首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
喀斯特石漠化研究存在的问题与发展趋势   总被引:52,自引:1,他引:52  
喀斯特石漠化代表了世界上一个比较独特的荒漠类型,即湿润区石质荒漠化。目前石漠化面积快速扩展的总体趋势并没有得到有效遏止,因对石漠化发生机制与喀斯特生态系统稳定性机制还不清楚,同时缺乏比较完善的石漠化防治理论和技术体系也是重要的原因之一。较为详细地介绍了目前西南喀斯特山区石漠化过程和适应性生态修复研究方面存在的基础理论问题,包括喀斯特石漠化的时空格局变化与驱动力、喀斯特山地的侵蚀过程、驱动力与危险性、以水为纽带的喀斯特生态系统退化和石漠化过程中的生物地球化学过程、喀斯特受损生态系统的适应性修复、喀斯特生态系统的服务功能优化和综合调控等方面,阐述了上述几个研究领域的研究现状与可能的发展方向;强调喀斯特石漠化是一个非地带性问题,不是纯自然过程,而是与自然、社会与经济紧密相关,需要以喀斯特科学为主的多学科交叉与综合集成研究。  相似文献   

2.
基于EOS-MODIS的广西全境石漠化信息提取方法研究   总被引:3,自引:0,他引:3  
喀斯特石漠化是发生在亚热带岩溶地貌中的土地退化过程,其显著特征为土壤严重侵蚀、基岩裸露、植被退化、土地生产力下降。石漠化既制约当地的经济发展,又可能引起小环境气候的恶化,同时也破坏生物多样性,危及生态环境自然景观。因此,研究石漠化,分析其成因和分布特征对喀斯特地区的防灾减灾以及可持续发展具有十分重大的意义。EOS-MODIS数据所固有的优点(获取便捷、覆盖范围广、成像周期短),使其成为理想的大范围石漠化研究的潜在遥感数据源。  相似文献   

3.
文章以贵州花江喀斯特石漠化地区为研究区域,利用WEPP模型(坡面版)分别模拟2006年、2010年土壤侵蚀模数,并将实测数据与WEPP模型模拟值作比较,探讨WEPP软件在喀斯特石漠化地区的适用性。研究表明:WEPP模型对于模拟喀斯特石漠化地区土壤侵蚀有较大误差,对土壤侵蚀模数模拟的有效性系数均为负值,不适用于直接计算该区域土壤侵蚀模数。WEPP模型对微度侵蚀模拟精度不够,但能大体反映不同径流小区之间土壤侵蚀强弱的关系和生态修复过程土壤侵蚀的变化趋势。若要应用WEPP模型对喀斯特地区土壤侵蚀模数模拟计算,必须考虑水土的地下漏失、地表裸岩率、地形高度破碎等环境条件。裸岩率、土壤漏失、地形条件等都是WEPP模型修正所必须注意的内容。  相似文献   

4.
为了探索中国西南喀斯特地区石漠化过程中土壤物理性质的变异规律,采用野外采样与实验室分析相结合的方法,对贵州省荔波县及普定县不同石漠化阶段典型土壤的物理参数进行了研究。结果表明:土壤有机质质量分数随石漠化程度的加深逐渐减小;非石漠化土壤重度仅为6.15 N/m^3,随着石漠化的发展,土壤重度逐渐增大,总孔隙度随之减小;石漠化的发展导致土壤黏粒含量升高;土壤水稳性团聚体质量分数及微团聚体的结构系数均随石漠化程度加深而减小;土壤有机质质量分数与重度、砂粒含量、大于5 mm团聚体含量及结构系数的相关系数分别为-0.921 2、0.827 7、0.907 2、0.899 3,均达到极显著水平。通过封山育林等措施增加喀斯特地区有机质积累可改善土壤物理性质,对防治石漠化具有重要意义。  相似文献   

5.
顾展飞  刘琦  卢耀如 《中国岩溶》2016,35(5):533-538
不同等级石漠化地区岩体和土体中化学元素有较大的差异,表现在石漠化演化过程中不断被改变,化学元素的差异性对石漠化等级差异性的形成有着内在的关联性。文章以贵州贞丰-关岭花江石漠化治理示范区为研究区,选取11处样地的岩石样和土样,对其进行室内实验分析,以了解该地区岩石和土壤的化学元素含量,从而研究其含量的差异性与石漠化等级之间的关系。结果显示:① 岩体中CaO/ MgO的值越大,Rb/Sr值越低,石漠化等级越高。②在碳酸盐母岩逐渐溶蚀和风化成土的过程中,岩体中Ca、Mg离子被带走,导致成土后土体中Ca、Mg离子含量降低,但强度石漠化地区的土体中Mg离子含量却增加。③不同等级石漠化地区的样品化学元素流失和富集的程度略有差异,一般强度和潜在石漠化地区(离子)含量要高于轻度和中度石漠化地区。④土体中Rb/Sr值越大,石漠化等级越强。该研究可以为示范区的水土流失及石漠化治理提供理论和实践依据。   相似文献   

