首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Appalachian fold–thrust belt is characterized by a sinuous trace in map-view, creating a series of salients and recesses. The kinematic evolution of these arcuate features remains a controversial topic in orogenesis. Primary magnetizations from clastic red beds in the Pennsylvania salient show Pennsylvanian rotations that account for about half of the curvature, while Kiaman-aged (Permian) remagnetizations display no relative rotation between the limbs. The more southern Tennessee salient shows a maximum change in regional strike from ~ 65° in Virginia to ~ 10° in northern Georgia. Paleomagnetic results from thirty-two sites in the Middle to Upper Ordovician Chickamauga Group limestones and twenty sites from the Middle Cambrian Rome Formation red beds were analyzed to constrain the relative age of magnetization as well as the nature of curvature in the Tennessee salient. Results from three sites of the Silurian Red Mountain Formation were added to an existing dataset in order to determine whether the southern limb had rotated.After thermal demagnetization, all three sample suites display a down and southeasterly direction, albeit carried by different magnetic minerals. The syn-tilting direction of the Chickamauga limestones lies on the Pennsylvanian segment of the North American apparent polar wander path (APWP), indicating that deformation was about half completed by the Late Pennsylvanian. The Rome and Red Mountain Formations were also remagnetized during the Pennsylvanian. Both the Chickamauga limestones and Rome red beds fail to show a correlation between strike and declination along the salient, suggesting either that the salient was a primary, non-rotational feature or that secondary curvature occurred prior to remagnetization, as it did in Pennsylvania. Moreover, remagnetized directions from the Red Mountain sites show no statistical difference between the southern limb of the salient and the more northeasterly trending portion of the fold–thrust belt in Alabama. Thus, all of the studied units in the Tennessee salient are remagnetized and show no evidence for rotation. This confirms that remagnetization was widespread in the southern Appalachians and that any potential orogenic rotation must have occurred prior to the Late Pennsylvanian.  相似文献   

2.
The early Pliocene Shirahama Limestone is a grainstone-packstone principally composed of fragments of algae, bryozoa, and echinoderm and subordinate volcanic rocks. The limestone was variously dolomitized and the regional distribution of dolomite is patchy. Dolomite occurs as isolated crystals filling pores, moulds, and solution vugs, and mosaic aggregates replacing bioclasts. Calcite occurs as rim and pore-filling sparry cements, and as calcareous skeletons. Isotopically, the dolomites are classified into a heavy oxygen group (?2 to ? 3.5%0 PDB) and a light oxygen group (?5.5 to ? 7.5%0 PDB). Calcite associated with heavy oxygen dolomite has δ18O of ? 6.5 to ?8.5%0 PDB, whereas those associated with light oxygen dolomite have a wide range from ?7.5 to ?14%0 PDB. Calcite in dolomite-free limestone has an oxygen isotopic composition of ?2 to ?8.5%0 PDB. Textures, chemistry, and isotopic evidence indicate that heavy oxygen calcite formed in freshwater, and heavy oxygen dolomite in a meteoric-marine mixture of 10–30% seawater. Light oxygen calcite and dolomite precipitated from modified hydrothermal fluids at approximately 30–65°C. Petrographic features, and both isotopic and chemical evidence suggest that the Shirahama Limestone was exposed to freshwater soon after deposition. Subsequently blocky calcite precipitated (Stage I). The limestone was locally submerged in the meteoric-marine mixture due to gradual subsidence or eustatic movement. This led to the precipitation of heavy oxygen, zoned dolomite and dolospar (Stage II). Hydrothermal alterations occurred in the area a few Myr ago, and related hydrothermal fluids and mixed meteoric-hydrothermal waters caused dedolomitization of some zoned dolomite, partial dissolution of vuggy dolomite, precipitation of limpid dolomite and recrystallization of some earlier dolomites (Stage III). Zeolites were also precipitated from these fluids. Finally, the Shirahama Limestone was exposed again to freshwater and sparry calcite precipitated to plug some of the remaining pores (Stage IV).  相似文献   

