首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation and evolution of tidal platforms are controlled by the feedbacks between hydrodynamics, geomorphology, vegetation, and sediment transport. Previous work mainly addresses dynamics at the scale of individual marsh platforms. Here, we develop a process-based model to investigate salt marsh depositional/erosional dynamics and resilience to environmental change at the scale of tidal basins. We evaluate how inputs of water and sediment from river and ocean sources interact, how losses of sediment to the ocean depend on this interaction, and how erosional/depositional dynamics are coupled to these exchanges. Model experiments consider a wide range of watershed, basin, and oceanic characteristics, represented by river discharge and suspended sediment concentration, basin dimensions, tidal range, and ocean sediment concentration. In some scenarios, the vertical accretion of a tidal flat can be greater than the rate of sea level rise. Under these conditions, vertical depositional dynamics can lead to transitions between tidal flat and salt marsh equilibrium states. This type of transition occurs much more rapidly than transitions occurring through horizontal marsh expansion or retreat. In addition, our analyses reveal that river inputs can affect the existence and extent of marsh/tidal flat equilibria by both directly providing suspended sediment (favoring marshes) and by modulating water exchanges with the ocean, thereby indirectly affecting the ocean sediment input to the system (favoring either marshes or tidal flats depending on the ratio of the river and ocean water inputs and their sediment concentrations). The model proposed has the goal of clarifying the roles of the main dynamic processes at play, rather than of predicting the evolution of a particular tidal system. Our model results most directly reflect micro- and meso-tidal environments but also have implications for macro-tidal settings. The model-based analyses presented extend our theoretical understanding of marsh dynamics to a greater range of intertidal environments. © 2020 John Wiley & Sons, Ltd.  相似文献   

2.
The growth and decline of salt marshes may be the result of various interacting biogeomorphic processes and external factors. We present a case study of the Mokbaai on the Wadden island of Texel, where we assess the relative importance and the interaction between the biogeomorphic processes and various disturbances. We analysed changes in vegetation composition in the salt marsh and sedimentation–erosion patterns of the adjoining intertidal flat over a 30‐year period. Vegetation underwent regression in the lower parts of the marsh, i.e. the low marsh zone changed into pioneer zone. Comparing elevation measurements from 2013 and 1983 showed that the adjoining intertidal flats eroded 15–25 cm. Maintenance dredging of a nearby harbour might negatively impact the sediment balance indicating that the regression of the lower parts of the salt marsh is caused by a lack of sediment. Simultaneously, a change in the local hydrology led to vegetation succession into high and brackish salt marsh, increased organic sediment production and consequently cliff formation. The results from this case study show that, even in a relatively small salt marsh, changes in external factors may set in motion a series of biogeomorphic processes and feedbacks, leading to locally contrasting trends in spatiotemporal development. © 2016 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

3.
Species invasions are known to change biotic and abiotic ecosystem characteristics such as community structure, cycling of materials and dynamics of rivers. However, their ability to alter interactions between biotic and abiotic ecosystem components, in particular bio‐geomorphic feedbacks and the resulting landscape configuration in tidal wetlands, such as tidal channels have not yet been demonstrated. We studied the impact of altered bio‐geomorphic feedbacks on geomorphologic features (i.e. tidal wetland channels), by comparing proxies for channel network geometry (unchanneled flow lengths, fractal dimension) over time between non‐invaded and invaded salt marsh habitats. The non‐invaded habitats (the south of eastern Chongming Island, Yangtze estuary, China) show little change in network geometry over time with a tendency for an increased drainage density. The invaded site (salt marshes in the north of eastern Chongming Island invaded by the exotic plant species Spartina alterniflora) showed a decreasing tendency in channel drainage density throughout and after the species invasion. This suggests that species invasions might not only affect biotic ecosystem characteristics, but also their ability to change bio‐geomorphic feedback loops, potentially leading to changes in existing geomorphologic features and therefore landscape configuration. Our results further suggest that the species invasion also altered sediment composition. Based on observations we propose a mechanism explaining the change in channel drainage density by an alteration in plant properties. The physical and physiological characteristics of the invading species Spartina alterniflora clearly differ from the native species Scirpus mariqueter, inducing different bio‐geomorphic feedback loops leading to the observed change in salt marsh channel configuration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
吉林向海沼泽湿地典型剖面沉积及年代序列重建   总被引:12,自引:0,他引:12  
沼泽湿地发育过程中堆积的各类沉积物真实地记录下区域环境演变与沼泽湿地发育过程。本文以无尾河下游漫流区——向海沼泽湿地为研究对象,对其典型沉积剖面结构、沉积物容重、年龄指标、沉积速率等多项沉积记录进行了综合剖析。结果表明:沼泽沉积物的层序关系可以揭示沼泽的形成途径及环境变化;溪边沼泽接受更多的矿质沉积物;1880-1885年该区域出现河道变迁的痕迹;向海沼泽湿地沉积速率与典型的河口三角洲类似,体现了河口尾端湿地的特点;近50年来,向海沼泽湿地沉积速率急剧上升,其原因可能与解放后该流域人类活动增强、植被破坏、水土流失严重有关,在时间上,与流域上游大型露天煤矿开采时段有较好的耦合性。  相似文献   

