首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment aboard the Scripps Institution of Oceanography's RV Thomas Washington has demonstrated the seafloor mapping advantages to be derived from combining the high-resolution bathymetry of a multibeam echo-sounder with the sidescan acoustic imaging plus wide-swath bathymetry of a shallow-towed bathymetric sidescan sonar. To a void acoustic interference between the ship's 12-kHz Sea Beam multibeam echo-sounder and the 11-12-kHz SeaMARC II bathymetric sidescan sonar system during simultaneous operations, Sea Beam transmit cycles were scheduled around SeaMARC II timing events with a sound source synchronization unit originally developed for concurrent single-channel seismic, Sea Beam, and 3.5-kHz profile operations. The scheduling algorithm implemented for Sea Beam plus SeaMARC II operations is discussed, and the initial results showing their combined seafloor mapping capabilities are presented  相似文献   

2.
Acoustic backscatter images of the seafloor obtained with sidescan sonar systems are displayed most often using a flat bottom assumption. Whenever this assumption is not valid, pixels are mapped incorrectly in the image frame, yielding distorted representations of the seafloor. Here, such distortions are corrected by using an appropriate representation of the relief, as measured by the sonar that collected the acoustic backscatter information. In addition, all spatial filtering operations required in the pixel relocation process take the sonar geometry into account. Examples of the process are provided by data collected in the Northeastern Pacific over Fieberling Guyot with the SeaMARC II bathymetric sidescan sonar system and the Sea Beam multibeam echo-sounder. The nearly complete (90%) Sea Beam bathymetry coverage of the Guyot serves as a reference to quantify the distortions found in the backscatter images and to evaluate the accuracy of the corrections performed with SeaMARC II bathymetry. As a byproduct, the processed SeaMARC II bathymetry and the Sea Beam bathymetry adapted to the SeaMARC II sonar geometry exhibit a 35m mean-square difference over the entire area surveyed.On leave at the Naval Research Laboratory, Code 7420, Washington D.C. 20375-5350.  相似文献   

3.
The dispersion of SeaMARC II phase-difference samples is discussed. They appear to be a function of signal direction, range, noise level, and backscatter strength of the bottom. Field data from a lava flow area and from sedimented areas at different depths are compared. The temporal distribution of the phase-difference samples was skewed and asymmetrical about the model. The angular distribution was symmetrical about the mode, with some phase wrap-around. The field data show the presence of a complicated noise interference field. The amount of phase-difference dispersion was larger than that calculated by using a simple Gaussian isotropic noise model, possibly suggesting an additional phase-dispersion process caused by bottom roughness. The method used to produce bathymetry data from the phase-difference samples was evaluated in light of the phase-difference sample distribution  相似文献   

4.
A procedure for postprocessing bathymetry data provided by a phase-measuring sidescan sonar system is presented. The data were collected with the SeaMARC II system, and are generally characterized by a high level of noise and uneven spatial sampling. Before any spatial filtering is applied, data are selected to remove most of the obvious artifacts and to retain instantaneous depth profiles whose slant ranges increase monotonically from a central location to the edges of the swath. An extrapolation scheme, patterned after a potential field, is proposed to fill gaps in the coverage or to extend the bathymetric swath to that of the corresponding sidescan image when regridding the data to a rectangular frame. To fill the near nadir gap typically found in these data, a specific interpolation methodology is developed that takes into account the slant range of the first bottom return as received by the sidescan sonar itself or by a shipboard echo-sounder. Spatial low-pass filtering is applied through convolutions with parabolic windows whose width is proportional to the footprint of the acoustic beam along track and roughly 1/8 of the swath width across track. Mismatches of contour lines between adjacent tracks are reduced through a statistical method design to correct systematic profile errors  相似文献   

5.
The problem of recovering signals masked by reverberation is considered. Reverberation data from a shallow-water active sonar experiment in conjunction with simulated echoes are used to examine the potential for signal recovery offered by adaptive filtering and prediction. The deterministic least squares lattice filter is the central adaptive estimator of choice. The prediction error lattice is used to selectively "whiten" the composite process by controlling the algorithm adaptation speed. This is shown to result in significant signal enhancement for low-Doppler echoes masked by reverberation. Adaptive noise canceling with multiple reference beams is shown to be successful in extracting even zero-Doppler echoes from the reverberation background.  相似文献   

