首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new apparatus suitable for conducting in situ experiments in the sea, is described. Eight and ten flow-through chambers, respectively, together with a probe for recording current, temperature and salinity, are fixed on a reinforced concrete base and exposed at a water depth of about 6 m. The reaction chambers, constructed from PVC tubes, are closed at both ends with nylon gauze, allowing for a continuous exchange of water. The individual chambers are put into position and removed, after different times, by scuba divers. Some results from experiments on oil elimination using these chambers are reported. The elimination of oil from sediments, using this apparatus, was found to be two to three times greater than oil degradation in closed systems.  相似文献   

2.
Nutrient conditions off central California during the 1997–98 El Niño are described. Data were collected on 11 cruises from March 1997 to January 1999 along a hydrographic section off central California, as well as every two weeks at a coastal station in Monterey Bay. Perturbations associated with El Niño are shown as anomalies of thermohaline and nutrient distributions along this section. The anomalies were obtained by subtracting seasonal averages for the period from April 1988 to April 1991 from the 1997–98 observations. The first indications of El Niño conditions (high sea levels) were observed at Monterey between late May and early June 1997, but the coastal nutricline did not begin to deepen until August 1997. It reached maximum depth of 130 dbar in January 1998 at the time that maximum sea level anomalies were observed. During this period: (1) the highest subsurface temperature anomalies coincided with subsurface nutrient anomaly minima at the depth of the pycnocline; (2) southern saline and nutrient-poor waters occupied the upper 80 dbar of the water column along the entire section; and (3) nitrate levels were close to zero in the euphotic zone, collapsing the potential new primary production in the coastal domain. At the end of February 1998, the nutricline shoaled to 40 dbar at the coast although it remained anomalously deep offshore. Higher temperatures and lower nutrient levels were observed for the entire section through August 1998 although in contrast with the previous winter, there was a strong freshening mainly due to an onshore movement of subarctic waters.  相似文献   

3.
Coastal upwelling in the California Current system has been the subject of large scale studies off California and Baja California, and of small scale studies off Oregon. Recent studies of the winds along the entire coast from 25°N to 50°N indicate that there are significant along-shore variations in the strength of coastal upwelling, which are reflected in the observed temperature distribution. Active upwelling appears to be restricted to a narrow coastal band (about 10–25 km wide) along the entire coast, but the region influenced by coastal upwelling may be much wider. Intensive observations of the upwelling zone during summer off Oregon show the presence of a southward coastal jet at the surface, a mean vertical shear, a poleward undercurrent along the bottom, and persistently sloping isopycnals over the continental shelf; most of the upwelling there occurs during relatively short periods (several days long) of upwelling-favorable winds. During the upwelling season off Oregon, the offshore Ekman transport is carried by the surface Ekman layer, and the onshore return flow occurs through a quasi-geostrophic interior. It is not known whether the structure and dynamics observed off Oregon are typical of the upwelling zone along the entire coast, though some of the same features have been observed off Baja California. Current and future research will eventually show whether the Oregon results are also applicable in the region of persistently strong upwelling-favorable winds off northern California, and in the region of complex bathymetry off central and southern California.  相似文献   

4.
On the basis of hydrographic data and moored current meter records obtained during an early summer cruise (May 20–June 23) of 1986, a three dimensional diagnostic calculation of the circulation is performed in the survey area, which covers the East China Sea continental shelf, Okinawa Trough and an area east of the Ryukyu Island. The Kuroshio Current condition and structure in the East China Sea, its branches and their interrelationship as well as the eddies around the Kuroshio, are discussed. When the Kuroshio entered the area northeast of Taiwan, there were two branches. The main branch flowed northeastward along the continental slope and the other branch was at the eastern part of the Okinawa Trough. The main axis of the Kuroshio followed the continental slope above the 300 m level, but moved gradually eastward to the Okinawa Trough below the 300 m level.  相似文献   

