏陆块拼合带。由于华南大陆广泛发育具有剩磁多期、 多类的火山—侵入岩, 本文将磁异常换算为受剩磁影响小的解析信号作构造解译, 减小剩磁造成的地质解释偏差。研究认为, 扬子与华夏两陆块的拼合带东界为鹰潭—萍乡—衡阳—贺州—北海一线, 而西界为宜昌—张家界—铜仁—都匀—百色一线, 鹰潭以东和以北的拼合带位置因为受大规模岩浆岩的干扰而不清。  相似文献   

10.
Jun-Hong Zhao  Mei-Fu Zhou 《Lithos》2008,104(1-4):231-248
Numerous Neoproterozoic felsic and mafic–ultramafic intrusions occur in the Hannan region at the northern margin of the Yangtze Block. Among these, the Wudumen and Erliba plutons consist of granodiorites and have SHRIMP zircon U–Pb ages of  735 Ma. The rocks have high K2O (0.8–3.6 wt.%) and Na2O (4.4–6.4 wt.%) and low MgO (0.4–1.7 wt.%). They also have high Sr/Y (32–209) and (La/Yb)n ratios (4.4–38.6). Their εNd values range from − 0.41 to − 0.92 and zircon initial 176Hf/177Hf ratios from 0.282353 to 0.282581. These geochemical features are similar to those of adakitic rocks produced by partial melting of a thickened lower crust. Our new analytical results, combined with the occurrence of voluminous arc-related mafic–ultramafic intrusions emplaced before 740 Ma, lead us to propose that the crustal evolution in the northern margin of the Yangtze Block during Neoproterozoic involved: (1) rapid crustal growth and thickening by underplating of mafic magmas from the mantle which was modified by materials coming from the subducting oceanic slab from  1.0 to  0.74 Ga, and (2) partial melting of the thickened lower crust due to a thermal anomaly induced by upwelling of asthenosphere through an oceanic slab window, producing the  735 Ma adakitic Wudumen and Erliba plutons. Our model suggests that the crustal thickness was more than 50 km at the northern margin of the Yangtze Block at  735 Ma, and rule out the possibility of a mantle plume impact causing the > 735 Ma magmatism in the region.  相似文献   

11.
滇东南屏边地区的基底组成一直是个谜。该区域的构造属性对约束扬子地块和华夏地块的西段界线非常重要。本文 对出露于该地区的震旦-寒武纪沉积岩进行了碎屑锆石U-Pb-Hf同位素分析。二个样品的锆石U-Pb同位素分析显示这二个 地层中的碎屑物质组成相似,都是以新元古代(700~937 Ma)碎屑物质为主,构成了~815 Ma的主峰。岩石中都含有少量 古-中元古代碎屑物质。屏边群沉积岩样品六个最年轻谐和锆石年龄变化于696~761 Ma,指示屏边形成于新元古代晚期, 与震旦系相当。屏边地区基底变质沉积岩的碎屑锆石年龄谱为一明显富集新元古代年龄的单峰模式,不同于华夏地块和印 支地块的年龄谱,而与扬子地块南缘及扬子西缘的沉积岩相似。Hf同位素特征也显示了与扬子地块(尤其是西缘)的亲缘 关系。结合其他证据,本文认为滇东南屏边地区属于扬子地块,扬子地块与华夏地块分界线的西延部分应该在研究区以南 或东南,而不可能是研究区以北的师宗-弥勒-罗甸断裂。碎屑锆石年龄分布特征还指示屏边群这套浅变质碎屑岩沉积于弧 后盆地,暗示扬子地块西南缘的新元古代俯冲作用可能一直持续到~752 Ma之后。  相似文献   

