首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biomass burning has important impacts on atmospheric chemistry and climate. Fires in tropical forests and savannas release large quantities of trace gases and particulate matter. Combustion of biofuels for cooking and heating constitutes a less spectacular but similarly widespread biomass burning activity. To provide the groundwork for a quantification of this source, we determined in rural Zimbabwe the emissions of CO2, CO, and NO from more than 100 domestic fires fueled by wood, agricultural residues, and dung. The results indicate that, compared to open savanna fires, emissions from domestic fires are shifted towards products of incomplete combustion. A tentative global analysis shows that the source strength of domestic biomass burning is on the order of 1500 Tg CO2–C yr–1, 140 Tg CO–C yr–1, and 2.5 Tg NO–N yr–1. This represents contributions of about 7 to 20% to the global budget of these gases.  相似文献   

2.
The concentrations of particulate Polycyclic aromatic hydrocarbons (PAHs) were measured at Gosan, a background site in Korea for 1 year between November 2001 and November 2002. The total concentrations of 14 PAH compounds at Gosan were between 0.52 and 14.76 ng m− 3 and about 3–15 times higher than those at other rural or remote sites in the world. Seasonal trend was observed for particulate PAHs concentrations at Gosan with higher levels during heating season due to increased fossil fuel usage and the movement of air parcels from Asian continent. Principal component factor analysis (PCF) for PAHs showed three factors; combination of coal combustion and vehicular emission, natural gas combustion, and unidentified one. However, PCF for the combined data of PAHs, inorganic ions, and elements revealed that the unidentified factor consists of crustal species, sea salts, and four PAH compounds. Thus, this factor is thought to be transport of crustal species with organics from combustion sources. The major variables which determine the sources of PAHs are the heating season and the movement of air parcels from Asian continent.  相似文献   

3.
Particulate content of savanna fire emissions   总被引:9,自引:0,他引:9  
As part of the FOS-DECAFE experiment at Lamto (Ivory Coast) in January 1991, various aerosol samples were collected at ground level near prescribed fires or under local background conditions, to characterize the emissions of particulate matter from the burning of savanna vegetation. This paper deals with total aerosol (TPM) and carbon measurements. Detailed trace element and polycyclic hydrocarbon data are discussed in other papers presented in this issue.Near the fire plumes, the aerosols from biomass burning are primarily of a carbonaceous nature (C%70% of the aerosol mass) and consist predominantly of submicron particles (more than 90% in mass.) They are characterized by their organic nature (black to total carbon ratio Cb/Ct in the range 3–20%) and their high potassium content (K/Cb0.6). These aerosols undergo aging during their first minutes in the atmosphere causing slight alterations in their size distribution and chemical composition. However, they remain enriched in potassium (K/Cb=0.21) and pyrene, a polycyclic aromatic hydrocarbon, such that both of these species may be used as tracers of savanna burning aerosols. We show that during this period of the year, the background atmosphere experiences severe pollution from both terrigenous sources and regional biomass burning (44% of the aerosol). Daynight variations of the background carbon concentrations suggest that fire ignition and spreading occur primarily during the day. Simultaneous TPM and CO2 real-time measurements point to a temporal and spatial heterogeneity of the burning so that the ratio of the above background concentrations (TPM/CO2) varies from 2 to 400 g/kg C. Smoldering processes are intense sources of particles but particulate emissions may also be important during the rapidly spreading heading fires in connection with the generation of heavy brown smoke. We propose emission factor values (EF) for aerosols from the savanna biomass burning aerosols: EF (TPM)=11.4±4.6 and 69±25 g/kg Cdry plant and EF(Ct)=7.4±3.4 and 56±16 g C/kg Cdry plant for flaming and smoldering processes respectively. In these estimates, the range of uncertainty is mostly due to the intra-fire variability. These values are significantly lower than those reported in the literature for the combustion of other types of vegetation. But due to the large amounts of vegetation biomass being burnt in African savannas, the annual flux of particulate carbon into the atmosphere is estimated to be of the order of 8 Tg C, which rivals particulate carbon emissions from anthropogenic activities in temperate regions.  相似文献   