5.
6.
Current meters were operating in La Jolla Submarine Canyon at 200 m depth during a period of high seas and onshore winds up to 62 km/h (34 knots). The meters were subsequently extracted from a kelp tangle by use of a deep-diving vehicle 0.5 km downcanyon from their emplacement position. The records show a downcanyon speed up to 50 cm/sec, considerably higher than any of our numerous earlier measurements. This was followed by an abrupt termination of data, evidently due to being engulfed in seaward-moving kelp masses. The record may provide evidence of the initial stages of a turbidity current. The conditions for such a current were provided by the piling up of water at the canyon head by the unusually strong onshore wind.  相似文献   

7.
Thirteen years (1998–2010) of satellite-measured chlorophyll a are used to establish spatial patterns in climatological phytoplankton biomass seasonality across the California Current System (CCS) and its interannual variability. Multivariate clustering based on the shape of the local climatological seasonal cycle divides the study area into four groups: two with spring-summer maxima representing the northern and southern coastal upwelling zones, one with a summer minimum offshore in mid-latitudes and a fourth with very weak seasonality in between. Multivariate clustering on the seasonal cycles from all 13 years produces the same four seasonal cycle types and provides a view of the interannual variability in seasonal biogeography. Over the study period these seasonal cycles generally appear in similar locations as the climatological clusters. However, considerable interannual variability in the geography of the seasonal cycles is evident across the CCS, the most spatially extensive of which are associated with the 1997–1999 El Niño-Southern Oscillation (ENSO) signal and the 2005 delayed spring transition off the Oregon and northern and central California coasts. We quantify linear trends over the study period in the seasonal timing of the two seasonal cycles that represent the biologically productive coastal upwelling zones using four different metrics of phenology. In the northern upwelling region, the date of the spring maximum is delaying (1.34 days yr−1) and the central tendency of the summer elevated chlorophyll period is advancing (0.63 days yr−1). In the southern coastal upwelling region, both the initiation and cessation of the spring maximum are delaying (1.78 days yr−1 and 2.44 days yr−1, respectively) and the peak is increasing in duration over the study period. Connections between observed interannual shifts in phytoplankton seasonality and physical forcing, expressed as either basin-scale climate signals or local forcing, show phytoplankton seasonality in the CCS to be influenced by changes in the seasonality of the wind mixing power offshore, coastal upwelling in the near-shore regions and basin-scale signals such as ENSO across the study area.  相似文献   

8.
In this paper we present results from dynamic simulations of the Northern California Current ecosystem, based on historical estimates of fishing mortality, relative fishing effort, and climate forcing. Climate can affect ecosystem productivity and dynamics both from the bottom-up (through short- and long-term variability in primary and secondary production) as well as from the top-down (through variability in the abundance and spatial distribution of key predators). We have explored how the simplistic application of climate forcing through both bottom-up and top-down mechanisms improves the fit of the model dynamics to observed population trends and reported catches for exploited components of the ecosystem. We find that using climate as either a bottom-up or a top-down forcing mechanism results in substantial improvements in model performance, such that much of the variability observed in single species models and dynamics can be replicated in a multi-species approach. Using multiple climate variables (both bottom-up and top-down) simultaneously did not provide significant improvement over a model with only one forcing. In general, results suggest that there do not appear to be strong trophic interactions among many of the longer-lived, slower-growing rockfish, roundfish and flatfish in this ecosystem, although strong interactions were observed in shrimp, salmon and small flatfish populations where high turnover and predation rates have been coupled with substantial changes in many predator populations over the last 40 years.  相似文献   