12.
南秦岭城口火山岩锆石LA-ICP-MS U-Pb定年和地球化学研究   总被引:3,自引:0,他引:3  
南秦岭大巴山城口断裂带出露一套玄武安山岩、安山岩组合,火山岩锆石LA-ICP-MS U-Pb定年测试结果为716±4Ma,表明其为新元古代岩浆产物;岩石地球化学研究表明火山岩富集轻稀土元素,原始地幔标准化微量元素蛛网图显示以富集大离子亲石元素Cs、Ba、Th、U及高场强元素分异为特征,Nb、Ta强烈亏损以及低的Ti(Ti O_20.85%)含量,与典型的岛弧火山岩相似;微量元素La/Nb、Th/Yb及Hf/Ta比值特征也显示岛弧岩浆属性,相对高的Zr/Y、Ta/Yb和低的Zr/Nb比值区别于大洋岛弧火山岩,具有明显的大陆亲缘性,表明城口火山岩形成于陆缘岛弧环境。综合已有的地质、地球化学及同位素年代学研究表明新元古代晚期扬子板块北缘及南秦岭地区为一活动陆缘岩浆杂岩弧,暗示中国华南板块很可能位于Rodinia超大陆的边缘部位。  相似文献   

13.
The Naga Hills Ophiolite(NHO) represents one of the fragments of Tethyan oceanic crust in the Himalayan Orogenic system which is exposed in the Phek and Kiphire districts of Nagaland, India. The NHO is composed of partially serpentinized dunite, peridotite, gabbro, basalt, minor plagiogranite,diorite dyke and marine sediments. The basalts are mainly composed of fine grained plagioclase feldspar, clinopyroxene and orthopyroxene and show quenching and variolitic textures. The gabbros are characterized by medium to coarse grained plagioclase, orthopyroxene and clinopyroxene with ophitic to sub-ophitic textures. The ultramafic cumulates are represented by olivine, Cpx and Opx.Geochemically, the basalts and gabbros are sub-alkaline to alkaline and show tholeiitic features.The basalts are characterized by 44.1-45.6 wt.% of SiO_2 with 28-38 of Mg#, and the gabbros by38.7-43.7 wt.% of SiO_2, and 26-79 of Mg#. The ultramafic rocks are characterized by 37.4-52.2 wt.% of SiO_2, and 80-88 of Mg#. In multi-element diagrams(spidergrams) both basalts and gabbros show fractionated trends with strong negative anomalies of Zr. Nb. Sr and a gentle negative anomaly of P.However, the rare earth element(REE) plots of the basalts and gabbros show two distinct patterns. The first pattern, represented by light REE(LREE) depletion, suggests N-MORB features and can be interpreted as a signature of Paleo-Tethyan oceanic crust. The second pattern, represented by LREE enrichment with negligible negative Eu anomaly, conforms to E-MORB, and may be related to an arc tectonic setting. In V vs. Ti/1000, Cr vs. Y and AFM diagrams, the basalts and gabbros plot within Island Arc Tholeiite(IAT) and MORB fields suggesting both ridge and arc related settings. The ultramafic rocks exhibit two distinct patterns both in spidergrams and in REE plots. In the spidergram, one group displays highly enriched pattern, whereas the other group shows near flat pattern compared to primordial mantle. In the REE plot, one group displays steeper slopes [(La/Yb)N = 4.340-4.341], whereas the other displays moderate to flat slopes [(La/Yb)N = 0.97-1.67] and negative Eu-anomalies. Our study suggests that the ultramafic rocks represent two possible mantle sources(fertile and refractory).  相似文献   

14.
Mesozoic magmatism is widespread in the eastern South China Block and has a close genetic relationship with intensive polymetallic mineralization. However, proper tectonic driver remains elusive to reconcile the broad intracontinental magmatic province. This study presents integrated zircon U-Pb dating, Hf isotopes and whole-rock geochemistry of the Xiwan dioritic porphyry in the NE Jiangxi ophiolitic mélange. Zircon U-Pb dating by SIMS and LA-ICP-MS methods yielded an emplacement age of ~160 Ma for the Xiwan diorite, confirming its inclusion into the Mesozoic magmatic province in SE China, instead of a component of the Neoproterozoic ophiolitic mélange genetically. The dioritic rocks have low Si02(58.08 wt%-59.15 wt%), and high Na_2 O(5.00 wt%-5.21 wt%) and MgO(4.60 wt%-5.24 wt%) contents with low TFeO/MgO ratios(1.02-1.09). They show an adakitic geochemical affinity but exhibit relatively low Sr/Y ratios(24.8-31.1) and high Y contents(14.6-18.3 ppm) compared to the Dexing adakitic porphyries. In addition, the Xiwan diorites have moderately evolved zircon Hf isotopic compositions(ε_(Hf)(t)=-6.1--0.1; T_(DM2)=1597-1219 Ma). These elemental and isotopic signatures suggest that the Xiwan diorite formed through partial melting of a remnant arc lower crust(i.e., early Neoproterozoic mafic arc-related rocks) in response to the underplating of coeval mafic magmas. In conjunction with the temporal-spatial distribution and complex geochemical characteristics of the Mesozoic magmatism, our case study attests to the feasibility of a flat-slab subduction model in developing the broad intracontinental magmatic province in SE China. The flat-slab delamination tends to trigger an asthenospheric upwelling and thus results in extensive partial melting of the overlying lithospheric mantle and lower crustal materials in an extensional setting during the Mesozoic.  相似文献   