3.
4.
Dolomite occurs in open-shelf packstones and grainstones of the Vincent House Member of the Woo Dale Limestones Formation (Lower Carboniferous) in the Wye Valley area, east of Buxton, Derbyshire, Central England. Two stages of dolomitization can be recognized. Stage 1 consists of limpid, non-luminescent dolomite lacking detectable iron and manganese. Stage 2 comprises cloudy, inclusion-rich, orange-red luminescing dolomite with significant iron and manganese. The contact between the two stages is irregular and suggests a hiatus between dolomite growth stages. Dolostones lacking any unreplaced limestone may contain up to 35% calcite cement rilling intercrystal porosity. This cement shows a characteristic zonal sequence and is normally in optical continuity with the surrounding dolomite crystals. In some cases, precementation compaction of the dolomite mosaic caused fracturing of the crystals. Sherds of dolomite on the floors of pore-spaces then provided the nucleus for growth of calcite cement. The petrographic character and stratigraphic distribution of the dolomite suggest that dolomitization occurred at depth, during burial of the Woo Dale Limestones in the Late Carboniferous. Dolomitizing solutions, expelled from basinal shales, moved up-dip along permeable limestones or along the sub-Carboniferous unconformity. Fluids responsible for the generation of stage 2 dolomite may have been contaminated by ions such as iron and manganese released from the alteration of volcanic rocks which occur beneath the Carboniferous Limestone in the Wye Valley area.  相似文献   

5.
Stratabound epigenetic dolomite occurs in carbonate facies of the Barrandian basin (Silurian and Devonian), Czech Republic. The most intense dolomitization is developed in bioclastic calcarenites within the transition between micritic limestone and shaledominated Přídolí and Lochkov formations deposited on a carbonate slope. Medium-crystalline (100–400 μm), inclusion-rich, xenotopic matrix dolomite (δ 18O=−4.64 to −3.40‰ PDB;δ 13C=+1.05 to +1.85‰ PDB) which selectively replaced most of the bioclastic precursor is volumetrically the most important dolomite type. Coarse crystalline saddle dolomite (δ 18O=−8.04 to −5.14‰ PDB;δ 18C=+0.49 to +1.49 PDB) which precipitated in fractures and vugs within the matrix dolomite represents a later diagenetic dolomitization event. In some vugs, saddle dolomite coprecipitated with petroleum inclusion-rich authigenic quartz crystals and minor sulfides which, in turn, were post-dated by semisolid asphaltic bitumen. The interpretation of the dolomitization remains equivocal. Massive xenotopic dolomite, although generally characteristic of a deeper burial setting, may have been formed by a recrystallization of an earlier, possibly shallow burial dolomite. Deeper burial recrystallization by reactive basinal pore fluids that presumably migrated through the more permeable upper portion of the Přídolí sequence appears as a viable explanation for this dolomitization overprint. Saddle dolomite cement of the matrix dolomite is interpreted as the last dolomitization event that occurred during deep burial at the depth of the oil window zone. The presence of saddle dolomite, the fluid inclusion composition of associated quartz crystals, and vitrinite paleogeothermometry of adjacent sediments imply diagenetic burial temperatures as high as 160°C. Although high geothermal gradients in the past or the involvement of hydrothermally influenced basinal fluids can account for these elevated temperatures, burial heating beneath approximately 3-km-thick sedimentary overburden of presumably post-Givetian strata, no longer preserved in the basin, appears to be the most likely interpretation. This interpretaion may imply that the magnitude of post-Variscan erosion in the Barrandian area was substantially greater than previously thought.  相似文献   