5.
This study evaluates the magnitude and extension of the impact produced by the discharge of inert allochthonous materials, including clays and particulate iron, on macrobenthic soft-bottom assemblages in the subtidal zone of a coastal bay in north-central Chile. An average of 118 Ton h(-1) of finely divided solids were discharged into the rocky intertidal zone of the bay for a period of over 16 years, producing continuous turbidity in the water column and sedimentation in the subtidal zone. Data obtained four months before cessation of the discharge showed that the macrofauna present at 20 and 50 m depth in the bay suffered an important decrease in abundance and species richness, low diversity/high dominance, and deep changes in community structure related to the discharge. The faunal assemblages present at 110 m depth did not show effects from the discharge, suggesting that the impact was limited to the inner part of the bay. The impoverished faunal aggregates at 20 and 50 m depth showed exclusive domination by the Lumbrineris bifilaris (polychaete)-Diastylis tongoyensis (cumacean) association, representing a simple trophic guild of deposit feeders. The complete absence of opportunistic species such as capitellid, spionid, and/or cirratulid polychaetes may be associated with the turbidity and sedimentation levels in the bay.  相似文献   

6.
There is a paucity of information on the regional distribution and magnitude of hurricane storm surge sedimentation. This study assesses the spatial extent and magnitude of Hurricane Ike's (2008) storm surge sedimentation and discusses implications for the role of hurricanes in marsh aggradation. The characteristics of the storm surge deposit, including thickness, inland penetration, volume and mass, were determined for 15 transects across marshes bordering the Gulf of Mexico in south‐eastern Texas and south‐western Louisiana. The deposit is up to 0·85 m thick, extends up to 3·6 km inland, and has an estimated volume of about 13·7 million m3 and an estimated mass of about 16·2 million metric tons. This level of sedimentation is one to two orders of magnitude larger than other potential sources of marsh sedimentation, including annual riverine inputs and inputs from alongshore sediment transport. The study findings add support to a growing body of evidence that hurricanes may be the predominant sediment source for long‐term aggradation of many coastal marshes bordering the Gulf of Mexico. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
During a one‐year period temporal and spatial variations in suspended sediment concentration (SSC) and deposition were studied on a salt and freshwater tidal marsh in the Scheldt estuary (Belgium, SW Netherlands) using automatic water sampling stations and sediment traps. Temporal variations were found to be controlled by tidal inundation. The initial SSC, measured above the marsh surface at the beginning of inundation events, increases linearly with inundation height at high tide. In accordance with this an exponential relationship is observed between inundation time and sedimentation rates, measured over 25 spring–neap cycles. In addition both SSC and sedimentation rates are higher during winter than during summer for the same inundation height or time. Although spatial differences in vegetation characteristics are large between and within the studied salt and freshwater marsh, they do not affect the spatial sedimentation pattern. Sedimentation rates however strongly decrease with increasing (1) surface elevation, (2) distance from the nearest creek or marsh edge and (3) distance from the marsh edge measured along the nearest creek. Based on these three morphometric parameters, the spatio‐temporal sedimentation pattern can be modelled very well using a single multiple regression model for both the salt and freshwater marsh. A method is presented to compute two‐dimensional sedimentation patterns, based on spatial implementation of this regression model. