首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WindSat/Coriolis is the first satellite-borne polarimetric microwave radiometer, which aims to improve the potential of polarimetric microwave radiometry for measuring sea surface wind vectors from space. In this paper, a wind vector retrieval algorithm based on a novel and simple forward model was developed for WindSat. The retrieval algorithm of sea surface wind speed was developed using multiple linear regression based on the simulation dataset of the novel forward model. Sea surface wind directions that minimize the difference between simulated and measured values of the third and fourth Stokes parameters were found using maximum likelihood estimation, by which a group of ambiguous wind directions was obtained. A median filter was then used to remove ambiguity of wind direction. Evaluated with sea surface wind speed and direction data from the U.S. National Data Buoy Center (NDBC), root mean square errors are 1.2 m/s and 30° for retrieved wind speed and wind direction, respectively. The evaluation results suggest that the simple forward model and the retrieval algorithm are practicable for near-real time applications, without reducing accuracy.  相似文献   

2.
Liu  Zenghong  Chen  Xingrong  Sun  Chaohui  Wu  Xiaofen  Lu  Shaolei 《中国海洋湖沼学报》2017,35(3):712-721
Satellite SST(sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST(near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature(~5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00–15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed(5 m/s) and columnar water vapor 28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.  相似文献   

3.
The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.  相似文献   

4.
Zheng  Minwei  Li  Xiao-Ming  Sha  Jin 《中国海洋湖沼学报》2019,37(1):38-46
In this study, we present a comprehensive comparison of the sea surface wind ?eld measured by scatterometer(Ku-band scatterometer) aboard the Chinese HY-2 A satellite and the full-polarimetric radiometer WindSat aboard the Coriolis satellite. The two datasets cover a four-year period from October2011 to September 2015 in the global oceans. For the sea surface wind speed, the statistical comparison indicates good agreement between the HY-2 A scatterometer and WindSat with a bias of nearly 0 m/s and a root mean square error(RMSE) of 1.13 m/s. For the sea surface wind direction, a bias of 1.41° and an RMSE of 20.39° were achieved after excluding the data collocated with opposing directions. Furthermore,discrepancies in sea surface wind speed measured by the two sensors in the global oceans were investigated.It is found that the larger dif ferences mainly appear in the westerlies in the both hemispheres. Both the bias and RMSE show latitude dependence, i.e., they have signi?cant latitudinal ?uctuations.  相似文献   

5.
Zhao  Yili  Li  Huimin  Chen  Chuntao  Zhu  Jianhua 《中国海洋湖沼学报》2019,37(3):968-981
HY-2A is the first one of the Chinese HY-2 ocean satellite series carrying a microwave radiometer(RM) to measure sea surface temperature,sea surface wind speed,atmospheric water vapor,cloud liquid water content, and rain rate. We verified the RM level 1B brightness temperature(T_B) to retrieve environmental parameters. In the verification, TB that simulated using the ocean-atmosphere radiative transfer model(RTM) was used as a reference. The total bias and total standard deviation(SD) of the RM level 1B T_B, with reference to the RTM simulation, ranged-20.6-4.38 K and 0.7-2.93 K, respectively. We found that both the total bias and the total SD depend on the frequency and polarization, although the values for ascending and descending passes are different. In addition, substantial seasonal variation of the bias was found at all channels. The verification results indicate the RM has some problems regarding calibration, e.g.,correction of antenna spillover and antenna physical emission, especially for the 18.7-GHz channel. Based on error analyses, a statistical recalibration algorithm was designed and recalibration was performed for the RM level 1B T_B. Validation of the recalibrated TB indicated that the quality of the recalibrated RM level 1B T_B was improved significantly. The bias of the recalibrated TB at all channels was reduced to 0.4 K, seasonal variation was almost eradicated, and SD was diminished(i.e., the SD of the 18.7-GHz channel was reduced by more than 0.5 K).  相似文献   

6.
大气二氧化碳是开展全球气候变化和碳循环研究的关键数据。卫星遥感技术与模式模拟相结合的反演方法已成为获取该数据的重要手段,但模式输入参数本身的误差会对大气二氧化碳反演精度产生影响,须在反演算法设计中加以关注。本文利用RTTOV10快速辐射传输模式模拟Aqua/AIRS红外探测仪17个大气二氧化碳反演通道,计算了这些通道上大气顶出射辐射对温度廓线、臭氧廓线、水汽廓线、地表温度和地表发射率的参数误差的不确定性,并与二氧化碳增加0.5%时造成的不确定性进行对比,分析二氧化碳对上述参数误差的敏感性。结果表明,温度廓线误差是干扰AIRS大气二氧化碳反演的主要因素,其次是臭氧廓线误差,而水汽廓线、地表温度和地表发射率的误差对二氧化碳反演的影响在除去个别通道后可忽略不计。最后,本文以通道为单位,确定了各通道上的高敏感参数、敏感参数和不敏感参数,为二氧化碳反演通道的选择和反演算法的设计提供了参考。  相似文献   