6.
For many years, GLORIA has been producing sonar images of the deep ocean floor. In the mid-1980's, the SeaMARC II system came to prominence producing depth values as well as sonar images. The basic method compares the phases of the signals returning from the seafloor to two rows of transducers. The phase differences are converted into angles of arrival and together with the arrival times converted into range and depth values. This capability has now been added to the GLORIA system. The fact that GLORIA uses a 2s FM pulse means the backscattered reverberation can come from a strip of seafloor up to 1.5 km wide. To accommodate this, overlapping complex FFT's are used to produce a time-frequency matrix for the returning signals. In this matrix, a constant range feature appears as a diagonal. Phases are then calculated using a least-mean-squares estimate along diagonals. The main source of error and bias is due to surface reflection, and this is taken into account. The GLORIA swath bathymetry system was tested on two cruises and it was possible to produce depth contours with a good level of confidence. The total swath width was over eight water depths and would have been greater with a more favorable velocity profile. Comparison with other bathymetry data (such as multibeam systems) showed excellent correlation, having a standard deviation of only 4% of total water depth  相似文献   

7.
Abstract

A giant submarine slump, encompassing a 91‐km by 26‐km block, occurring on the continental slope offshore Iquique, Chile, was identified during a SeaMARC II survey. Utilizing SeaMARC II side‐scan imagery, bathymetry, and seismic reflection data, five morphostructural zones of the slump were identified: the fissured zone, scar zone, tensional depression, central block, and front zone. The fissured zone was developed on the crown of the slump; the scar zone is characterized by scars with the crescent‐shaped slip surfaces and throws ranging from 200 m to 50 m. The tensional depression zone is marked by an area voided by mass slumping, while the central block morphology was formed by uplift. The front zone is comprised of both compressional and tensional subzones. The compressional subzone is characterized by a relative topographic low, on the middle slope, whereas the extensional subzone is characterized by a convex pattern of alternated ridges and hollows, which may represent the debris of the slump on the lower slope. The formation of the slump was strongly influenced by the subduction of the Nazca plate beneath the Chile continental margin, which resulted in the subsidence of the continental slope with a resultant increase in the slope gradient and pore‐water pressure in the sedimentary layers. Slump formation was further facilitated by the development of a complex fault system associated with the subduction and by the triggering effect of earthquakes in the area.  相似文献   

8.
SeaMARC side-scan sonographs and Argo video and photographic data suggest that the recent sedimentary environment of the floor of the Tongue of the Ocean is controlled by an interplay of turbidity current flow from the south, sediment spill-over from the carbonate platform to the east (windward side), and rock falls from the west carbonate escarpment (lee side). The spill-over forms a sandy sedimentary deposit that acts as a topographic obstruction to the turbidity current flow from the south. This obstruction is expressed by the westward migration of a northwest-southeast oriented turbidity-current-cut channel.  相似文献   

9.
Sidescan sonar image processing techniques   总被引:1,自引:0,他引:1  
A four-step processing sequence is described to produce image mosaics from the various segments of a sidescanned acoustic imaging survey of a given seafloor area. Starting with data consisting for each ping of acoustic backscatter levels versus horizontal range across-track, median prefiltering is used first to reduce the influence of outliers on subsequent linear processes. Artifacts that are clearly unrelated to the backscattering properties of the seafloor are then isolated on a ping by ping basis through a spectral analysis that relies on a decomposition using Chebyshev polynomials to filter the low spatial frequency components of the image. Contrast enhancement is then achieved through an original implementation of the classical gray level histogram equalization technique by balancing local versus global histogram contributions. Pixels are mapped on a geographic grid taking due account of the geometry of the measurement and of the spacing between pings to minimize along-track smearing of features. Examples of results obtained with these processing techniques are given for SeaMARC II data recorded during a complete survey of Fieberling Guyot (32°.5 N, 128° W)  相似文献   