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The three-dimensional configuration of sedimentary landforms in intertidal environments represents a major control on regional hydrodynamics. It modulates the location and magnitude of forces exerted by tidal currents and waves on the landform itself and on engineered infrastructure such as sea walls or coastal defences. Furthermore, the effect is reflexive, with the landforms representing an integrated, long-term response to the forces exerted on them. There is a strong reciprocal linkage between form and process (morphodynamics) in the coastal zone which is significantly lagged and poorly understood in the case of cohesive, vegetated sediments in the intertidal zone. A method is presented that links the geometric properties of the tidal flat–salt marsh interface to the history and potential future evolution of that interface. A novel quantitative classification scheme that is capable of separating marsh margins based on their functional form is developed and is applied to demonstrate that relationships exist between landform configuration and morphological evolution across a regional extent. This provides evidence of a spatially variable balance between self-organized and external controls on morphodynamic evolution and the first quantitative basis for a quick assessment procedure for likely future dynamism. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Coastal plumes resulting from the continuous discharge of brackish or fresh river water are common features of continental and shelf seas. They are important for several aspects of the coastal environment, and can influence the local socio-economy to some degree. It is known from many studies that the evolution of plumes depends on various factors, such as the local bathymetry, hydrodynamics and meteorological conditions; most of these works; however, have focused on medium to large-scale rivers, while the smaller-scale discharges commonly found in the microtidal environments of the Mediterranean Sea have been less studied. This paper is centred on the behaviour of a freshwater plume arising from one of such outflows, in terms of both the physical configuration of the waterbody and the characteristics of the main driving mechanisms (discharge rate and wind stress). The modelled cases correspond to an open shallow bay, limited at one end by a large headland, and into which a typical Mediterranean waterway discharges. This particular setup is representative of a number of different bays existing on the Eastern Spanish coast. The numerical results highlight the large influence of the bay's topography on the river plume's extension and inner structure.  相似文献   

10.
11.
The response of the Chesapeake Bay to river discharge under the influence and absence of tide is simulated with a numerical model. Four numerical experiments are examined: (1) response to river discharge only; (2) response to river discharge plus an ambient coastal current along the shelf outside the bay; (3) response to river discharge and tidal forcing; and (4) response to river discharge, tidal forcing, and ambient coastal current. The general salinity distribution in the four cases is similar to observations inside the bay. Observed features, such as low salinity in the western side of the bay, are consistent in model results. Also, a typical estuarine circulation with seaward current in the upper layer and landward current in the lower layer is obtained in the four cases. The two cases without tide produce stronger subtidal currents than the cases with tide owing to greater frictional effects in the cases with tide. Differences in salinity distributions among the four cases appear mostly outside the bay in terms of the outflow plume structure. The two cases without tide produce an upstream (as in a Kelvin wave sense) or northward branch of the outflow plume, while the cases with tide produce an expected downstream or southward plume. Increased friction in the cases with tide changes the vertical structure of outflow at the entrance to the bay and induces large horizontal variations in the exchange flow. Consequently, the outflow from the bay is more influenced by the bottom than in the cases without tide. Therefore, a tendency for a bottom-advected plume appears in the cases with tide, rather than a surface-advected plume, which develops in the cases without tide. Further analysis shows that the tidal current favors a salt balance between the horizontal and vertical advection of salinity around the plume and hinders the upstream expansion of the plume outside the bay.  相似文献   