7.
海洋二号搭载的笔形圆锥扫描微波散射计(HY2-scat)是国内第一个业务化运行的,可提供大量实时海面风场数据的微波传感器。由于Ku波段散射计测风原理和微波传输特性,受到降雨影响的散射计反演风场数据准确度降低。降雨导致的微波传播路径衰减,雨滴对微波直接后向散射导致的回波能量增加和雨滴对海表面毛细波的干扰等综合效应,使得降雨条件下散射计测风风速计算值偏高,风向计算值偏差较大。针对散射计反演风速受降雨影响的特点引入神经网络模型,使用准确度较高的NWP数值预报模式风场数据作为参考,对受降雨影响的HY-2散射计反演L2B级标准风场数据产品进行校正,改进HY-2散射计反演风矢量在降雨条件下的准确度。与受降雨影响的散射计反演风场风速偏差相比较,经过神经网络校正后的风速偏差减小,说明该方法适用于改善受降雨影响的HY-2散射计测风风速精度。  相似文献   

8.
水体表面温度是研究全球或区域气候变化、数值天气预报的重要参数,是控制水体与大气热量、水分交换的重要变量,对理解水体生物物理过程具有重要意义。卫星观测水表温度具有传统手段不可比拟的技术优势,同时也存在精度和质量上的限制和挑战。本文总结了观测水表温度常用的红外、微波传感器及其分辨率特征,并比较分析了各类传感器的优势、劣势和分辨率适用的时空尺度;在区别不同手段观测的水表温度基础上,分别概述了红外遥感和微波遥感反演水表温度的理论基础,以及常用的算法模型;基于水表温度反演的原理和过程,系统分析了云、水汽、气溶胶、比辐射率等不确定性因素,对反演精度的影响及解决方法,并对精度验证方法做了简单介绍;最后,对水体表面温度反演的发展趋势进行了展望,并指出多源数据的同化融合、优势互补是提升水温反演精度的重要途径。  相似文献   

9.
海面风场是海洋学的基本参量,获取海面风场对了解海洋的物理过程以及海洋与大气之间的相互作用至关重要。宽阔的海域面积及复杂的海面状况通常使南海海面上的风场信息很难被及时获取。ENVISAT ASAR是一种全天候全天时监测海面的微波雷达传感器,可实时获取海面风场数据。本文基于已有ASAR数据对南海海面风场进行反演实验,首先将结合高斯曲线拟合的FFT风向反演方法应用于南海风向反演,并参考Cross-Calibrated Multi-Platform (CCMP)风场数据去除180o方向模糊获得海面风向。然后,将高斯曲线拟合-FFT风向与传统的峰值-FFT风向进行对比,最后将准确率较高的高斯曲线拟合-FFT风向分别输入CMOD4模型和CMOD5模型获得海面风速大小。实验结果与CCMP参考数据的比较结果表明,在风条纹不明显的情况下,利用结合高斯曲线的FFT风向反演方法和CMOD4模型风速反演方法可有效地进行南海海面风场反演。该成果对利用SAR数据实时获取南海大面积海面风场信息,尤其是观测点缺乏海域的风场信息,具有重要的指导意义。  相似文献   

10.
The altimeter normalized radar cross section(NRCS) has been used to retrieve the sea surface wind speed for decades, and more than a dozen of wind speed retrieval algorithms have been proposed. Despite the continuing efforts to improve the wind speed measurements, a bias dependence on wave state persists in all wind algorithms. On the basis of recent evidence that short waves are essentially modulated by local winds and much less affected by wave state, we proposed a physics-based approach to retrieve the wind speed from the dual-frequency difference in terms of the mean square slope of short waves. A collocated dataset of coincident altimeter/buoy measurements were used to develop and validate the approach. Validation against buoy measurements indicates that the approach is almost unbiased and has an overall root mean square error of 1.24 m s-1, which is 5.3% lower than the single-parameter algorithm in operational use(Witter and Chelton, 1991) and 2.4% lower than another dual-frequency approach(Chen et al., 2002). Furthermore, the results indicate that the new approach significantly improves the wave-dependent bias compared to the single-parameter algorithm. The capacity of altimeter to retrieve sea surface wind speed appears to be limited for the case of winds below 3 m s-1. The validity of the approach at high winds needs to be further examined in the future study.  相似文献   

11.
为简化GNSS大气可降水量(PWV)的计算过程,提高GNSS-PWV实时解算效率,利用2017~2018年长三角地区7个GNSS测站数据,分析GNSS-PWV与对流层延迟(ZTD)、地面气温(T)、地面气压(P)之间的线性关系,通过线性拟合建立PWV直接转换区域模型.实验结果表明:1)PWV与ZTD、P和T之间具有良好...  相似文献   