6.
The Early Jurassic dolomitized carbonates are a hydrocarbon exploration target in Northern Italy. Of these carbonates, the Liassic Albenza Formation platform and the overlying Sedrina Formation shelf were studied to define a pervasive dolomitization model and to shed light on dolomite distribution in the sub‐surface. Field work, as well as analyses of well cores, stable isotopes, trace elements and fluid inclusions, was carried out on the outcropping thrust belt and sub‐surface deformed foreland of the Southern Alps. Petrographic analyses showed a first, pervasive, replacement dolomitization phase (D1) followed by volumetrically less important dolomite cement precipitation phases (D2, D3 and D4). The δ18O values fall between ?8·2‰ and 0·1‰ Vienna‐Pee Dee Belemnite with the more depleted samples belonging to dolomite cement‐rich dolostones; the δ13C ranges from 2·6‰ to 3·7‰ Vienna‐Pee Dee Belemnite. Analysis of trace elements showed different Fe and Mn contents in the sub‐surface and outcropping dolostones, and a higher Fe in the younger dolomite cements. An increase in the precipitation temperature (up to 130 °C from fluid inclusion data) and a decrease in diagenetic fluid salinity (from sea water to brackish) are observed from the first pervasive replacement dolomite to the dolomite cement phases. Field observations indicate that, in the Albenza Formation, dolomitization was limited to palaeohighs or faulted platform margins in the Early Jurassic carbonates. The pervasive replacement phase is interpreted based on a ‘compaction model’; the formation fluids expelled from compacting basinal carbonates could have funnelled along faults into permeable palaeohighs. The high homogenization temperature of the dolomite cements and decreased salinities indicate precipitation at great depth with an influx of meteoric water. These data, along with the thermal history, suggest that the dolomite cements precipitated according to the ‘tectonic squeegee’ dolomitization model. The dolomite precipitation temperature was set against the thermal history of the carbonate platform to interpret the timing of dolomite precipitation. The dolomite precipitation temperatures (90 to 100 °C) were reached in the studied formations first in the thrust fold belt (Early Tertiary, 60 Ma), and then in the foreland succession during the Late Tertiary (10 Ma). This observation suggests that the dolomite precipitation fronts moved southwards over time, recording a ‘diagenetic wave’ linked to the migration of the orogenic system. Observations suggest that the porosity increased during the first phase of replacement dolomitization while the dolomite cementation phases partially occluded the pores. The distribution of porous dolomitized bodies is therefore linked to the ‘compaction dolomitization’ model.  相似文献   

7.
湖相白云岩具有重要的油气地质意义,广泛发育于我国东部新生代地层中。本文通过大量资料统计和分析前人对国内湖相白云岩的研究成果,系统阐述了国内主要湖盆的湖相白云岩的成因、形成流体来源及相关物质的响应。根据白云石化流体的碳氧同位素、锶钡比、有序度、pH值、Eu异常、Ce异常等各类指标,将白云石化流体分为原始湖泊、外来淡水、热水热液和海源流体等类型。不同类型流体来源改造下生成白云岩所伴生的矿物组合不同;不同白云石化流体通过微生物作用、准同生作用、热液作用和埋藏作用等方式对原始碳酸盐岩进行白云石化作用,不同白云石化作用机制直接制约了其物质响应过程。提出了未来利用定量分析技术深入开展白云石化流体来源分析、准确判断成岩流体类型或成岩作用机制是进一步研究的方向。  相似文献   

