首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RX J1856.5−3754 is one of the brightest nearby isolated neutron stars (INSs), and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5−3754, within the uncertainties. In our simplest model, the best-fitting parameters are an interstellar column density   N H≈ 1 × 1020 cm−2  and an emitting area with   R ≈ 17 km  (assuming a distance to RX J1856.5−3754 of 140 pc), temperature   T ≈ 4.3 × 105 K  , gravitational redshift   z g ∼ 0.22  , atmospheric hydrogen column   y H≈ 1 g cm−2  , and magnetic field   B ≈ (3–4) × 1012 G  ; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the NS surface as well as general relativistic effects, to determine pulsations; we find that there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5−3754.  相似文献   

3.
4.
It has been proposed that RX J1914.4+2456 is a stellar binary system with an orbital period of 9.5 min. As such it shares many similar properties with RX J0806.3+1527 (5.4 min). However, while the X-ray spectrum of RX J0806.3+1527 can be modelled using a simple absorbed blackbody, the X-ray spectrum of RX J1914.4+2456 has proved difficult to fit using a physically plausible model. In this paper, we re-examine the available X-ray spectra of RX J1914.4+2456 taken using XMM–Newton . We find that the X-ray spectra can be fitted using a simple blackbody and an absorption component which has a significant enhancement of neon compared to the solar value. We propose that the material in the interbinary system is significantly enhanced with neon. This makes its intrinsic X-ray spectrum virtually identical to RX J0806.3+1527. We re-access the X-ray luminosity of RX J1914.4+2456 and the implications of these results.  相似文献   

5.
6.
We present low–medium resolution optical spectroscopy of the eclipsing AM Her system MN Hya (RX J0929–24). We determine the magnetic field strength at the primary accretion region of the white dwarf to be 42 MG from the spacing of cyclotron features visible during π ∼ 0.4–0.7. From spectra taken during the eclipse we find that the secondary has an M3–4 spectral type. Combined with the eclipse photometry of Sekiguchi, Nakada &38; Bassett and an estimate of the interstellar extinction we find a distance of ∼300–700 pc. We find unusual line variations at π ∼ 0.9: Hα is seen in absorption and emission. This is at the same point in the orbital phase at which a prominent absorption dip is seen in soft X-rays.  相似文献   

7.
8.
RX J1856.5−3754 is one of the brightest, nearby isolated neutron stars (NSs), and considerable observational resources have been devoted to its study. In previous work, we found that our latest models of a magnetic, hydrogen atmosphere match well the entire spectrum, from X-rays to optical (with best-fitting NS radius   R ≈ 14  km, gravitational redshift   z g∼ 0.2  , and magnetic field   B ≈ 4 × 1012  G). A remaining puzzle is the non-detection of rotational modulation of the X-ray emission, despite extensive searches. The situation changed recently with XMM–Newton observations that uncovered 7-s pulsations at the     level. By comparing the predictions of our model (which includes simple dipolar-like surface distributions of magnetic field and temperature) with the observed brightness variations, we are able to constrain the geometry of RX J1856.5−3754, with one angle <6° and the other angle     , though the solutions are not definitive, given the observational and model uncertainties. These angles indicate a close alignment between the rotation and the magnetic axes or between the rotation axis and the observer. We discuss our results in the context of RX J1856.5−3754 being a normal radio pulsar and a candidate for observation by future X-ray polarization missions such as Constellation-X or XEUS .  相似文献   

9.
Some unidentified EGRET sources have been reported to have probable X-ray counterparts. Periodicities in the X-ray data of those sources, if found, may help to strengthen the identification and to reveal their nature. We performed a detailed search of periodicities with a photon-counting method, the H-test, in the XMM and ASCA data of RX J0007.0+7302, which is the most probable X-ray counterpart to the EGRET source 3EG J0010+7309. Although no periods with enough significance were found, a possible one, at 0.1275433± 0.0000001 s (MJD 52327.03399), is quite intriguing based on results of cross-checking the two data sets. We suggest future analysis with other data to search the vicinity of this period.  相似文献   

10.
11.
12.
The detection of near‐infrared (NIR) excess at the position of a star can indicate either a substellar companion or a disk around the respective star. In this work we probed whether a 2.5σ H ‐band flux enhancement at the position of the isolated neutron star RX J0806.4–4123 can be confirmed at another NIR wavelength. We observed RXJ0806.4–4123 in the J ‐band with Gemini South equipped with FLAMINGOS‐2. There was no significant detection of a J ‐band source at the neutron star position. However, similarly to the H ‐band we found a very faint (1.4σ) flux enhancement with a nominal magnitude of J = 24.8 ± 0.5. The overall NIR‐detection significance is 3.1σ. If real, this emission is too bright to come from the neutron star alone. Deeper near‐infrared observations are necessary to confirm or refute the potential NIR excess. The confirmation of such NIR excess could imply that there is a substellar companion or a disk around RXJ0806.4–4123. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We report polarimetric, spectropolarimetric and photometric observations of the eclipsing ROSAT cataclysmic variable RX J0929.1−2404, which confirm that the system is a new polar (AM Herculis system). This brings the number of eclipsing polars to nine, with RX J0929.1−2404 being only the third such system above the period gap. Circular polarization variations from ∼−20 to 10 per cent are seen over the 3.39-h orbital period, with a minimum around the time of eclipse. The photopolarimetric data were modelled using arc-shaped cyclotron emission regions in a centred dipole geometry. Results imply that RX J0929.1−2404 is a 'two-pole' system, with one emission region partially visible at all orbital phases. Spectropolarimetry observations show some evidence for the presence of cyclotron humps in the continuum, with spacings consistent with a magnetic field strength of ∼20 MG. Photometry of the eclipses provides information on the size of the emission region, which is consistent with a hotspot on the surface of the white dwarf. The eclipse duration implies an inclination in the range 70°≲ i ≲78°.  相似文献   