15.
华南新元古代花岗岩的锆石U-Pb年龄及其构造意义   总被引:45,自引:0,他引:45  
SHRIMP锆石U Pb年龄测定结果表明 ,云南峨山、江西九岭和安徽许村等 3个岩体的形成年龄分别为818± 10Ma、818± 10Ma和 82 9± 11Ma ,与广西北部的本洞、三防、元宝山、湖北的黄陵岩体以及的广西北部的基性岩墙的年龄完全一致 ,表明在 82 0~ 830Ma期间 ,扬子克拉通在广大区域内几乎同时发生了广泛的地壳重熔和幔源基性岩浆活动。虽然这些花岗岩的类型不同 ,但它们的形成时代相当一致 ,表明这些不同类型的花岗岩应形成于相同或相关的构造环境 ,很可能是地幔柱活动导致下地壳重熔的产物。  相似文献   

16.
The amalgamation of South (SCB) and North China Blocks (NCB) along the Qinling‐Dabie orogenic belt involved several stages of high pressure (HP)‐ultra high pressure (UHP) metamorphism. The new discovery of UHP metamorphic rocks in the North Qinling (NQ) terrane can provide valuable information on this process. However, no precise age for the UHP metamorphism in the NQ terrane has been documented yet, and thus hinders deciphering of the evolution of the whole Qinling‐Dabie‐Sulu orogenic belt. This article reports an integrated study of U–Pb age, trace element, mineral inclusion and Hf isotope composition of zircon from an eclogite, a quartz vein and a schist in the NQ terrane. The zircon cores in the eclogite are characterized by oscillatory zoning or weak zoning, high Th/U and 176Lu/177Hf ratios, pronounced Eu anomalies and steep heavy rare earth element (HREE) patterns. The zircon cores yield an age of 796 ± 13 Ma, which is taken as the protolith formation age of the eclogite, and implies that the NQ terrane may belong to the SCB before it collided with the NCB. The ?Hf(t) values vary from ?11.3 to 3.2 and corresponding two‐stage Hf model ages are 2402 to 1495 Ma, suggesting the protolith was derived from an enriched mantle. In contrast, the metamorphic zircon rims show no zoning or weak zoning, very low Th/U and 176Lu/177Hf ratios, insignificant Eu anomalies and flat HREE patterns. They contain inclusions of garnet, omphacite and phengite, suggesting that the metamorphic zircon formed under eclogite facies metamorphic conditions, and their weighted mean 206Pb/238U age of 485.9 ± 3.8 Ma was interpreted to date the timing of the eclogite facies metamorphism. Zircon in the quartz vein is characterized by perfect euhedral habit, some oscillatory zoning, low Th/U ratios and variable HREE contents. It yields a weighted mean U–Pb age of 480.5 ± 2.5 Ma, which registers the age of fluid activity during exhumation. Zircon in the schist is mostly detrital and U–Pb age peaks at c. 1950 to 1850, 1800 to 1600, 1560 to 1460 and 1400 to 1260 Ma with an oldest grain of 2517 Ma, also suggesting that the NQ terrane may have an affinity to the SCB. Accordingly, the amalgamation between the SCB and the NCB is a multistage process that spans c. 300 Myr, which includes: the formation of the Erlangping intra‐oceanic arc zone onto the NCB before c. 490 Ma, the c. 485 Ma crustal subduction and UHP metamorphism of the NQ terrane, the c. 430 Ma arc‐continent collision and granulite facies metamorphism, the 420 to 400 Ma extension and rifting in relation to the opening of the Palaeo‐Tethyan ocean, the c. 310 Ma HP eclogite facies metamorphism of oceanic crust and associated continental basement, and the final 250 to 220 Ma continental subduction and HP–UHP metamorphism.  相似文献   