12.
Vegetation plays a critical role in modifying inundation and flow patterns in salt marshes. In this study, the effects of vegetation are derived and implemented in a high‐resolution, subgrid model recently developed for simulating salt marsh hydrodynamics. Vegetation‐induced drag forces are taken into account as momentum sink terms. The model is then applied to simulate the flooding and draining processes in a meso‐tidal salt marsh, both with and without vegetation effects. Marsh inundation and flow patterns are significantly changed with the presence of vegetation. A smaller area of inundation occurs when vegetation is considered. Tides propagate both on the platform and through the channels when vegetation is absent, whereas flows concentrate mainly in channels when vegetation is present. Local inundation on vegetated platforms is caused mainly by water flux spilled from nearby channels, with a flow direction perpendicular to the channel edges, whereas inundation on bare platforms has contributions from both local spilled‐over water flux and remote advection from adjacent platforms. The flooding characteristics predicted by the model showed a significant difference between higher marsh and lower marsh, which is consistent with the wetlands classification by the National Wetlands Inventory (NWI). The flooding characteristics and spatial distribution of hydroperiod are also highly correlated with the vegetation zonation patterns observed in Google Earth imagery. Regarding the strong interaction between flow, vegetation and geomorphology, the conclusion highlights the importance of including vegetation in the modeling of salt marsh dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
This study presents trace elements levels in surface and deep sediments of the Toulon bay (SE France) subjected to anthropogenic inputs (navy base, harbors, etc.). The studied elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) are defined as priority contaminants in aquatic systems. Fifty-five points scattered on the entire bay were sampled, allowing the determination of contaminants distribution with a high resolution. Several approaches were used to assess the degree of contamination and the potential toxicity of the Toulon bay sediments: comparison to the French legislation, surface-weighted average metal concentrations, enrichment factors (EF), geoaccumulation indices (Igeo), trace element stock calculation and comparison to sediment quality guidelines. A principal component analysis was performed to reveal common behavior of the studied contaminants. Results demonstrated the very high contamination of the small bay, especially in Hg (EF up to 1500), Cu, Pb and Zn, with export to the large bay further governed by hydrodynamics.  相似文献   

14.
Although there have been studies on the tide in convergent bay (or estuary), the tide change in terms of phase speed, amplitude, and phase difference between elevation and tidal current from a coastal ocean to a convergent bay has not been clearly shown so far. This study systematically examines the change of tidal wave characteristics from the eastern Yellow Sea to the Asan Bay, a strongly convergent bay on the west coast of Korea, using observations and an analytical model. As the tidal wave propagates from the eastern Yellow Sea into the Asan Bay, the phase speed, amplitude, and phase difference between elevation and tidal current increase along the channel. Such a phenomenon represents a unique example of tide change from a coastal ocean to a convergent bay, indicating dominance of convergence over friction in the Asan Bay. Both analytically computed tidal amplitude and travelling time compare well with observations. In the Asan Bay, the influence of the reflected wave is only felt in the upper one fifth of the bay and is almost unperceivable in the rest of the bay. The analytical analyses presented in this paper are particularly useful for understanding the relative importance of channel convergence, bottom friction, and reflected wave on the tidal characteristics change along the channel and the proposed method could be applicable to other estuaries.  相似文献   