9.
The “C-Plane” is a submerged variable depth ocean current turbine that is tethered to the sea floor and uses sustained ocean currents to produce electricity. As part of the development of a 130th scale physical model of the C-Plane, a mathematical model and dynamics simulation of the prototype was developed and is presented in this paper. This three-dimensional mathematical model represents the C-Plane as a rigid body with moveable control surfaces that is moored with three linear elastic cable elements. Gravitational, buoyancy, hydrodynamic, cable, gyroscopic, and inertial forces are included and a PC-based dynamics simulation is created. The simulation demonstrates that the C-Plane is stable and capable of changing depth in all expected operating conditions. The C-Plane prototype can fly level from a height of 3 to 6 m using the configuration suggested in this paper. The maximum ascent rates of the C-Plane with a water speed of 0.3 m/s are 0.015 m/s when the pitch is fixed at 0° and 0.030 m/s when the pitch is fixed at 4°. The maximum descent rates of the C-Plane are 0.018 m/s when the pitch is held at 0° and 0.031 m/s if the pitch is held at −4°.  相似文献   

10.
11.
12.
Ammonium concentrations were found to be elevated near Southern California sewage outfalls; concentrations exceeding 3 μg-atom litre−1 were measured 5 km from the discharge area. In stratified water, high values were found below 15 m, but in well-mixed water, high levels were detected at the surface. Subsurface high concentrations were associated with turbid layers, coliform bacteria and reduced oxygen levels. The distribution of ammonium correlated well with measured subsurface currents. The maximum concentration at the Whites Point outfall was 155 μg-atom litre−1 at 27 m, about 2 km from the diffuser. Measurements of ammonium in sewage, compared with that in seawater at Whites Point, suggested that sewage was diluted up to 400-fold. Ammonium may be a useful tracer of the discharge of sewage in seawater.  相似文献   

13.
This part of the paper examines near-surface current data from different periods during the test mooring of the data buoy, DB1.Harmonic analyses show that variations in the major tidal constituents between each period are not significantly greater than the standard error of the measurement: the differences observed in the principal lunar semi-diurnal tide are explained partly in terms of a modulation by adjacent constituents. Unexpected forms for the quarter diurnal tidal ellipses derived from the DB1 data have been found also in independent measurements, in which a different mooring technique had been used. These are therefore unlikely to be of instrumental origin.Non-tidal energy at periods exceeding three days is shown to correlate with changes in wind and surface elevation, the correspondence between wind and current being greatest during a period of strong winds, when current at 3 m depth was 0.9% of wind speed at 8 m. The data are interpreted in favour of an Eulerian current rather than Lagrangian Stokes transport due to waves. Rectification of wave orbital velocities due to buoy motion is not detectable.In view of the overall quality of the data it is concluded that this combination of surface following buoy and long-path acoustic current meter can contribute usefully to the determination of mean near-surface currents in the open sea.  相似文献   

14.
Ship and satellite observations taken over the last thirty years show that mesoscale patterns of sea surface temperature (SST) in the California Current System are consistently found throughout the year and usually occur in approximately the same geographical locations. Typically, these patterns are more pronounced in fall/winter than in spring/summer. The temporal and spatial characteristics of these persistent feature were examined with satellite infrared (IR) measurements during winter 1980–1981. In January 1981, a ship surveyed the vertical structure of several physical, chemical, and biological parameters beneath one of these SST features centered near 32°N, 124°W. The surface IR pattern had a length scale of 200 km and a time scale of about 100 days. It disintegrated following the first two storms of the winter season. Motion studies of the pattern in late October indicated an anticyclonic rotation with maximum velocities of 50 cm s?1 at 50 km from the axis of rotation. As a unit, the pattern advected southward with an average speed of 1 cm s?1. Thermal fronts, determined from the satellite imagery, were strongest (0.4°C km?1) along the rim of the pattern and were advected anticyclonically with the pattern; their length scales were 20–30 km in the along-front direction and less than 10 km wide. The hydrographic data revealed a three-layer structure beneath the surface pattern; a 75 m deep surface layer, a cold-core region from 75 to 200 m depth, and a warm-core eddy extending from 250 to 1450 m. The anticyclonic motion of the surface layer was caused by a geostrophic adjustment to the surface dynamic height anomaly produced by the subsurface warm-core eddy. The IR pattern observed from space reflects the horizontal structure of the surface layer and is consistent with a theoretical model of a mean horizontal SST gradient perturbed by a subsurface density anomaly. Ship of opportunity SST observations collected by the National Marine Fisheries are shown to resolve mesoscale patterns. For December 1980, the SST pattern near 32°N, 124°W represented a 2°C warm anomaly compared with the 20-year mean monthly SST pattern.  相似文献   