8.
ABSTRACT P-T conditions inferred from fluid inclusions in metamorphic rocks often disagree with the values predicted from mineral equilibria calculations. These observations suggest that inclusions formed during early stages of regional metamorphism continue to re-equilibrate during burial and subsequent uplift in response to differential pressure. P-T conditions accompanying burial and uplift were experimentally simulated by initially forming pure H2O inclusions in quartz at elevated temperatures and pressures, and then re-equilibrating the inclusions in the presence of a 20 wt% NaCl solution such that final confining pressures ranged from 5 kbar above to 4 kbar below the initial internal pressure of the inclusions at the temperature of re-equilibration. In all samples re-equilibrated at confining pressures below the internal pressure, some inclusions were formed that had compositions of 20 wt% NaCl and densities in accord with the final P-T conditions. Additionally, some inclusions were observed to contain fluids of intermediate salinities (between 0 and 20 wt% NaCl). Densities of these inclusions were also consistent with formation at the re-equilibration P-T conditions. The remainder of the fluid inclusions observed in these samples contained pure H2O and their homogenization temperatures corresponded to densities intermediate between the initial and final P-T conditions. In short-term experiments (7 days) where the initial internal overpressure exceeded 1 kbar, no inclusions were found that contained the original density and none were found to have totally re-equilibrated. Instead, most H2O inclusions re-equilibrated until their internal pressures were between ∼750 and 1500 bars above the confining pressure, regardless of the initial pressure differential. In a long-term experiment (52 days), inclusions re-equilibrated at a lower confining pressure than the initial internal pressure displayed homogenization temperatures corresponding to a range in final internal pressures between 0 kbar (i.e. total re-equilibration) and 1.2 kbar above the confining pressure. In experiments where the confining pressure during re-equilibration exceeded the initial internal pressure, densities of pure H2O inclusions increased to values intermediate between the initial and final P-T conditions. Additionally, these inclusions were generally surrounded by a three-dimensional halo of smaller inclusions, also of intermediate density, resulting in a texture similar to that previously ascribed to decrepitation from internal overpressure. In extreme cases where confining pressures were 4–5 kbar above the initial pressure, the parent inclusion almost completely closed leaving only the three-dimensional array of small (5 μm) inclusions, the outline of which may be several times the volume of the original inclusion. Groups of such inclusions closely resemble textures commonly observed in medium- to high-grade metamorphic rocks. Inclusions containing 10 and 42 wt% NaCl solutions trapped at 600 °c and 3 kbar were re-equilibrated at 600 °c and 1 kbar for 5 days in dry argon to evaluate the importance of H2O diffusion as a mechanism of lowering the inclusion bulk density. Salinities of re-equilibrated inclusions obtained from freezing point depressions and halite dissolution temperatures indicate that original compositions were preserved. Density changes similar to those previously described were noted in these experiments, in inclusions showing no visible microfractures. Therefore, density variations observed in inclusions in this study, re-equilibrated under rapid deformation conditions, are considered to result from a change in the inclusion volume, without significant loss of contents by diffusion or leakage.  相似文献   

9.
The Shackleton Limestone formed a carbonate platform that bordered part of the Greater Antarctic craton in middle and late Early Cambrian time. In the Holyoake Range of the central Transantarctic Mountains, this unit records deposition on a stable shelf on which flourished ecological reefs composed of microorganisms and archaeocyathans. Burrow-mottled lime mudstone, wackestone and packstone with patch reefs represent accumulation in shelf areas of relatively low to moderate energy. Thick ooidal grainstone units reflect deposition in higher energy shoals and as sand sheets that were associated with extensive reef complexes. The framework of these reefs was principally the product of micro-organisms, by inference mostly cyanobacteria. Archaeocyathans constitute as much as 30% of some reefs, but commonly they form less than 10% and are absent from some. On the basis of microbial composition, three reef types are recognized. The first type is a Renalcis boundstone that lacks archaeocyathans. Within these, abundant upward-directed thalii of Renalcis formed a framework that trapped fine-grained sediment. The second type, which forms the core of some larger reefs, is composed of stromatactis-bearing, microbial boundstone. The third, yet most common, reef type is variable in composition. It is characterized by the presence of abundant Epiphyton, but may include archaeocyathans, and the microbial microfossils Girvanella and Renalcis as well as cryptomicrobial clotted micrite. In this type of reef, frame-building organisms typically constructed highly porous structures that had small interparticle and fenestral pores and large growth-framework cavities, as well as rare metre-sized caverns. Within these spaces, Epiphyton and, less commonly Renalcis, encrusted framework elements, fine-grained sediments accumulated, and pervasive sea-floor cements were precipitated. Boundstone fabrics in the Shackleton Limestone are highly complex, with fabrics analogous to younger, more metazoan-rich reefs, as well as deep-water stromatactis-bearing mud-mounds. The Epiphyton-Girvanella-archaeocyathan frameworks and stromatactis-bearing boundstones, both of which seemingly first appeared in the middle Early Cambrian, are regarded as the precursors, in structure, composition, and preferred hydrologic setting, of the more extensive reefs and complex framework styles of later Phanerozoic time.  相似文献   