10.
This paper is an extension of other work that addresses the use of radar echoes from ships of opportunity to determine the proper phase corrections for small-loop phased-array antennas used within high-frequency (HF) ground-wave radar systems. This technique also yields estimates for unknown ship bearings that (for cases where there is adequate signal-to-noise ratio of 20 dB or more) are consistent to within 2deg-3deg among measurements from independent radar frequencies. Within this paper, phase corrections gathered from actual ships of opportunity are compared to phase corrections gathered during a calibrated transponder run, in which the ship bearing is known. The phase corrections derived from the ship of opportunity presented in this paper were consistent with the known phase corrections to within 13.2deg (for the worst case). Furthermore, the estimates of the ship bearings collected from the two usable radar frequencies were consistent to within 1deg of each other  相似文献   

11.
12.
This paper examines the potential for remote classification of seafloor terrains using a combination of quantitative acoustic backscatter measurements and high resolution bathymetry derived from two classes of sonar systems currently used by the marine research community: multibeam echo-sounders and bathymetric sidescans sonar systems. The high-resolution bathymetry is important, not only to determine the topography of the area surveyed, but to provide accurate bottom slope corrections needed to convert the arrival angles of the seafloor echoes received by the sonars into true angles of incidence. An angular dependence of seafloor acoustic backscatter can then be derived for each region surveyed, making it possible to construct maps of acoustic backscattering strength in geographic coordinates over the areas of interest. Such maps, when combined with the high-resolution bathymetric maps normally compiled from the data output by the above sonar systems, could be very effective tools to quantify bottom types on a regional basis, and to develop automatic seafloor classification routines.  相似文献   

13.
The complexity of the laws of dynamics governing 3-D atmospheric flows associated with incomplete and noisy observations make the recovery of atmospheric dynamics from satellite image sequences very difficult. In this paper, we address the challenging problem of estimating physical sound and time-consistent horizontal motion fields at various atmospheric depths for a whole image sequence. Based on a vertical decomposition of the atmosphere, we propose a dynamically consistent atmospheric motion estimator relying on a multilayer dynamic model. This estimator is based on a weak constraint variational data assimilation scheme and is applied on noisy and incomplete pressure difference observations derived from satellite images. The dynamic model is a simplified vorticity-divergence form of a multilayer shallow-water model. Average horizontal motion fields are estimated for each layer. The performance of the proposed technique is assessed using synthetic examples and using real world meteorological satellite image sequences. In particular, it is shown that the estimator enables exploiting fine spatio-temporal image structures and succeeds in characterizing motion at small spatial scales.  相似文献   

14.
Two adaptive algorithms for multipath time delay estimation   总被引:1,自引:0,他引:1  
The problem of time delay estimation (TDE) with multipath transmissions arises often in many sonar and radar systems. Two adaptive algorithms based on a parameter estimation approach are proposed to estimate the difference in arrival times of a signal at two separated sensors in the presence of multipath propagation. The first method uses an adaptive IIR filter to eliminate the multipath signal in each transmission channel prior to applying a constrained delay estimation algorithm to extract the time difference between the two received outputs. The second employs two constrained adaptive FIR filters to perform equalization of the multipath arrivals, and time delay is then derived using a constrained delay estimator similar to that in the first method. Computer simulations are presented to compare and contrast the tracing capability and convergence behavior of these multipath TDE methods  相似文献   

15.
This paper presents a minimum variance unbiased (MVU) estimator for estimating an ocean surface current using the multifrequency microwave radar technique. In this technique the current information is obtained by finding the difference between the measured phase velocities of some specific surface gravity waves and the phase velocities calculated from the dispersion relation for still water. By defining the problem as a linear estimation problem, we develop an unbiased estimator for the current component along the radar look direction, which has a variance that is inversely proportional to the sum of the squared wavenumbers of the gravity waves used in the measurements. We also study the performance of an MVU vector estimator based on radar observations along two directions. Our analysis shows that the confidence region of this estimator has the shape of an elongated ellipse with semi-axes and orientation which are dependent on the angle between the observation directions, but independent on the true current vector. Furthermore, the theoretical models are thoroughly tested using both simulated and real radar data, and these tests show very good agreement with the model predictions  相似文献   