6.
基于Logistic-CA-Markov模型的石漠化空间变化规律研究   总被引:1,自引:2,他引:1  
为了揭示岩溶地区石漠化发生、发展的一般规律,文章以贵州省六枝特区为例,获取了1990、2000、2010年石漠化数据。利用Logistic-CA-Markov模型探讨石漠化发生的驱动因子及各类型间的转移情况,并在两种情景模式下对研究区2020年石漠化空间分布进行模拟。结果表明:(1)利用Logistic模型回归分析石漠化驱动因子,能够较好的反映其分布状况,CA-Markov耦合模型模拟石漠化空间分布,精度达到理论要求。(2)无石漠化、潜在石漠化、轻度石漠化、中度石漠化演变过程中受人为因素影响大于自然因素,而强度和极强度石漠化则相反。(3)在现有石漠化演化速率情景下,各等级石漠化的演变轨迹为修复与恶化并存模式,最突出的是潜在和轻度石漠化。(4)在喀斯特山地生态产业修复和封山育林结合情景下,石漠化修复与恶化并存的双重轨迹模式改为以修复为主的单一轨迹模式,其中轻度和中度石漠化治理效果最为突出。因此石漠化治理措施重点应针对轻度和中度石漠化分布区,注重协调人地矛盾,防止利用过程中返回式演变。   相似文献   

7.
贵州喀斯特石漠化分布的空间差异与防治区划探讨   总被引:10,自引:1,他引:10  
周国富 《中国岩溶》2006,25(1):79-84
在广泛调研基础上,根据区域分异原理,对贵州石漠化空间分布与差异进行了分析总结.研究表明,贵州喀斯特石漠化分布存在明显区域差异.在水平分异上,从西向东存在"轻~重~轻~重~轻"的基本规律;在南北方向上,存在"重~轻~重"的规律;在垂直方向上,存在从河谷至分水岭的分异:分水岭地区石漠化程度不高,河谷斜坡地带石漠化较强,河谷底部又较轻的变化规律.据此,根据自然区划理论与方法,提出喀斯特石漠化分区防治的基本思想,将贵州喀斯特石漠化防治初步划分为7个防治区、20个防治亚区,并选取典型区域进行三级区划分.  相似文献   

8.
通过对桂西北的都安、东兰、巴马、凤山、乐业等县的地质、地貌、土壤和植被野外调查研究以及对岩石和土壤的采样、分析表明,桂西北喀斯特石山区的碳酸盐岩类总体上可分为可溶性较强的石灰岩类和可溶性较弱的灰质白云岩类。石漠化程度与地质背景条件的差异有关。石灰岩类的酸不溶物含量( 1. 7% )比白云岩类的( 2. 2% )低,对成土不利; 前者的p H值为8. 4,而后者的p H值为7. 36,这种差别导致前者的植物种类和生长高度都不如后者;穹隆状背斜构造以及断裂裂隙发育地带不利于水土保持和植被生长;峰丛地貌的锥峰地段以及地形坡度大于45°的陡坡地段的土壤和植被盖度一般均低于坡度小于45°的地段,坡度与土壤盖度和植被盖度通常为负相关关系。根据这些差异性,针对性地提出了在不同地质背景条件下防止石漠化发生的治理措施。   相似文献   

9.
以贵州普定喀斯特石漠化区域石生银叶真藓(Bryum argenteum Hedw.)、扭口藓(Barbula unguiculata Hedw.)、穗枝赤齿藓(Erythrodontium julaceum(Schwaegr.)Par.)、美灰藓(Eurohypnum leptothollum(C. Muell. )Ando.)、东亚砂藓(Racomitrium japonicum Dozy et Molk.)和雪茶(地衣)(Thamnolia vermicularia(Ach.)Asa-hina)为对象,研究了这些石生植物和其基质土壤碳酸酐酶(CA)的活性,可为石生植物的生物岩溶作用机理和石漠化生态环境的治理提供一定的参考。结果表明,6种植物CA的活性存在一定的差异,以美灰藓的CA活性272.99 U·g-1(FW)最高,东亚砂藓的CA活性33.45 U·g-1(FW)最低;银叶真藓基部土壤CA活性最高,为101.81 U·g-1(干土),美灰藓CA活性15.95 U·g-1(干土)最低。CA活性与土壤全磷、全钾、石砾含量和土壤含水量之间呈极显著的相关性。   相似文献   