15.
Digital elevation models (DEMs) were compared to characterize how well airborne lidar (light detection and ranging) data depict the microtopography of a salt marsh. 72,000 GPS points and 700,000 lidar points from a 1 km2 salt marsh island were linearly interpolated using identical DEM configurations. Overall, 78% of lidar elevations were within ±0.15 m of the high precision GPS elevations. Spatial arrangement of difference values reveal that lidar performed best on the marsh platform, and poorly along tidal creeks and creek heads. Also, the overall shape of the salt marsh was poorly defined, even where lidar data were within the reported range of accuracy. These observations indicate that lidar appears to be a robust tool for mapping intertidal landscapes. However, lidar DEMs may not adequately resolve the microtopographic variations of a salt marsh, and for research questions that require accurate depiction of small‐scale tidal creek networks and subtle terrain features lidar data should be augmented with other information. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper provides a detailed study on the sedimentation patterns and the recent morphodynamic evolution affecting the macro-tidal salt marshes located west of the Mont-Saint-Michel (France). Twenty-two stations along three transects on the marshes were seasonally monitored for marsh surface level variations from 1999 to 2005, using a sediment erosion bar. The corresponding erosion/accretion rates were obtained together with data on topography, vegetation cover, and grain size of surface sediment. To examine the mechanisms contributing to the salt marsh sedimentation, the data and their evolution were treated with respect to tides, relative mean regional sea level, and wind speed/frequency variations.From 1999 to 2005, the marsh was globally accreting (from 3.45 to 38.11 mm yr−1 in the low marsh, up to 4.91 mm yr−1 in the middle marsh, and up to 1.35 mm yr−1 in the high marsh), while the study was conducted during a window of decreasing trend in mean regional sea level (−2.45 mm yr−1 according to regional-averaged time series). These sedimentation rates are one of the highest recorded worldwide; however, the sedimentation was not found to be continuous over the period in question. This pattern is illustrated by the strong extension of the marshes from 1999 to 2002, and the relative stability observed from 2003 to 2005. The imported and reworked sediments are trapped and fixed by the dense vegetation (Puccinellia maritima, Halimione portulacoides), inducing the general seaward extension of the marshes. The processes governing sediment budget (accretion/erosion) show annual, seasonal, and spatial variability on the marsh. Spatial variations display contrasted patterns of erosion/sedimentation between the low, middle, and high marsh, and between the different transects. These patterns are a result of distance from sediment sources, strong heterogeneity in vegetation cover (human induced or not), and contrasting topographic and micro-topographic characteristics. The higher accretion rates are observed in distal settings in the low marsh, and strongly decrease toward the middle and high marsh. This evolution results from a decrease in accommodation space/water column thickness, and frequency of inundation coupled with an increase in station elevation, but also from the cumulated effects of vegetation cover and micro-topography. The vegetation cover of the low and middle marsh enhance the settling and fixing of fine sediments imported through tides or dispersed by flood and ebb currents.The seasonal evolution of the marshes is marked by contrasting effects of water storage in the sediment. The overall seasonal sediment budget is controlled by the variation of the frequency of inundation relative to tidal range and marshes topography. Autumns are influenced by the tide (equinoxes), relative mean regional sea level, and variations in wind speed/frequency. Winter wind speed and frequency in relation with tidal variations appear to be the main parameters regulating winter marsh evolution. Summers are predominantly under the influence of local variations in water storage (desiccation) while external parameters generally display a low influence. Although it is not governed by any one parameter, springtime sediment budget seems to result from strong interaction between the above-cited parameters, despite the significant frequency of inundation (equinoxes).  相似文献   

17.
High-resolution multibeam bathymetric data and acoustic sub-bottom profiles were recently collected in Grand Lake (Labrador), one of the deepest lake basins in eastern North America, to reconstruct: (1) the retreat of the Laurentide Ice Sheet (LIS) west of Lake Melville and (2) the history of sedimentation since deglaciation in this 54 km-long, 3 km-wide fjord-lake. Our results provide a morphostratigraphical framework that brings new insights to the style and pattern of retreat of the LIS in the region, as well as deglacial and postglacial sedimentary dynamics. Terrestrial glacial lineations observed on a digital elevation model (DEM) provide evidence of a previously undocumented ice stream in the Grand Lake area. This newly mapped ice stream suggests that the calving bay formed in Lake Melville triggered a reorganization of the regional drainage pattern of the LIS. The sedimentary infill of Grand Lake consists of a sequence of deglacial to postglacial sediments that contain deposits related to a series of mass movements. The 8.2 cal ka BP cold event is recorded in Grand Lake by a series of closely spaced moraines deposited at the outlet of the fjord-lake to form a morainic complex similar to the Cockburn morainic complex on Baffin Island. During deglaciation, a dense dendritic network of proglacial gullies incised into the steep sidewalls of the lake. Since deglaciation, paraglacial and postglacial sedimentation has led to the deposition of large prograding deltas at the fjord head, where density currents remain active today and have formed a series of sediment waves on the frontal slopes and a prodeltaic environment. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
Overview of the EUROSAM project and a Decision Support System   总被引:1,自引:0,他引:1  
The EUROpean SAlt marshes Modelling (EUROSAM) project is part of the Thematic Network European Land–Ocean Interaction Studies programme. The main aims of the EUROSAM project were to fill in some of the main gaps in the understanding of ecological processes, to integrate this knowledge into models to predict the likely response of salt marsh ecosystems to environmental changes, and to make the knowledge available to decision-makers. Research work and model development for the project were carried out by researchers in France, Portugal, the Netherlands, and England, and included studies on sediment dynamics and interactions with vegetation, plant population dynamics and genetics, models of organic matter production and cycling, studies of animal communities, food webs and organic matter fluxes, and development of hydrodynamic models at different scales: salt marsh, bay, and estuary.This paper describes the main aims and outputs of the EUROSAM project, and the incorporation of the findings and models into a prototype Decision Support System (DSS). The EUROSAM DSS is designed as a guide for the non-specialist to understand the important role and functioning of salt marshes, and for use as a management tool. Example scenarios were selected from the work within the project to illustrate the interactions between components of the salt marsh–mudflat ecosystem, and the potential impact of human activities and environmental change on the salt marsh system.  相似文献   