10.
Strontium isotopic composition (87Sr/86Sr) of two petrographically, chemically and isotopically (δ18O and δ13C) distinct phases of burial calcites from the Lincolnshire Limestone are indistinguishable (0.70820± 26). The mean 87Sr/86Sr ratio of these phases is considerably more radiogenic than 87Sr/86Sr ratios of Bajocian marine waters (~0.70725). Neither Bajocian marine waters nor meteoric waters buffered by host marine carbonate in the Limestone could have precipitated the burial spars. Radiogenic strontium may have been contributed from K-feldspar dissolution and/or clay recrystallization, either within clastic portions of the Limestone itself, or from major clastic units adjacent to the Limestone. Alternatively, Palaeozoic marine waters or remobilized Palaeozoic marine carbonate and/or sulphate could have supplied the necessary radiogenic strontium.  相似文献   

11.
Carbonate concretions provide unique records of ancient biogeochemical processes in marine sediments. Typically, they form in organic‐rich mudstones, where a significant fraction of the bicarbonate required for carbonate precipitation is supplied from the decomposition of organic matter in the sediments. As a result, carbonates that comprise concretions are usually characterized by broad ranges in δ13C and include values that are significantly depleted relative to seawater. This article reports results from a physical, petrographic and geochemical analysis of 238 concretions from the Wheeler Formation (Cambrian Series 3), Utah, USA, which are unusual in several respects. Most prominently, they formed in organic‐poor mudstones (total organic carbon = 0·1 to 0·5%) and are characterized by a narrow range of δ13C that onlaps the range of contemporaneous seawater values. Subtle centre to edge trends in δ13C demonstrate that concretion precipitation was initiated by local chemical gradients set up by microbial activity in the sediments, but was sustained during growth by a large pool of inorganic bicarbonate probably derived from alkaline bottom waters. The large inorganic pool appears to have been important in facilitating rapid precipitation of the concretion matrix, which occurred via both displacive and replacive carbonate precipitation during early diagenesis. Stable isotope data from cogenetic pyrite (δ34S) and silica (δ18O) phases provide insight into the evolution of biogeochemical processes during concretion growth, and suggest that concretions were formed almost entirely during sulphate reduction, with only minor modification thereafter. Concretions of the Wheeler Formation appear to represent an end‐member system of concretion formation in which rapid growth was promoted by ions supplied from sea‐water. As such, they offer insight into the spectrum of processes that may influence the growth of carbonate concretions in marine sediments.  相似文献   

12.
The Berriedale Limestone formed at about 80°S paleolatitude and contains many glacial dropstones. It formed during a period of major Gondwana deglaciation.

The Berriedale Limestone contains mostly bryozoans, brachiopods and bivalves, with some intraclasts and rare pellets. The faunal diversity is low and the fauna are similar to the modern cold-water foramol faunal assemblage. Micrite, microspar and spar occur as equant to well developed rhombs of calcite. The coarse spar cements are bored and are ruptured by dropstones, indicating submarine origin of low-Mg calcite at water-temperatures of around 3°C. The mixing zone cementation was preceded by erosion of early formed crystals. The eroded crystals occur as inclusions in mixing zone cements.