15.
The distribution of plankton across a warm-core eddy system in the California Current 400 km off Point Conception, California was studied in January 1981. The eddy system, about 150 km in diameter at the 7°C isotherm, was made up of a 75 m thick surface layer, a cold-core region extending from 75 m to about 200 m, and a warm-core eddy below 200 m extending to at least 1450 m. Casts for the vertical distribution of chlorophyll/phaeophytin and integrating zooplankton net tows were taken at 37 stations located about 20 km apart on two orthogonal transects across the eddy system. Vertical distributions of microplankton were determined on one section from the eddy center to beyond the eastern edge. Integrated chlorophyll/phaeophytin values were highest to the north and east of the eddy system; across the system itself, there was only a small increase of values near the center. Asymmetrical distributions of maximum concen Current water was being entrained into the center of the eddy system from the northeast. Dinoflagellates were numerically the most important member of the microplankton, especially in the deep chlorophyll maximum. Zooplankton distributions indicated the intermingling of warm and cool water species throughout at least the upper 200 m of the eddy system. Some cold water species were as abundant inside the system as outside to the north and east; their numbers were much reduced in a band surrounding the system where warm water species were most abundant. The presence of species characteristic of different water types throughout the region of the eddy system provides an indication of the mixing that had occurred since the system originally formed. The biological data, together with the physical and chemical results, indicate the importance of frontal boundary processes and lateral entrainment of surrounding water into the eddy system in determining the character and productivity of such systems.  相似文献   

16.
From January 9 to 17, 1981, detailed observations of the horizontal and vertical structure beneath one of the quasi-permanent semi-stationary mesoscale offshore eddy signatures in the California Current System (CCS) discussed by Bernstein, Breaker and Whritner (1977), Burkov and Pavlova (1980), and Simpson (1982) were made. The vertical sections of temperature and density show the presence of three-layer system. A subsurface warm-core eddy, whose diameter is about 150 km at the 7°C isotherm, is the dominant feature. A warm surface layer, which extends to a depth of 75 m, lies over the eddy. Between the warm surface layer and the subsurface warm-core eddy, there is a cold-core region which extends to a depth of about 200 m. There is a high degree of symmetry about the vertical axis of rotation. Vertical sections of salinity and dissolved oxygen are entirely different from sections of temperature and density. Diagrams of water mass characteristics confirm that the core of the eddy, found between 250–600 m, consists of inshore water from the California Undercurrent (CU). Below about 700 m, local waters from the Deep Poleward Flow (DPF) have been incorporated into the eddy. The observed distributions of properties (T, S, δθ, O2) are inconsistent with a single, local generation process for the eddy system. Radial distributions of angular velocity, normalized gradient velocity and relative vorticity support the use of a Gaussian radial height field as an initial condition in eddy models. Possible reasons why CCS eddies may differ dynamically from Gulf Stream rings are given in the text. At the time the observations were made, the system as a whole was in near geostrophic balance. Local geostrophic balance, however, cannot explain the observed distribution of properties and structure. The observed symmetry in the structure of the eddy system, chemical evidence (Simpson, 1984), biological distributions (Haury, 1984) and satellite images of the CC (Koblinsky, Simpson and Dickey, 1984) suggest that lateral entrainment of warm (oceanic) and cold (coastal) water into the upper two layers of the three-layer system by the subsurface eddy is a likely generation mechanism for the cold-core region. The coastal origin of the frontal structure along the northeastern quadrant and the oceanic origin of the frontal structure along the southwestern quadrant of the eddy system further support lateral entrainment as a generation mechanism for the cold core. This entrainment makes the CCS eddy system different from cold-core rings in the Gulf Stream and rather similar to some warm-core eddies found in the East Australian Current. The presence of CU water in the core of this eddy raises the question of how CU water was transported from the continental slope. Eddy generation mechanisms, other than baroclinic instability of the CC, may be required to explain the distribution, persistence, and core composition of offshore mesoscale eddies in the CCS. There is evidence that barotropic, in addition to baroclinic, processes may be important.  相似文献   