16.
A high-resolution bathymetric and seismic study of sinuous midfan channels on the Amazon Fan shows that some common elements of seismic profiles across the channel/levee system may be side echoes (sideswipe) from reflective, coarse channel-floor sediments Which lie to the side of the ship track. This includes portions of a dipping zone of high-amplitude reflectors beneath the channel. If these strong echoes are side echoes rather than buried coarse sediments, there may be less coarse material present within the midfan channel/levee systems than predicted, and channel evolution is still poorly resolved. Side echoes may be common in other areas of complex deep-sea morphology.  相似文献   

17.
全极化X波段雷达掠散射海面回波统计分布特征研究   总被引:1,自引:0,他引:1  
尽管复Wishart分布已被广泛应用于SAR数据统计分析,然而该分布函数却很少被用来研究雷达海面掠散射回波时间序列的统计特征。本文通过分析IPIX雷达海面掠散射回波数据发现:大尺度海浪遮挡区的雷达回波能量很低,主要是雷达系统噪声,如果将该部分低能量回波数据剔除以后,真实海面的IPIX 雷达回波时间序列数据亦满足圆高斯分布,因此,IPIX 雷达海面回波的时间序列数据也必然满足复Wishart分布。在此,我们基于Wishart分布模型分别对全极化IPIX 雷达不同极化通道数据的海面回波时间序列数据进行了统计研究,并推导给出了不同通道数据协方差矩阵元素实部、虚部及相位差等参数的统计分布函数模型。通过与雷达测量数据比计较可见,推导所得理论统计模型与实际测量数据吻合很好。本文所得结论对进一步深入理解掠散射海面雷达回波的统计特征具有一定理论意义。  相似文献   

18.
为解决多传感器水下目标纯方位跟踪中的传感器测量衰减问题,建立水下目标静态多传感器纯方位跟踪模型,将传感器测量衰减建模为统计特性已知的随机变量,基于融合中心接收到的各水声传感器的原始测量值,设计了一种集中式状态估计器结构,利用最小方差方法推导出最优的集中式目标状态估计增益。通过算例仿真可以得出,所提出的算法能够在水声传感器不做机动的前提下跟踪目标,弥补了单个水声传感器观测性不足的缺点,对比传统的集中式Kalman估计器,具有更高的精度,能够有效解决传感器测量衰减问题。  相似文献   

19.
The processing requirements and resolution capabilities of both side-look sonar (SLS) and synthetic-aperture sonar (SAS) systems are outlined. Side-look sonar is presented as a real-beam imaging technique along with expressions for relevant system- and image-related parameters. Synthetic-aperture sonar is discussed, and the limitations imposed by the speed of sound in the ocean environment are identified. A specific side-look system (SeaMARC I) is presented under two configurations and comparable SAS designs are proposed. Based on the examples provided by the SeaMARC I system and the hypothetical SAS designs, it is shown that single-beam SAS systems can be designed to achieve area coverage rates comparable to single-beam side-scan systems, yet with improved azimuth resolution  相似文献   

20.
In synthetic aperture sonar (SAS), the platform position must be known sufficiently accurately for signals to be added coherently along the synthetic aperture. Often, the onboard navigation system is insufficiently accurate by itself, so corrections are needed. A well-known method is the displaced phase center antenna (DPCA) procedure for correcting platform position using seabed echoes. DPCA methods have the advantage of insensitivity to changing interference patterns, moving specular reflection, and changing occlusion, with aspect. However, when seabed echoes are unusable, either because they are too weak, or because they are corrupted by multipath, the seabed DCPA method may fail. Therefore, we present an alternative DPCA method using sonar echoes from a suitable navigation fix, based on an object detected after standard beamforming. In our proposed system, look angle is obtained by tracking the centroid of the rectified image of the fix object. When the standard DPCA correction equations are modified for a fixed reflector, it turns out that they provide incremental range and look-angle errors, precisely the values required when the target itself is used as the navigation fix. Moreover, the values obtained are then self-compensating for errors in estimating seabed depth or forward motion of the platform. The navigation fix is selected by bracketing in range, and beamforming overlapping subsets of the receiver array. In this paper, we present experimental results at transmitter frequencies of 25 and 100 kHz where our method enabled well-focused SAS images to be generated with little recourse to other navigation information. Hence, SAS can be carried out, even when a sophisticated inertial navigation system (INS) is not available.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号