The fauna are characterized by heavy δ13C and light δ18O. The whole-rock field of δ18O-δ13C falls at the edge of “Normal Marine Limestone” and deviates to lighter δ18O values (down to −16.7‰ PDB). Lightest δ18O values ( −22‰ PDB) of fresh-water sparry calcite cement are similar to those in the Early Permian continental tillites, suggesting that the Permian sea was diluted by isotopically light melt waters. Micrite δ18O values (−9.2 to −12.6‰ PDB) are within the range of whole-rock values. The δ18O values of calcite in shales are lighter than limestone values.

The δ18O values of the fauna give an unrealistic range of sea-water temperatures because the fauna have equilibrated with variable amounts of melt waters. However, calculated original δ18O values of the fauna indicate temperatures < 4°C. The heaviest δ18O of fauna gives cold temperatures of 9°C (with δw −2.8‰) and −3°C (with δw −6‰). The lightest values of sparry calcite cements (−22‰ PDB) indicate that the limestone reacted with cold melt waters.

The δ18O of Permian sea is estimated to be about +1.2‰ and was diluted by melt waters as light as −27‰ SMOW.  相似文献   


13.
The petrography, the geochemistry and the burial history all constrain the origin and modification history of dolomites in an ancient periplatform carbonate slope deposit,the Machari Formation (late Miclclle to early Late Cambrian),Korea. The formation is mainly composed of rhythmic bedding. laminated to bedded lime mudstone alternating with argillaceous lime mudstone. The rhythmic bedding is a product of the deposition of offshore periplatform ooze and hemipelagic clay on a periplatform slope. This formation also shows minor and intermittent influx of other lithofacies including the bioclastic-peloidal packstone, peloidal wackestone, and intraclasts deposited as turbidites. Five types of dolomite occur in the Machari Formation, whose occurrence.texture and geochemistry provide an insight into origin and modification history.  相似文献   

14.
ABSTRACT Usually well preserved fluidization pillars and sand filled fluidization pipes occur within submarine channel sands of the basal Uratanna Formation (Lower Cambrian) in the Adelaide Geosyncline of South Australia. The morphology of these structures reflects complex lateral and vertical movement of fluids during liquefaction and dewatering. Fluidization pipes acted as conduits for highly concentrated, upward directed fluid flow. The formation and maintenance of these pipes was dependent upon the development of a pipe wall composed of clay plugged fine sand. Formed during initial fluidization, this lining acted as a permeability barrier, confining and concentrating fluidized flow within the pipe. Each of the pipes is surrounded by a cylindrical fluidization halo in which leakage through the pipe lining produced partial fluidization of the surrounding sediment. Fine scale structures within these haloes indicate that fluids flowed radially and upward out of the fluidization pipes at an acute angle. These fluids merged with and influenced the orientation and size of adjacent fluidization pillars. The fluidization pipes of the Uratanna Formation may represent unusual preservation of the unstable fluid flow conditions that occur during incipient fluidization of sand beds.  相似文献   

15.
The age of the marine Nodular Limestone Formation of the Bagh Group is refined at Substage level through ammonoid and inoceramid index taxa. The study is based on the fresh collections from three well-defined successive intervals (Lower Karondia, Upper Karondia and Chirakhan members) of this formation having excellent exposures in different localities of the Narmada Basin, central India. The first record of the widely distributed Turonian ammonoid genera Spathites Kummel and Decker and Collignoniceras Breistroffer from the Nodular Limestone Formation constrained its age exclusively to Turonian. The Early Turonian species Spathites (Jeanrogericeras) aff. revelieranus (Courtiller) and Mytiloides labiatus (Sclotheim) occur in the lower part, while the Middle Turonian marker Collignoniceras cf. carolinum (d’Obrbigny) and Inoceramus hobetsensis (Nagao and Matsumoto) occurs in the upper part of the Karondia Member. The record of the index species Inoceramus teshioensis (Nagao and Matsumoto) in association with Placenticeras mintoi Vredenburg from Chirakhan Member allows a definite Late Turonian age. The present contribution is an attempt to resolve the controversies in the age of the Nodular Limestone Formation and also demarcation of the three divisions (Early, Middle and Late) of the Turonian Stage in the Narmada Basin, central India.  相似文献   