19.
Flood hazard maps used to inform and build resilience in remote communities in the Terai region of southern Nepal are based on outdated and static digital elevation models (DEMs), which do not reflect dynamic river configuration or hydrology. Episodic changes in river course, sediment dynamics, and the distribution of flow down large bifurcation nodes can modify the extent of flooding in this region, but these processes are rarely considered in flood hazard assessment. Here, we develop a 2D hydrodynamic flood model of the Karnali River in the Terai region of west Nepal. A number of scenarios are tested examining different DEMs, variable bed elevations to simulate bed aggradation and incision, and updating bed elevations at a large bifurcation node to reflect field observations. By changing the age of the DEM used in the model, a 9.5% increase in inundation extent was observed for a 20-year flood discharge. Reducing horizontal DEM resolution alone resulted in a <1% change. Uniformly varying the bed elevation led to a 36% change in inundation extent. Finally, changes in bed elevation at the main bifurcation to reflect observed conditions resulted in the diversion of the majority of flow into the west branch, consistent with measured discharge ratios between the two branches, and a 32% change in inundation extent. Although the total flood inundation area was reduced (−4%), there was increased inundation along the west bank. Our results suggest that regular field measurements of bed elevation and updated DEMs following large sediment-generating events, and at topographically sensitive areas such as large river bifurcations, could help improve model inputs in future flood prediction models. This is particularly important following flood events carrying large sediment loads out of mountainous regions that could promote bed aggradation and channel switching across densely populated alluvial river systems and floodplains further downstream. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

20.
This work is inspired by the sudden resurgence of the submersed aquatic vegetation (SAV) bed in the Chesapeake Bay (USA). Because the SAV bed occurs at the mouth of the Bay's main tributary (Susquehanna River), it plays a significant role in modulating sediment and nutrient inputs from the Susquehanna to the Bay. Previous model studies on the impact of submersed aquatic vegetation on the development of river mouth bars lacked a complete mechanistic understanding. This study takes advantage of new advances in 3D computational models that include explicit physical-sedimentological feedbacks to obtain this understanding. Specifically, we used Delft3D, a state-of-the-art hydrodynamic model that provides fine-scale computations of three-dimensional flow velocity and bed shear stress, which can be linked to sediment deposition and erosion. Vegetation is modeled using a parameterization of hydraulic roughness that depends on vegetation height, stem density, diameter, and drag coefficient. We evaluate the hydrodynamics, bed shear stresses, and sediment dynamics for different vegetation scenarios under conditions of low and high river discharge. Model runs vary the vegetation height, density, river discharge, and suspended-sediment concentration. Numerical results from the idealized model show that dense SAV on river mouth bars substantially diverts river discharge into adjacent channels and promotes sediment deposition at ridge margins, as well as upstream bar migration. Increasing vegetation height and density forms sandier bars closer to the river mouth and alteration of the bar shape. Thus, this study highlights the important role of SAV in shaping estuarine geomorphology, which is especially relevant for coastal management. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号