10.
土壤的地下漏失是喀斯特石漠化地区一种特殊的水土流失方式。本文以喀斯特石漠化严重地区——贵州普定县陈旗小流域为例,阐明了土壤地下漏失的过程及其机理。研究结果表明喀斯特地区特殊的地质环境为土壤的地下漏失创造了有利的空间条件;地表降水的大量渗漏为土壤的地下漏失提供了侵蚀的水动力条件;风干的土壤团聚体遇水易崩解,离散出的细粒物质可沿土间孔隙和岩溶裂隙向地下空间迁移;岩溶洞隙内填积的粘土在流水的浸润软化下呈可塑、软塑甚至流塑状,可向其下的溶洞、地下河蠕滑搬运,最终导致地表土壤漏失。   相似文献   

11.
文章以耕地为对照,分析不同石漠化治理措施(花椒林和次生林)对土壤0~20 cm土层有机碳(SOC)、颗粒有机碳(POC)、矿物结合有机碳(MOC)和团聚体有机碳的影响,探讨POC、MOC与SOC、团聚体有机碳的关系。结果表明:与耕地相比,花椒林和次生林均不同程度提高SOC、POC、MOC和团聚体有机碳含量。0~10 cm土层次生林SOC含量和各粒径团聚体有机碳含量均显著高于耕地和花椒林,在10~20 cm土层无显著差异;0~20 cm土层花椒林和次生林土壤POC含量显著高于耕地,MOC无显著差异。POC/SOC范围为20.38%~45.27%,花椒林和次生林显著高于耕地。相反,MOC/SOC为耕地显著高于花椒林和次生林 。退耕为花椒林和次生林后,SOC含量的增加主要以POC含量增加为主。次生林和花椒林>2 mm粒径对SOC贡献率显著高于耕地,但0.25~2 mm粒径、0.053~0.25 mm粒径和 < 0.053 mm粒径对SOC贡献率显著低于耕地。其相关分析表明:POC、MOC与SOC、团聚体有机碳的关系均呈正相关,表现为次生林 > 花椒林 > 耕地。退耕恢复为花椒林和次生林后,SOC、POC和MOC增加量与团聚体有机碳增加量显著相关,其以次生林的相关性较强。石漠化治理措施改变SOC物理组分及其组成以及它们之间的关系,从而促进有机碳的积累。  相似文献   

12.
陈海  朱大运  陈浒 《中国岩溶》2021,40(2):346-354
以典型高原山地喀斯特石漠化6种土地利用方式土壤为研究对象,探讨不同生态恢复条件下,坡耕地转变为林地、草地及林草套种地后对表层土壤结构稳定性及其有机碳含量的影响。结果表明:在坡耕地实施石漠化治理措施,造林种草后,>0.25 mm团聚体含量显著增加,以人工林、次生林居多,坡耕地较少。在干湿筛处理下,采用平均质量直径(MWD)、几何平均直径(GMD)、分形维数(D)、>0.25 mm团聚体含量等指标来表征的团聚体稳定性显示,人工林和次生林土壤团聚体稳定性较强,坡耕地和林草套种地土壤团聚体稳定性较弱。总体上不同土地利用方式均以小粒级团聚体有机碳含量最高,>5 mm和2~5 mm水稳性团聚体有机碳对土壤有机碳的贡献率最大(除农耕地);土壤大团聚体对土壤有机碳的固定起主要作用。石漠化坡耕地退耕还林种草有利于促进土壤表层土壤结构的稳定及有机碳的积累。  相似文献   