16.
Calcareous stromatolites of the upper Siyeh Limestone (ca. 1.1 ° 109 years old) were studied in the central part of Glacier National Park, Montana. The stromatolites, mound- and dome-shaped structures deposited in a shallow, generally submerged, tidally influenced setting, were formed by a combination of in situ carbonate precipitation and organic stabilization of detrital material. Well-developed, 1–4 cm diameter, branched columns occur in a single stromatolite bed.Physical factors, including the size and shape of sediment-surface irregularities upon which the stromatolites developed, the rate of sedimentation between stromatolites, and the water depth, played a major role in controlling stromatolite macrostructure. Deposition of non-organically stabilized detritus on stromatolite growth surfaces inhibited the development of small-diameter columns by smoothing over developing growth features. Columnar structures are absent in stromatolites that contain abundant non-organically stabilized sediment. In contrast, they are well-developed in a stromatolite bed that is relatively deficient in such material.“Molar-tooth” structures are common in the impure dolomitic limestones, and the abundant sheet-shaped forms appear to be sparry-calcite-filled syneresis cracks.  相似文献   

17.
The late Cambrian Bowers Group is regressive marine to non-marine. On the basis of associations of textures and sedimentary structures (both primary and biotic), and of palaeocurrent measurements, the sediments of the newly defined Mariner Formation appear to have accumulated on a platform or continental shelf of low gradient and narrow tidal range. Trilobite- and brachiopod-bearing fissile mudstone with sparse channels and scattered stratified sandstone (open marine) is succeeded by wavy-bedded and lenticular-bedded mudstone, muddy sandstone, and rippled sandstone with bands rich in brachiopods (shallow open marine), then mudstone and laminated sandstone with lenticular bodies of oosparite (open marine shoals and protected inner shelf), and red and green, ripple- and parallel-laminated sandstone, interbedded with burrowed muddy sandstone and mudstone, with lenticular bedding (tidal flat). The sharply overlying Camp Ridge Quartzite of cross-bedded sandstone, pebbly sandstone, and sandy pebble conglomerate, is regarded as braided channel alluvium.The detritus appears to have been derived from veined low-grade metamorphic rocks and fine-grained detrital sedimentary rocks that lay south of the area.  相似文献   

18.
The flow pattern of reactive metamorphic fluid through six outcrops of micaceous, carbonate-bearing sandstones from the Vassalboro Formation was determined by calculating and mapping fluid-rock ratios for numerous samples within each outcrop. The ratio of maximum to minimum measured fluid/rock varied by factors of only 1.3-22.9 in each outcrop. Fluid flow was pervasive at metamorphic grades ranging from the biotite through the sillimanite zones. Average fluid-rock ratio for the outcrops increases with increasing grade of metamorphism from 0.4 in the biotite zone to 1.4 in the sillimanite zone.The flow pattern of reactive fluid through impure sandstones of the Vassalboro Formation was different at low and medium grades from fluid flow through the limestone member of the adjacent Waterville Formation. In the biotite and garnet zones, fluid flow through the Waterville Formation was channelized with channelways corresponding to individual lithologic layers that acted as metamorphic aquifers. Fluid-rock ratios recorded by the aquifers are greater than those recorded by the intervening beds by factors of up to 50–60. At the highest grades of metamorphism (sillimanite zone), however, flow through the Waterville Formation was as pervasive as through the Vassalboro Formation.The Waterville and Vassalboro Formations experienced the same metamorphic event. The difference in pattern of fluid flow through the two formations therefore reflects the important control that lithology exerts on the permeability of rocks during metamorphism. Micaceous, carbonate-bearing sandstones evidently were more permeable than argillaceous carbonate rocks. The greater permeability of the sandstones may result from a greater concentration of grain boundaries between unlike minerals in the rocks.  相似文献   