4.
Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Santiago de Chile city were evaluated to study particulate PAHs profiles during cold and spring weather periods. Urban atmospheric particulate matter PM10 was collected using High Volume PM10 samplers. Fifteen samples of 24 h during austral winter and 20 samples of 24 h during spring, 2000 were collected at two sampling sites (North–East and Central areas of the city) whose characteristics were representative of the prevailing conditions. Seventeen PAHs were quantified and total PAHs concentration ranged from 1.39 to 59.98 ng m−3, with a seasonal variation (winter vs. spring ratio) from 0.5 to 12.6 ng m−3. Molecular diagnostic ratios were used to characterize and identify PAHs emission sources such as combustion and biogenic emissions. Results showed that the major sources of respirable organic aerosol PM10 in Santiago are mobile and stationary ones.  相似文献   

5.
Trace elements in tropical African savanna biomass burning aerosols   总被引:2,自引:0,他引:2  
As a part of the FOS/DECAFE experiment, aerosol particles emitted during prescribed savanna fires were collected in January 1991 at Lamto (Ivory Coast), either close to the emission or in ambient air. Analytical transmission electron microscopy pointed out the presence of sub-micrometer soots, salt condensates, vegetation relicts and soil derived particles. The samples were also analyzed for their total particulate matter (TPM) content and elemental composition by PIXE or XRF. At the emission, high concentrations of soil derived elements (Fe and Al) pointed out an intense remobilization process during the fires. Biomass burning emissions contributed to more than 90% of the measured concentrations, of P, Cl, S, K, Cu and Zn, which were found primarily in the fine fraction with the exception of P. Near the emission, K was mainly present as KCl, evolving to K2SO4 in the ambient samples. Trace elements emission factors were obtained for the first time for the African savanna burning and their annual emissions were estimated: our median K emission factor (0.78 g/kg of C) is higher than estimates for other ecosystems (0.2–0.58 g/kg of C); Zn emissions (0.008 Tg/year) account for 4 to 11% of the global anthropogenic emissions.  相似文献   

6.
In order to estimate the production of charcoal and the atmospheric emissions of trace gases volatilized by burning we have estimated the global amounts of biomass which are affected by fires. We have roughly calculated annual gross burning rates ranging between about 5 Pg and 9 Pg (1 Pg = 1015 g) of dry matter (2–4 Pg C). In comparison, about 9–17 Pg of above-ground dry matter (4–8 Pg C) is exposed to fires, indicating a worldwide average burning efficiency of about 50%. The production of dead below-ground dry matter varies between 6–9 Pg per year. We have tentatively indicated the possibility of a large production of elemental carbon (0.5–1.7 Pg C/yr) due to the incomplete combustion of biomass to charcoal. This provides a sink for atmospheric CO2, which would have been particularly important during the past centuries. From meager statistical information and often ill-documented statements in the literature, it is extremely difficult to calculate the net carbon release rates to the atmosphere from the biomass changes which take place, especially in the tropics. All together, we calculate an overall effect lof the biosphere on the atmospheric carbon dioxide budget which may range between the possibilities of a net uptake or a net release of about 2 Pg C/yr. The release of CO2 to the atmosphere by deforestation projects may well be balanced by reforestation and by the production of charcoal. Better information is needed, however, to make these estimates more reliable.Now at the Max-Planck-Institute for Chemistry, Mainz, FRG.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
Experimental studies and mesoscale modeling of atmospheric chemistry require a good knowledge of the sources of the atmospheric constituent, at a temporal scale of about one hour and at a spatial scale corresponding to the model grid. A combined remote sensing/modeling approach for the estimation of the diurnal distribution of the amount of biomass burning in Central African Republic (C.A.R.) savanna fires is proposed. The fire propagation model (BEHAVE) developed by Rothermel was adapted to the fuel characteristics encountered in C.A.R. Ground and airborne measurements with satellite images (NOAA/AVHRR) were used to predict an accurate estimate of the burnt biomass. This combination allows the calculation of the distribution of the number of fires during the day providing an evaluation of the instantaneous fluxes of the compounds emitted in the atmosphere by these fires.  相似文献   