17.
From January 9 to 17, 1981, detailed physical, chemical and biological measurements were made through the historical surface signature (Berstein, Breaker and Whritner, 1977; Burkov and Pavlova, 1980; Simpson, 1982) of a warm-core eddy in the California Current System. The data show a three-layer system: surface layer to 75 m, intermediate cold-core region to about 200 m, and the physically dominant subsurface warm-core eddy to about 1400 m. The chemical structure simultaneously possesses characteristics of both warm- and cold-core eddies. This structure results from a complex interplay among non-local eddy generation processes at the time the three-layer system was formed and a continuous set of interactions within the three-layer system, both inshore (cold) and offshore (warm) waters of the California Current and coastal and local biological processes (e.g. this California Current System eddy is not an isolated structure like some Gulf Stream rings). The dominant biological/chemical process in the euphotic zone is phytoplankton photosynthesis; photosynthetic alteration of the chemical structure below 100 m is much reduced. The effects of heterotrophic activity on the deeper-lying chemical structure, however are not as significant as those of autotrophs on the chemical structure of the euphotic zone. Hence, below 100 m, the distribution and structure of chemical properties is controlled primarily by physical processes. The continuous set of interactions of the three-layer system with coastal and oceanic waters of the California Current make this offshore eddy in the California Current System fundamentally different chemically and biologically from cold-core Gulf Stream rings and rather similar to some of the warm-core eddies found in the East Australian Current.  相似文献   

18.
The Bering Sea is a high-latitude, semi-enclosed sea that supports extensive fish, seabird, marine mammal, and invertebrate populations and some of the world's most productive fisheries. The region consists of several distinct biomes that have undergone wide-scale population variation, in part due to fisheries, but also in part due to the effects of interannual and decadal-scale climatic variation. While recent decades of ocean observation have highlighted possible links between climate and species fluctuations, mechanisms linking climate and population fluctuations are only beginning to be understood. Here, we examine the food webs of Bering Sea ecosystems with particular reference to some key shifts in widely distributed, abundant fish populations and their links with climate variation. Both climate variability and fisheries have substantially altered the Bering Sea ecosystem in the past, but their relative importance in shaping the current ecosystem state remains uncertain.  相似文献   

19.
The Mondego estuary, a shallow warm-temperate intertidal system located on the west coast of Portugal, has for some decades been under severe ecological stress, mainly caused by eutrophication. Water circulation in this system was, until 1998, mainly dependent on tides and on the freshwater input of a small tributary artificially controlled by a sluice. After 1998, the sluice opening was effectively minimised to reduce the nutrient loading, and the system hydrodynamics improved due to engineering work in the upstream areas. The objective of the present study was to evaluate the effect of the mitigation measures implemented in 1998. Changes to the hydrodynamics of the system were assessed using precipitation and salinity data in relation to the concentrations of dissolved inorganic nutrients, as well as the linkage between dissolved N:P ratios and the biological parameters (phytoplankton chlorophyll a concentrations, green macroalgal biomass and seagrass biomass). Two distinctive periods were compared, over a ten year period: from January 1993 to January 1997 and from January 1999 until January 2003. The effective reduction in the dissolved N:P atomic ratio from 37.7 to 13.2 after 1998 is a result of lowered ammonia, but not the oxidised forms of nitrogen (nitrate plus nitrite), or increased concentrations of dissolved inorganic phosphorus. Results suggest that the phytoplankton is not nutrient limited, yet maximum and mean biomass of green macroalgae was reduced by one order of magnitude after the mitigation measures. This suggests that besides lowering the water residence time of the system, macroalgal growth became nitrogen limited. In parallel to these changes the seagrass-covered area and biomass of Zostera noltii showed signs of recovery.  相似文献   