19.
Discordant zebra dolomite bodies occur locally in the Middle Cambrian Cathedral and Eldon Formations of the Main Ranges of the Canadian Rocky Mountains Fold and Thrust Belt. They are characterized by alternating dark grey (a) and white (b) bands, forming an ‘abba’ diagenetic cyclicity. These bands developed parallel to both bedding and cleavage. Dark grey (a) bands consist of fine (< 300 μm) non-planar crystalline impure dolomite. The white (b) bands are composed of coarse (up to several millimetres) milky-white pure saddle dolomites (b1) which are often covered by pore-lining zoned dolomite (b2). The b phases often possess a saddle-shaped morphology. In contrast to the replacement origin of the a dolomite, the zoned b2 dolomite rims are interpreted as a cement formed in open cavities. The b1 dolomite is interpreted as the result of recrystallization with diagenetic leaching of non-carbonate components. All the zebra dolomites studied are (nearly) stoichiometric and are characterized by enriched Na and depleted Sr concentrations. Fe and Mn concentrations in these dolomites differ depending on the sample locality. Fluid inclusion data indicate that the dolomites formed from relatively hot (TH = 130–200 °C), saline (20–23 wt% CaCl2 eq.) fluids. A diagenetic high temperature origin is also supported by depleted δ18O values (−20 to −14‰ VPDB). A contribution of 87Sr-enriched fluids is reflected in the 87Sr/86Sr values (0·7091–0·7123). Zebra dolomite development is explained by focused fluid flow, which exploited areas of structural weaknesses (e.g. basin-platform, rim areas, faults, etc.). Expulsion of hot basinal brines in a tectonically active regime generated overpressures, which explains the development of secondary porosity during zebra dolomitization as well as the intra-zebra fracturing at decimetre to micrometre scale.  相似文献   

20.
Dolomitized Main Limestone rocks of the Lower Carboniferous crop out in a narrow band of about three fourths of a mile along the south, east and northeast rims of the South Wales Coalfield Basin which encompasses the general regions of Miskin, Taffs Well and the Clydach, respectively. The thickness of these rocks varies from a maximum of 2,750 feet to nothing.The Ca/Mg ratio in the Main Limestone in general ranged from 1.7 : 1 to over 100 : 1 with less than 2 : 1 to 3.5 : 1 being the commonest. Magnesium content ranged from less than 5% to over 60% (mole percent MgCO3), with 40–50 mole percent p.f. MgCO3 being the commoner.Petrographic study of the Main Limestone led to recognition of six major microfacies. They are: (1) biosparite; (2) dolobiomicrite; (3) quartz-dolomicrite; (4) dolomicrite; (5) oosparite; and (6) dolorudite. In terms of their geographic distribution, dolobiomicrite predominates in the Taffs Well region, while quartz-dolobiomicrite is common in the Clydach region. In terms of their distribution in time, biosparite is common in the basal part (Lower ZC1 zone), dolobiomicrites (including the quartz-bearing variety) in the middle part (ZC1 and C2S1 zone) of the Taffs Well region and its corresponding Calcite-Mudstone Group in the Clydach region.The bulk of dolomitization in these rocks occurred in the Caninia-Seminula zone or the Calcite-Mudstone Group. In this study, it marks geochemical stage B: the sea-connected lagoonal phase similar to one observed today in South Australia. It is suggested that such a sea-connected Lagoon in the Main Limestone Sea formed largely in response to a reef barrier (or a ridge) - a remnant of which is found today between Miskin and the Taffs Well region where the transition from lime to dolomite facies occurs. The Miskin area represented the deeper-water reef flank towards the open sea whereas the Taffs Well region marked the shallow-water reef flank landward.It is concluded that the Main Limestone Series contains predominantly diagenetic dolostones whilst the syngenetic and epigenetic dolostones are restricted in time and space. The diagenetic dolostone dominates in the Taffs Well and Clydach regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号