13.
西南喀斯特山地水土流失特点及有关石漠化的几个科学问题   总被引:34,自引:4,他引:34  
由于特殊的岩土组构,喀斯特坡地的水土流失具有如下特点:地表和地下流失相互叠加;地表产流、产沙少;纯碳酸盐岩区地下流失比例大。论文区别了石漠化和石质化的科学内涵,指出了喀斯特山地石漠化的核心是土地的石质化,提出了按照地面物质组成与裸岩率叠加的石漠化分类系统。根据土壤中硅酸盐矿物的物质平衡,提出了不同碎屑岩含量碳酸盐岩区的土壤允许流失量介于5~500 t/(km2?a)之间。喀斯特坡地土壤虽然肥沃,但总量太少,矿质养分不足可能是石质坡地植物生产力低的重要原因。此外,根据农耕驱动土地石质化的机制,提出了相应的石漠化治理的对策建议,具体是:(1)不但要治标,提高植被覆盖率,更要治本,防止或减缓土地石质化,同时还要增加群众收入;(2)按照坡地岩土组成的垂直分带特点,因地(土)制宜,开展治理;(3)重视矿质肥料的施用;(4)在纯碳酸盐岩土石质和石质坡地农田的小型蓄水工程修建中,要加强集流面建设。   相似文献   

14.
土地石漠化概念与分级问题再探讨   总被引:8,自引:1,他引:7  
李森  董玉祥  王金华 《中国岩溶》2007,26(4):279-284
针对前人研究中将石漠化发生的地域限定在亚热带,将发生的时间限定在人类历史时期,将发生的原因均归结为人为不合理的经济活动,而忽视了石漠化可能发生的其它地域、其它时期和其它成因等问题,对土地石漠化概念作了修正。认为土地石漠化是在湿润、半湿润气候环境和岩溶环境中,由于人类活动和/或气候变化等因素作用,造成地表植被退化、土壤侵蚀、地表水流失、基岩裸露,形成类似石质荒漠景观的土地退化过程,并对其内涵作出释义。在此基础上依据生态基准面的理论,以坡面形态、溶蚀岩溶地貌形态、基岩出露率、土壤厚度和土被覆盖度、土壤侵蚀程度、植被覆盖率和植物种群、土地利用类型等为景观指征,将石漠化土地分为轻度、中度、重度和极重度4个等级,并以粤北岩溶山区为例,拟定了区域性石漠化土地分级及其综合景观指征。   相似文献   

15.
石漠化综合治理关键技术研发是石漠化综合治理工程的关键步骤.本文根据第一期石漠化治理工程的进展,分析了岩溶水资源特征与开发利用技术、土壤资源维持与质量提升技术、植被恢复与功能提升技术和水—土—植被耦合模式的研发进展和不足,对第二期石漠化综合治理提出了一些建议,认为第二期石漠化综合治理关键技术研发应以“结构一过程—服务”为指导框架,加强岩土组构等地质环境背景、水土过程和石漠化过程以及关键服务功能维持和提升机理的基础研究,加强功能型植被、关键共性和个性技术研发以及关键技术的配套和优化,加大石漠化综合治理关键技术的适用性评价和推广应用,完善流域内生态系统服务主体功能区评估和生态补偿,有效准确的治理石漠化,以促进西南岩溶石漠化地区生态、经济和社会的可持续发展.  相似文献   

16.
以中国南方喀斯特地区具有代表性的贵州为例,选取三个典型石漠化综合治理示范区,以2006年4月野外监测和2009年4月重复采样的数据为基础,分析喀斯特脆弱生态区实施石漠化综合治理工程的土壤有机碳时空动态特征和发展趋势。结果表明:经过3年的石漠化综合治理,不同等级石漠化样地表层土壤有机碳密度增幅不一,其中轻、中度石漠化样地提升幅度最大,无、潜在石漠化样地次之,强度石漠化样地最小;不同工程措施下表层土壤有机碳密度特征表现为:封山育林育草>退耕还林还草>坡改梯;增幅表现为:退耕还林还草>封山育林育草>坡改梯。石漠化治理过程中,随着轻度以上石漠化土地面积的减少,表土碳储量进一步增大,而且表层土壤有机碳多分布于潜在和无石漠化区。随着石漠化综合治理进程的推进,表土有机碳密度可能呈S型曲线增长,但由于潜在、无石漠化区多为基本农田,土壤有机碳密度将在较长时间内保持相对平稳的状态。而轻、中度石漠化样地在治理初期其表土有机碳密度增幅将最快。因此,采取有效的土地利用方式与加强可持续管理对提高表层土壤的固碳潜力具有非常重要的意义。   相似文献   