8.
During the FOS-DECAFE experiment at Lamto (Ivory Coast) in January 1991 aerosols samples were collected at ground level above fires in order to investigate the possibility of using210Po as a tracer of biomass burning. The concentration of this radionuclide in plants is studied as a function of its content in soils and in the atmospheric background. It is shown that it depends strongly on the atmospheric content in210Po, due to dry deposition of the aerosols. The mean concentration of plants at Lamto is found to be about 4.4 pCi of210Po/gC during the fire season and falls down to less than 1pCi/gC outside this period. The budget of210Po is evaluated taking into account its complete volatilization during the flaming phase, the (210Po)ash/(210Po)plants ratio, which is measured to be about 14% and the percentage of submicron particles in the plume, about 91%. The inferred flux of210Po is 3850 Ci/yr for the African savanna, and 5800 Ci/yr for the global savanna. From this flux, fluxes of Ct and Cs are estimated to be 8.4 and 1.1 Tg of C/yr for the worldwide savanna.  相似文献   

9.
The non-polar organic composition of airborne particulate matter was analysed over a two year period in an urban area under oceanic climate conditions (Errenteria, Basque Country, Spain). In addition, the distribution of polycyclic aromatic hydrocarbons (PAH) among different aerosol particle sizes was determined. Clues as to the origin of various particle types were gained by using scanning electron microscopy to view the morphology of the particulates in each size fraction. Samples were collected on glass fibre filters and analysed by means of soxhlet extraction and gas chromatography (either with a flame ionization detector or coupled to a mass spectrometry). In general, total PAH levels were moderate (0.96–50 ng m− 3) as compared to other studies conducted in Europe, and showed clear seasonal variation with maxima in winter and minima in summer. Vehicular traffic was identified as a major source of PAHs in the study area. Regarding particle size, a bimodal distribution was observed. The large sized particles exhibited an apparent seasonal variation with higher concentrations in winter than in summer. The dependences between particle size, PAH distribution and meteorological variables were studied with multivariate statistics. Three main sources of organic compounds were identified: combustion, vegetation, and atmospheric oxidation.  相似文献   

10.
From the IGAC-DEBITS Africa network (IDAF), data sets on precipitation chemistry collected from the ‘wet savanna ecosystem’ site of Lamto (Côte d'Ivoire), are analyzed (1995–2002). Inorganic (Ca2 +, Mg2 +, Na+, K+, NH4 +, Cl?, SO4 2 ?, NO3 ?) and organic (HCOO?, CH3COO?) ions content were determined using Ion Chromatography. The analyzed 631 rainfall events represent 8420.9 mm of rainfall from a 9631.1 mm total. The precipitation chemistry at Lamto is influenced by four main sources: natural biogenic emissions from savanna soils (NO x and NH3), biomass burning (savanna and domestic fires), terrigeneous particles emissions from dry savanna soils, and marine compounds embedded in the summer monsoon. The inter-annual variability of the weighted volume mean concentration of chemical species linked with wet deposition fluctuates by ~ 20% over the period. Ammonium concentration is found to be the highest (17.6 μ eq.l? 1) from all IDAF sites belonging to the West Africa ecosystems. Ammonia sources are from domestic animals, fertilizers and biomass burning. In spite of the high potential acidity of 30.5 μ eq.l? 1 from NO3 ?, SO4 2 ?, HCOO? and CH3COO?, a relatively weak acidity is measured: 6.9 μ eq.l? 1. The 40% acid neutralization is explained by the acid gas – alkaline soil particles interaction. The remaining neutralization is from inclusion of gaseous ammonia. When results from Lamto, are compared with those from Banizoumbou (dry savanna) and Zoetele (equatorial forest), a regional view for wet tropospheric chemistry processes is obtained. The high concentration of the particulate phase in precipitation emphasizes the importance of multiphases processes between gases and particles in the atmospheric chemistry of the West Africa ecosystems. For example, the nss Ca2 + precipitation content, main indicator of terrigeneous particles, goes from 30.8 μ eq.l? 1 in dry savanna to 9.2 μ eq.l? 1 at Lamto and 8.9 μ eq.l? 1 in the Cameroon forest. A similar gradient is obtained for rainfall mineral particles precipitation content with contribution of 80% in dry savanna, 40% in wet savanna, and 20% in the equatorial forest.  相似文献   