17.
The Taoshan uranium ore district is one of the most important granite-hosted uranium producers in South China. The Taoshan granitic complex can be petrographically classified into several units of Caijiang, Huangpi, Daguzhai, and Luobuli, but the uranium deposits only occur within the Daguzhai granite unit. LA-ICP-MS zircon U–Pb dating indicates that both the Daguzhai granite and the Huangpi granite were emplaced at 154 ± 2 Ma. U contents (average 19.5 ppm) of the Daguzhai granite are higher than those of the Huangpi granite (average 7.3 ppm). The Daguzhai granite is composed of medium-grained two-mica granite, and the Huangpi granite is composed of medium- to coarse-grained biotite granite. These two granites show obvious differences in major element, trace element and isotopic geochemical characteristics. Compared to the Huangpi granite, the Daguzhai granite has higher A/CNK ratios, higher P2O5 contents and lower CaO contents, and is more enriched in Rb, Ba, U, and more depleted in Sr, Eu and Ti. The εNd(t) values of the Daguzhai granite vary from − 12.2 to − 11.0 with two-stage model ages of 1.84 to 1.93 Ga. The εNd(t) values of the Huangpi granite are slightly higher (− 9.7 to − 8.6) and the Nd model ages are younger (1.64 to 1.73 Ga). Comparative studies imply that the Daguzhai granite belongs to typical S-type and might be derived from the partial melting of parametamorphic rocks from metamorphic basement of the Zhoutan Group. In contrast, the Huangpi granite belongs to fractioned I-type, which might be derived from the partial melting of a mixture of ortho- and para-metamorphic rocks of the Zhoutan Group. These different magma sources might explain the different U contents of the two granites. In general, the source factor is an important controlling factor for the genesis of U-bearing granites in South China. U-bearing granites in South China show some common mineralogical and geochemical characteristics, which can be used to guide further exploration of granite-hosted U deposits.  相似文献   

18.
Geological, geochronological and isotopic data are integrated in order to present a revised model for the Neoproterozoic evolution of Western Gondwana. Although the classical geodynamic scenario assumed for the period 800–700 Ma is related to Rodinia break-up and the consequent opening of major oceanic basins, a significantly different tectonic evolution can be inferred for most Western Gondwana cratons. These cratons occupied a marginal position in the southern hemisphere with respect to Rodinia and recorded subduction with back-arc extension, island arc development and limited formation of oceanic crust in internal oceans. This period was thus characterized by increased crustal growth in Western Gondwana, resulting from addition of juvenile continental crust along convergent margins. In contrast, crustal reworking and metacratonization were dominant during the subsequent assembly of Gondwana. The Río de la Plata, Congo-São Francisco, West African and Amazonian cratons collided at ca. 630–600 Ma along the West Gondwana Orogen. These events overlap in time with the onset of the opening of the Iapetus Ocean at ca. 610–600 Ma, which gave rise to the separation of Baltica, Laurentia and Amazonia and resulted from the final Rodinia break-up. The East African/Antarctic Orogen recorded the subsequent amalgamation of Western and Eastern Gondwana after ca. 580 Ma, contemporaneously with the beginning of subduction in the Terra Australis Orogen along the southern Gondwana margin. However, the Kalahari Craton was lately incorporated during the Late Ediacaran–Early Cambrian. The proposed Gondwana evolution rules out the existence of Pannotia, as the final Gondwana amalgamation postdates latest connections between Laurentia and Amazonia. Additionally, a combination of introversion and extroversion is proposed for the assembly of Gondwana. The contemporaneous record of final Rodinia break-up and Gondwana assembly has major implications for the supercontinent cycle, as supercontinent amalgamation and break-up do not necessarily represent alternating episodic processes but overlap in time.  相似文献   