17.
依据《岩溶地区水土流失综合治理技术标准》(SL461-2009),以蚂蝗田岩溶小流域为研究对象,实地测量了22组典型地物光谱,发现岩石和土壤在红光-近红外二维光谱特征空间具有线性分布规律,由此推导出土壤—岩石指数方程,并构建了岩溶区土壤侵蚀与石漠化强度分析技术流程。在此基础上,利用研究区RapidEye卫星遥感影像,通过提取土地利用、植被覆盖度、基岩裸露率和坡度等指标因子信息,实现了土壤侵蚀与岩溶石漠化强度的分析评价。研究发现:岩溶区土壤侵蚀与植被覆盖度呈负相关性,与坡度和基岩裸露率无单向相关性;岩溶石漠化与植被覆盖度呈负相关性,与坡度呈正相关性,与基岩裸露率呈线性相关。   相似文献   

18.
土壤厚度与石漠化发展程度有着密切的关系,土壤也是石漠化地区生态恢复以及农业生产的基础。为了研究典型高原峡谷中-强度石漠化地区的土壤厚度空间分布规律,在土壤厚度野外调查的基础上,利用地统计学方法分析了贵州典型石漠化地区——贞丰—关岭花江小流域土壤厚度空间分布特征及主要影响因素。结果表明:(1)研究区土壤平均厚度仅为26 cm,土壤平均厚度表现为坡耕地>荒地>林地;(2)土壤厚度空间变异性以强度为主,荒地的土壤厚度空间分布连续程度优于林地和坡耕地,林地的土壤厚度空间分布有明显突变性,坡耕地的土壤厚度具有点状分布特征,有耕作物附近土壤厚度较大;(3)土壤厚度与海拔、基岩裸露率、坡度之间均有明显负相关关系;(4)自然和人为因素综合影响下的土壤强侵蚀是研究区土壤厚度分布极为不均的主要原因,对该区域石漠化的治理可以采用工程措施与生物措施相结合的方法。研究结果对研究区石漠化因地制宜地防治及其他地区水土流失防治、生态恢复、农业合理生产具有一定的参考价值。  相似文献   

19.
运用凋落物分解袋及样品室内分析的方法,研究了石漠化脆弱生态区植被恢复不同阶段主要建群种凋落叶分解及有机碳、氮释放动态及其与土壤团聚体有机碳、氮之间的关系。结果表明:(1)各植被恢复阶段凋落叶分解系数介于0.73~1.33之间,不同阶段之间表现为,草地<灌丛<乔木林<灌乔林,人工樟树林介于乔木林与灌乔林之间。(2)各植被恢复阶段凋落叶有机碳、氮净释放率介于58.5%~72.9%与21.2%~63.9%之间,有机碳在分解期间表现为净释放,有机碳、氮释放率随植被恢复年限的延长呈增加的趋势。(3)凋落叶分解与养分释放对土壤有机碳、氮含量的提高有促进作用。其中,凋落叶分解系数与0.25~1 mm、<0.25 mm粒径团聚体轻组有机碳、氮之间关系密切。在植被恢复过程中,凋落叶分解速率及有机碳、氮释放率随恢复年限延长而呈增加趋势,凋落叶分解对土壤有机碳、氮有重要影响,轻组有机碳、氮优先向小粒径团聚体输入,小粒径团聚体在土壤有机碳、氮积累中有重要作用。凋落叶分解一方面能为植物生长提供养分,同时也促进土壤有机质的形成与积累,植被恢复过程中应加强水土保持、提高土壤层的养分保蓄与抗水土流失能力。   相似文献   

20.
通过对贵州中部喀斯特石漠化区典型植被及土壤进行调查,探讨森林退化过程中不同群落优势树种根际土壤有机碳及氮磷含量的变化。结果表明:根际土壤有机碳及氮磷含量均高于非根际土壤;在不同植被类型之间,林木根际对土壤有机碳及氮磷的累积效应存在明显的差异性,其中土壤有机碳的累积效应表现最明显,其次是土壤磷素,而土壤氮素累积效应的差异性较小。在树木根基0~30cm水平范围内,根际土壤总有机碳、易氧化有机碳、全氮、有效氮和有效磷含量都明显高于30~90cm外围根际区。不同群落优势树种之间,根际土壤碳及氮磷总量的差异性表现为总有机碳>全氮>全磷,而碳及氮磷的生物有效态含量则表现为有效磷>易氧化有机碳>有效氮。森林退化过程中,群落优势树种根际土壤总有机碳、易氧化有机碳及有效磷含量出现显著的下降,从而明显地影响土壤的肥力水平。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号