11.
Carbonyl sulfide emissions from biomass burning have been studied during field experiments conducted both in an African savanna area (Ivory Coast) and rice fields, central highland pine forest and savanna areas in Viet-Nam. During these experiments CO2, CO and C2H2 or CH4 have also been also monitored. COS values range from 0.6 ppbv outside the fires to 73 ppbv in the plumes. Significant correlations have been observed between concentrations of COS and CO (R 2=0.92,n=25) and COS and C2H2 (R 2=0.79,n=26) indicating a COS production during the smoldering combustion. COS/CO2 emission factors (COS/CO2) during field experiments ranged from 1.2 to 61×10–6 (11.4×10–6 mean value). COS emission by biomass burning was estimated to be up to 0.05 Tg S/yr in tropics and up to 0.07 Tg S/yr on a global basis, contributing thus about 10% to the global COS flux. Based on the S/C ratio measured in the dry plant biomass and the COS/CO2 emission factor, COS can account for only about 7% of the sulfur emitted in the atmosphere by biomass burning.  相似文献   

12.
The stable carbon isotope ratios of nonmethane hydrocarbons (NMHC) and methyl chloride emitted from biomass burning were determined by analyzing seven whole air samples collected during different phases of the burning process as part of a laboratory study of wood burning. The average of the stable carbon isotope ratios of emitted alkanes, alkenes and aromatic compounds is identical to that of the burnt fuel; more than 50% of the values are within a range of ±1.5 of thecomposition of the burnt fuel wood. Thus for the majority of NMHC emitted from biomass burning stable carbon isotope ratio of the burnt fuel a good first order approximation for the isotopic composition of the emissions. Of the more than twenty compounds we studied, only methyl chloride and ethyne differed in stable carbon isotope ratios by more than a few per mil from the composition of the fuel. Ethyne is enriched in 13C by approximately 20–30, and most of the variability can beexplained by a dependence on flame temperature. The 13C values decreaseby 0.019 /K (±0.0053/K) with increasing temperature. Methyl chloride is highly depleted in 13C, on average by25. However the results cover a wide range of nearly 30. Specifically, in two measurements with wood from Eucalyptus (Eucalyptus delegatensis) as fuel we observed the emission of extremely light methyl chloride (–68.5and–65.5). This coincides with higher than average emission ratiosfor methyl chloride (15.5 × 10–5 and 18 ×10–5 mol CH3Cl/mol CO2). These high emission ratios are consistent with the highchlorine content of the burnt fuel, although, due to the limited number of measurements, it would be premature to generalize these findings. The limited number of observations also prevents any conclusion on a systematic dependence between chlorine content of the fuel, emission ratios and stable carbon isotope ratio of methyl chloride emissions. However, our results show that a detailed understanding of the emissions of methyl chloride from chloride rich fuels is important for understanding its global budget. It is also evident that the usefulness of stable carbon isotope ratios to constrain the global budget of methyl chloride will be complicated by the very large variability of the stable carbon isotope ratio of biomass burning emissions. Nevertheless, ultimately the large fractionation may provide additional constraints for the contribution of biomass burning emissions to the atmospheric budget of methyl chloride.  相似文献   

13.
Gaseous nitrogen compounds (NO x , NO y , NH3, N2O) were measured at ground level in smoke plumes of prescribed savanna fires in Lamto, in the southern Ivory Coast, during the FOS/DECAFE experiment in January 1991. During the flaming phase, the linear regression between [NO x ] and [CO2] (differences in concentration between smoke plumes and atmosheric background) results volumic emission ratio [NO x ]/[CO2]=1.37×10–3 with only slight differences between heading and backing fires. Nearly 90% of the nitrogen oxides are emitted as NO. Average emission ratios of other compounds are: 1.91, 0.047, and 0.145×10–3 for NO y , NH3 and N2O, respectively. The emission ratios obtained during this field experiment are compred with corresponding values measured during former experiments with the same plant species in combustion chambers. An accurate determination of both the biomass actually burned and of the plant nitrogen content, allows an assessment of emission fluxes of N-compounds from Guinean savanna burns. Preliminary results dealing with the influence of fire on biogenic emissions from soils are also reported.  相似文献   