20.
1. (1) The nature of sediment—sea interactions depends on the time scale considered. At a time scale commensurate with human life, one can define a water—sediment interface, and the main exchanges are solutes exchanges through this interface by concentration diffusion. This condition will be termed as “Short time-scale equilibrium interaction”.
On the other hand, at a geological time scale, there is a continuous accretion to the “sediment” of suspended particulate matter, bottom-current borne materials and sometimes precipitates of previously dissolved salts; to this sediment build-up corresponds a flux of water of reverse sense, from the sediment to the water column, due to the compaction of muds and oozes which reduce their porosity (their water content) under their own load. The concept of interface is then of limited utility, since physically it is constantly changing, and since the material balance of the exchanges does not depend on its characteristics at a first order of approximation. This condition will be termed “long time-scale geological interaction”.
These situations are extreme ones. In areas of present important detrital sedimentation, even for short time spans it is doubtful if the definition of an interface has some utility: we are in a situation close to “geological time scale”. On the contrary, in abyssal zones remote from continents, the rate of sedimentation is so low that even for eons an interface separating two environments in physico-chemical equilibrium exists.
2. (2) If there were no internal sources of dissolved species in the sediment, the only concentration changes to occur would be due to the decrease in porosity (in water content) following gravitational compaction of sediments. But this phenomenon is the same as sedimentation, thus transfer of matter would be unappreciable within short time spans. The fact that this transfer can be measured at human time scale shows therefore that dissolved species are actually produced in the sediment. Some of these can originate from possible inorganic chemical reactions, but all the organic molecules, and an important part of the inorganic (such as phosphates, nitrates, NH4+, S2-) require processing of organic matter for their production. Whether or not this reworking is of biological origin remains controversial. On the whole, the quantities of matter thus transferred are very minute compared to the quantities present in oceanic waters. They cannot be considered in general as a significant input. But they may be important locally (nearshore restricted water bodies, or manganese nodules formation).
3. (3) At geological time scale, sedimentation, which adds solid material to the preexisting sediment, results also in the compaction of this sediment. At every depth in the sediment there exists an equilibrium value of the porosity, i.e. the fluids content, of the sediment; it tends to this value by expelling the corresponding quantity of fluids, with a rate determined by its permeability. This input may be important, but it is mainly water, and water formerly oceanic: therefore it is not a true input, but simply a delayed return. The transfer of other fluids (mainly oil and gas) is unsignificant generally speaking. Once more, it may be locally important (submarine seepages).
4. (4) On the whole, the processes of water—sediment interaction appear not to add any new matter into the oceanic pool, but rather to regulate the restitution by the sediment to the water of substances which were already present in ocean, in particulate or dissolved form, either free or combined. One can trace out two main processes, which differ in their rates and yields:
4.1. (a) the short time scale diffusion—high rate low yield restitution of organics and inorganics in dissolved state:
4.2. (b) the long time scale compaction: low rate high yield restitution of entrapped fluids, essentially water (devoid of dissolved species).
Not only do these processes not bring any new matter to the ocean, but even the absolute quantities involved are modest compared either to the quantities present in the ocean or to the quantities generated by the photosynthetic primary production or brought by the rivers.In contrast to the insignificance of the water—sediment interaction in the oceanic material balance, this same interaction is one of the main sources for the material sedimented and especially the organic one, and therefore it is a fundamental key for all the subsequent sedimentary history.The significant inputs at the limit “bottom”-water come from the regions of deep tectonic activity, volcanism, creation of new oceanic crust etc… There tremendous amounts of substances can be brought into solution, changing at least locally the concentration equilibrium values of seawater. They are of course inorganic ions, but they can have important biological consequences. The buffering capacity of the world ocean is so high that only cosmic events can influence its composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号