14.
15.
We report the discovery of a new AM Herculis binary (polar) as the optical counterpart of the soft X-ray source RX J1724.0+4114 detected during the ROSAT all-sky survey. The magnetic nature of this V  ∼ 17 mag object is confirmed by low-resolution spectroscopy showing strong Balmer and He  II emission lines superimposed on a blue continuum, which is deeply modulated by cyclotron humps. The inferred magnetic field strength is 50 ± 4 MG (or possibly even ≈ 70 MG). Photometric observations spanning ∼ 3 yr reveal a period of 119.9 min, directly below the period gap. The morphology of the optical and X-ray light curves, which do not show eclipses by the secondary star, suggests a self-eclipsing geometry. We derive a lower limit on the distance of d  ≳ 250 pc.  相似文献   

16.
A plasma emission model is presented interpreting the observational properties of RX J1856.5-3754. In particular, on the basis of the Vlasov’s kinetic equation we study the process of the quasi-linear diffusion (QLD) developed by means of the cyclotron instability. This mechanism provides simultaneous generation of optical and X-ray emission on the light cylinder scales, in one location of the pulsar magnetosphere. It is assumed that the observed X-ray spectrum of this source is generated via the synchrotron mechanism. A different approach of the synchrotron theory is considered, giving a spectral energy distribution that is in a good agreement with the observational data.  相似文献   

17.
We present polarimetric and spectroscopic observations of the ROSAT source RX J1141.3−6410, recently identified as a polar. The detection of circular polarization variations, with an amplitude of 10 per cent, over a 3.16-h period confirms that the system is a polar (AM Herculis star). Supporting evidence comes from the nature of the emission lines and their radial velocity variability. In addition, we observe continuum slope changes in the far-red spectral region (∼6000–8200 Å), indicative of phase dependent cyclotron emission. Polarimetric modelling at two wavelengths establishes RX J1141.3−6410 as a single-pole system, with i ∼ β ∼70°. The accretion region is extended in magnetic longitude, and is totally self-occulted for ∼25 per cent of the orbit. The radial velocity curves derived from the emission lines show a phasing with maximum blueshift occurring with Δ φ ∼0.05 of maximum intensity and circular polarisation. In addition, the broader component of the lines exhibit a substantial radial velocity phase shift with respect to the narrower component, in the sense that the broad component preceeds the narrow. This can be readily understood if the narrower component is principally a result of orbital motion of the stream material and the broad component mainly a result of streaming motion near the coupling region. The phasing of the Ca  ii near-infrared line radial velocities also supports this general picture.  相似文献   

18.
We present the results of a 22.5 ks pointed ROSAT PSPC observation of the 3.4-h period eclipsing polar MN Hya (RX J0929.1−2404). The X-ray light curve exhibits a 'double-humped' shape, with a secondary minimum occuring at φ∼ 0.45, a morphology consistent with two-pole accretion. Strong aperiodic flaring activity, with flux enhancements of ∼ 6 × the quiescent level, is also observed. A pre-eclipse 'dip' occurs in the phase interval φ= 0.87–0.95 with the X-rays becoming harder, indicative of photoelectric absorption by the pre-shock flow. There is also evidence of a secondary spectrally hard 'dip' near φ = 0.45–0.55, which might be associated with a second accretion stream flowing to the other magnetic pole.   The X-ray spectrum is best represented by a combination of a ∼50 eV blackbody and a thermal bremsstrahlung component of kT 1.6 keV, with a total absorption column of N H  = 2.9 × 1020 cm−2.   The primary maximum (φ∼ 0.65) has a slightly larger column and normalization compared to the secondary maximum. Although there are few photons, the dip spectrum is very flat in comparison to other phases, and is best represented by a single bremsstrahlung component. This is indicative of the spectral hardening seen in the light curves attributed to photoabsorption. The ratio of unabsorbed bremsstrahlung and blackbody luminosities is ∼ 0.1 for the best-fitting average spectral models. This implies a magnetic field strength  30 MG on the basis of the empirical L hard/ L soft −  B relationships, although consideration of the cyclotron flux and aspect effects could allow for an even higher field (55 MG).  相似文献   

19.
20.
The recently discovered young supernova remnant (SNR) RX J0852.0−4622 has attracted much interest since its discovery because of the possibility that it may have been generated by the nearest supernova in recent history. We note the presence of two Parkes Multibeam Survey pulsars within the boundary of the remnant. We discuss the properties of the two pulsars and the likelihood of either of them being physically linked to the SNR. We tentatively suggest that, given the current uncertainties in the distance to RX J0852.0−4622, one of these pulsars, the 65-ms period PSR J0855−4644 could indeed be the compact remnant of this supernova explosion. If the pulsar birth site is at the geometrical centre of the nebula, then, for the transverse pulsar velocity to be reasonable, the SNR must be nearby (around 250 pc) and no younger than about 3000 yr old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号