14.
The levels of PM.25 PAHs at Mt. Halla site, Jeju Island, a background site in Korea were observed between March 1999 and March 2002. A seasonal variation was observed for the particulate PAHs concentrations with high levels during cold season similar to Gosan, a nearby coastal background site, due to the seasonal variations of fossil fuel usage in Asia. The total average concentration of ambient particulate PAHs was 404 ± 579 pg m 3, about one order lower than the ambient level at Gosan. However, the ratios of the anthropogenic inorganic ion concentrations between Mt. Halla and Gosan were smaller, 1.5 for non sea-salt (nss) sulfate and 2.7 for nitrate. Two possible explanations for these characteristics are (1) two sites measured different air parcels and/or (2) the effect of local emissions were different at two sites. Based on the Bep/BaP ratio result, upper air wind direction data, backward trajectory analysis, and LIDAR measurement data at Gosan, it was found that the degree of the effects of local emissions to the sampling sites be the major reason for the different PAHs levels at two sites though, in some cases, the air parcels arriving at Mt. Halla were different from those arriving at Gosan. For secondary aerosol such as nss sulfate, the lower concentration difference indicates both site are affected by regional transport. It points that the measurement result for directly emitted species such as PAHs at Gosan might be significantly influenced by local emissions.  相似文献   

15.
The annual trace gas emissions from a West African rural region were calculated using direct observations of gas emissions and burning practices, and the findings compared to the guidelines published by the IPCC. This local-scale study was conducted around the village of Dalun in the Northern Region of Ghana, near the regional capital of Tamale. Two types of fires were found in the region – agricultural fires andwildfires. Agricultural fires are intentionally set in order to remove shrub and crop residues; wildfires are mostly ignited by herders to remove inedible grasses and to promote the growth of fresh grass. An agricultural fire is ignited with a fire front moving against the wind (backfire), whereas a wildfire moves with the wind (headfire). Gas emissions (CO2, CO and NO) weremeasured by burning eight experimental plots, simulating both headfires and backfires. A common method of evaluating burning conditions is to calculate modified combustion efficiency (MCE), which expresses the percentage of the trace gases released as CO2. Modified combustion efficiency was95% in the wildfires burned as headfires, but only 90% in the backfires.The burned area in the study region was determined by classifying a SPOT HRV satellite image taken about two months into the dry season. Fires were classified as either old burned areas or new burned areas as determined by the gradient in moisture content in the vegetation from the onset of the dry season. Classified burned areas were subsequently divided into two classes depending on whether the location was in the cultivated area or in the rangeland area, this sub-classification thus indicating whether the fire had been burned as a backfire or headfire. Findings showed that the burned area was 48% of the total region, and that the ratio of lowland wildfiresto agricultural fires was 3:1. The net trace gas release from the classified vegetation burnings were extrapolated to 26–46×108 gCO2, 78–302×106 g CO,17–156×105 g CH4,16–168×105 g NMHC and 11–72×103 NOx. Calculation of the emissionsusing proposed IPCC default values on burned area and average biomass resulted in a net emission 5 to 10 times higher than the measured emission values. It was found that the main reason for this discrepancy was not the emission factorsused by the IPCC, but an exaggerated fuel load estimate.  相似文献   

16.
During the FOS-DECAFE experiment at Lamto, Ivory Coast, in January 1991, various ground studies were undertaken simultaneously in order to investigate the physical and chemical characteristics of smoke emitted by savanna biomass burning. Here we present sunphotometer ground-based results which allow the measurements of the spectral optical depth between 450 and 850 nm, the atmospheric water vapour content and the particle size distribution spectrum. The carbonaceous content of the savanna biomass burning aerosols is also investigated. This is the first time that the physical characteristics of particles emitted by savanna plumes are obtained from ground-field studies. All the results suggest that a rapid aging of the smoke occurs first hundred metres from the savanna fire èmission source. They show a relationship between the optical properties of smoke and the chemical aging of the aerosols primarily due to particle growth and a loss of organic material relative to the black carbon content.  相似文献   

17.
Seasonal variation of PM10-bound PAHs in the atmosphere of Xiamen, China   总被引:3,自引:0,他引:3  
PM10 samples from a garden site (site A), an industrial-traffic intersection (site B), a residential site (site C) and an island site (site D) were collected at December 21–29, 2004; March 18–22, 2005; July 4–13, 2005 and October 24–28, 2005 in Xiamen. 15 priority PAHs compounds were analyzed by using a gas chromatograph/mass spectrometer (GC/MS). The abundance and origin of PAHs are discussed to reveal seasonal variations in Xiamen air quality. Average concentrations of Σ15PAHs were 17.5 ng/m3, 3.7 ng/m3, 32.6 ng/m3 and 10.5 ng/m3 from spring to winter with the highest value in autumn. The dominant PAHs components in every season were low and middle molecular weight PAHs including phenanthrene, pyrene, fluoranthene and chrysene. Diagnostic ratios and PCA analysis identified the main sources of particle bound PAHs: mainly from both gasoline and diesel vehicles exhaust, with some contribution from coal combustion, industry emission and cooking sources.  相似文献   