19.
Early Paleozoic black organic sediments and bentonites occur widely in the craton basin within the Yangtze block and are generally believed to be genetically related to a specific tectonic setting on the cratonic boundary. However, the intimate relationship between their origins and the dynamic mechanisms are unclear, as exemplified by the genesis of the black shale series and bentonites from the Wufeng Formation during the Ordovician–Silurian transition (OST). In order to reveal the relationship between the Wufeng Formation and the convergence of the Yangtze and Cathaysia blocks (i.e., the intracontinental Kwangsian Orogeny), two stratigraphic sections respectively in Zhaotong area (Northeast Yunnan) and Puyi area (Northwestern Guizhou) that were located in the semi-restricted inner Yangtze Sea during the OST were systematically studied, on the basis of whole-rock geochemical composition, pyrite δ34S (δ34Spy), total organic carbon (TOC), stable Sr isotope, pyrite framboid size distribution and zircon U-Pb age, trace elements. The evidence shows that the paleo-oceanic environment changed significantly at the turn of the early–late Katian and formed the black shale series in the Wufeng Formation. These acritarch assemblages were formed in the transition process of the Upper Yangtze Basin from passive continental margin basin to foreland basin during this interval. Based on previous research on the genetic relationship between black shale series and plate tectonic movement, a basin-mountain evolution model suitable for South China in the Late Ordovician is presented. The two bentonites in the Wufeng Formation with U-Pb ages of 445.5 ± 0.8 Ma and 441.9 ± 2.4 Ma primarily originated from the intermediate–acid volcanic eruption during the collision and convergence between the Yangtze and Cathaysia blocks in the Late Ordovician, the provenance region probably being located in the Jiangnan orogenic belt. Thus, we believe that the appearance of the black shale series and bentonite in the Wufeng Formation at the turn of the early–late Katian may represent the initiation of basin-mountain transformation and the Kwangsian Orogeny in South China, which provides important evidence for the collision and convergence of the Yangtze and Cathaysia blocks in the Late Ordovician.  相似文献   

20.
The Neoproterozoic Jiangnan orogen plays an important role in the study of the Precambrian tectonic evolution of South China. The tectonic nature of the Neoproterozoic sedimentary basins is still controversial, due to poor understanding of the sedimentary sequences and the lack of geochronological data. Here, we present sedimentological, provenance and geochronological data from the Heshangzhen Group in the eastern Jiangnan orogen. Sedimentological analysis shows that the Luojiamen Formation was deposited in a submarine fan, and the overlying Hongchicun Formation was deposited in front of a fan delta. The youngest detrital zircons constrain the lower Luojiamen and Hongchicun formations with ages of 827.3 ± 8.4 Ma and 825 ± 12 Ma, respectively. The sandstones of the Luojiamen Formation are characterized by a large number of intermediate to felsic volcanic grains, suggesting a volcanic arc source. In contrast, quartz and sedimentary lithic grains increase in the Hongchicun Formation, showing a new input from a collisional orogenic source. Detrital zircon from six sandstone samples in the Luojiamen and Hongchicun formations yield similar age spectra of 930–820 Ma with a peak at ca. 845–860 Ma, with one main cluster at 930–820 Ma. Detrital zircons of 930–845 Ma show a positive value of εHf(t)(+2.4 to +11, mean +7.6), which is similar to the volcanic arc of the nearby Shuangxiwu Group. There are a minor group of zircons with U-Pb ages ranging from 820 Ma to 845 Ma from the middle part of the Luojiamen Formation and Hongchicun Formation, with εHf(t) values between-20 to +2.4, which are consistent with the characteristics of the Shuangqiaoshan Group. within light of the bidirectional paleocurrents in the Luojiamen Formation, it is speculated that the zircons of 820–845 Ma were recycled from the Shuangqiaoshan Group, which is derived from a continental arc to the northwest. Our data suggests that the Luojiamen Formation was formed in an inter-arc basin, while the Hongchicun Formation was formed in an accretionary wedge-top basin. When juxtaposed with the conglomeratic characteristics at the bottom of the Luojiamen Formation, it is believed that the unconformity represented by the ‘Shen Gong Movement' reflects the rapid erosion and accumulation process of island arc volcanic material. The disconformity between the Luojiamen and Hongchicun formations is the imprint of transition from inter-arc basin to accretionary wedge-top basin,which represents the collision between the Shuangxiwu arc and the Yangtze Plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号