18.
The solvent-extractable organic compounds of atmospheric PM10 samples, collected over two years beginning in 2003 at urban and suburban sites of Beijing, were characterized using gas chromatography–mass spectrometry (GC–MS). The elemental carbon (EC) contents were determined and ranged from 4.3 to 42 μg m− 3. Organic compounds in total extracts were identified and included unresolved complex mixture (UCM) and series of n-alkanes, n-alkanols, n-alkanoic acids, polycyclic aromatic hydrocarbons (PAHs); saccharides, alkanedioic acids, steroids, and other biomarkers and source tracers. The seasonal variations of their relative abundances are discussed. The abundance order for the major molecular classes in the particulate organic matter (POM) was the following: UCM > saccharides > n-alkanoic acids >n-alkanes > n-alkanols > PAHs > hydroxy-PAHs > other biomarker tracers. Based on the genetic significance of the molecular tracers, the dominant sources of POM are proposed for the two sampling sites. The emissions from fossil fuel use (both coal and petroleum products), biomass combustion, other pyrolysis sources, higher plant wax, and secondary products contribute > 98.0% of the POM mass. The fossil fuel use (average = 65% of POM) is the largest contributor and derives mainly from vehicular traffic.  相似文献   

19.
A field study of trace gas emissions from biomass burning in Equatorial Africa gave methyl chloride emission ratios of 4.3×10–5±0.8×10–5 mol CH3Cl/mol CO2. Based on the global emission rates for CO2 from biomass burning we estimate a range of 226–904×109 g/y as global emission rate with a best estimate of 515×109 g/y. This is somewhat lower than a previous estimate which has been based on laboratory studies. Nevertheless, our emission rate estimates correspond to 10–40% of the global turnover of methyl chloride and thus support the importance of biomass burning as methyl chloride source. The emission ratios for other halocarbons (CH2Cl2, CHCl3, CCl4, CH3CCl3, C2HCl3, C2Cl4, F-113) are lower. In general there seems to be a substantial decrease with increasing complexity of the compounds and number of halogen atoms. For dichloromethane biomass burning still contributes significantly to the total global budget and in the Southern Hemisphere biomass burning is probably the most important source for atmospheric dichloromethane. For the global budgets of other halocarbons biomass burning is of very limited relevance.  相似文献   

20.
FOS/DECAFE 91 (Fire of Savannas/Dynamique et Chimie Atmosphérique en Forêt Equatoriale) was the first multidisciplinary experiment organized in Africa to determine gas and aerosol emissions by prescribed savanna fires. The humid savanna of Lamto in Ivory Coast was chosen for its ecological characteristics representative of savannas with a high biomass density (900 g m–2 dry matter). Moreover the vegetation and the climate of Lamto have been studied for more than twenty years. The emission ratios (X/CO2) of the carbon compounds (CO2, CO, NMHC, CH4, PAH, organic acids and aerosols), nitrogen compounds (NOx, N2O, NH3 and soluble aerosols) and sulfur compounds (SO2, COS and aerosols) were experimentally determined by ground and aircraft measurements. To perform this experiment, 4 small plots (100×100 m) and 2 large areas (10×10 km) were prepared and burnt in January 1991 during the period of maximum occurrence of fires in this type of savanna. The detailed ecological study shows that the carbon content of the vegetation is constant within 1% (42 g C for 100 g of vegetal dry matter), the nitrogen content (0.29 g N for 100 g of dry matter) may vary by 10% and the sulfur content (0.05 g S/100 d.m.) by 20%. These variations of the biomass chemical content do not constitute an important factor in the variation of the gas and particle emission levels. With the emission ratios characteristic of humid savanna and flaming conditions (CO/CO2 of 6.1% at the ground and 8% for airborne measurements), we propose a set of new emission factors, taking into account the burning efficiency which is about 80%: 74.4% of the carbon content of the savanna biomass is released to the atmosphere in the form of CO2, 4.6% as CO, 0.2% as CH4, 0.5% as NMHC and 0.7% as aerosols. 17.2% of the nitrogen content of the biomass is released as NOx, 3.5% as N2O, 0.6% as NH3 and 0.5% as soluble aerosols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号