12.
Based on sounding data from 1975 to 2005 and TM/ETM+ remote sensing images in 1989, 2001 and 2007, the climate changes in Harbin City, Northeast China in recent 30 years were analyzed and forecasted. Results show that in the lower troposphere the meridional wind speed and mean annual wind speed decrease, and in the lower stratosphere the temperature decreases while the meridional wind speed increases significantly. In the study area, the climate is becoming warmer and wetter in the middle lower troposphere. The expansion of urban area has great effects on the surface air temperature and the wind speed, leading to the increase of the surface air temperature, the decrease of the surface wind speed, and the increase of the area of urban high temperature zone. The quantitative equations have been established among the surface air temperature, the carbon dioxide (CO2) concentration and the specific humidity (the water vapor content). It is predicted that the future increasing rate of the surface air temperature is 0.85°C/10yr if emission concentration of CO2 remains unchanged; if emission concentration of CO2 decreases to 75%, 50% and 25%, respectively, the surface air temperature will increase 0.65°C/10yr, 0.46°C/10yr and 0.27°C/10yr, respectively. The rise of the surface air temperature in the study area is higher than that of the global mean temperature forecasted by IPCC.  相似文献   

13.
In this paper, the International Comprehensive Ocean and Atmosphere Data Set(ICOADS) is utilized to investigate the horizontal distribution of sea fog occurrence frequency over the Northern Atlantic as well as the meteorological and oceanic conditions for sea fog formation. Sea fog over the Northern Atlantic mainly occurs over middle and high latitudes. Sea fog occurrence frequency over the western region of the Northern Atlantic is higher than that over the eastern region. The season for sea fog occurrence over the Northern Atlantic is generally from April to August. When sea fogs occur, the prevailing wind direction in the study area is from southerly to southwesterly and the favorable wind speed is around 8 m s-1. It is most favorable for the formation of sea fogs when sea surface temperature(SST) is 5℃ to 15℃. When SST is higher than 25℃, it is difficult for the air to get saturated, and there is almost no report of sea fog. When sea fogs form, the difference between sea surface temperature and air temperature is mainly-1 to 3℃, and the difference of 0℃ to 2℃ is the most favorable conditions for fog formation. There are two types of sea fogs prevailing in this region: advection cooling fog and advection evaporating fog.  相似文献   

14.
Wind plays an important role in hydrodynamic processes such as the expansion of Changjiang (Yangtze) River Diluted Water (CDW), and shelf circulation in the Changjiang estuary. Thus, it is essential to include wind in the numerical simulation of these phenomena. Synthetic aperture radar (SAR) with high resolution and wide spatial coverage is valuable for measuring spatially inhomogeneous ocean surface wind fields. We have collected 87 ERS-2 SAR images with wind-induced streaks that cover the Cbangjiang coastal area, to verify and improve the validity of wind direction retrieval using the 2D fast Fourier transform method. We then used these wind directions as inputs to derive SAR wind speeds using the C-band model. To demonstrate the applicability of the algorithms, we validated the SAR-retrieved wind fields using QuikSCAT measurements and the atmospheric Weather Research Forecasting model. In general, we found good agreement between the datasets, indicating the reliability and applicability of SAR- retrieved algorithms under different atmospheric conditions. We investigated the main error sources of this process, and conducted sensitivity analyses to estimate the wind speed errors caused by the effect of speckle, uncertainties in wind direction, and inaccuracies in the normalized radar cross section. Finally, we used the SAR-retrieved wind fields to simulate the salinity distribution off the Changjiang estuary. The findings of this study will be valuable for wind resource assessment and the development of future numerical ocean models based on SAR images.  相似文献   

15.
TM热波段图像的地表温度反演算法与实验分析   总被引:27,自引:1,他引:26  
目前利用LandsatTM热波段数据反演地表温度有3种算法:辐射传导方程法、单窗算法和单通道算法。辐射传导方程法由于计算过程复杂且需要实时大气剖面数据,因而实际应用较为困难。单窗算法和单通道算法对Landsat热波段反演地表温度能获得较高精度。单窗算法所需的大气参数包括近地表气温和大气水分含量,单通道算法所需的大气参数仅为大气水分含量。地表辐射率为这两种算法共有的关键参数。本文以福建省福州市为研究区,使用1989年6月15日LandsatTM数据,利用单窗算法和单通道算法对研究区进行地表温度反演,并将这两种算法的反演结果与研究区反演的亮度温度进行了比较,结果表明:(1)两种算法反演的结果总体趋势比较接近,但单窗算法的结果相对于单通道算法较低,二者相差约2.45℃;(2)两种算法的结果与亮度温度相比,单窗算法要高出约2.84℃,而单通道算法则要高出约5.28℃。  相似文献   

16.
为了获取城市尺度组分温度,实现城市水热平衡的高精度反演,探索了一种多波段热红外遥感影像的城市尺度组分温度反演算法.算法选取了植被、土壤和不透水表面等3种组分,并且针对ASTER数据,利用线性混合像元分解方法获取像元平均比辐射率,以MODIS近红外数据估算大气水汽含量和大气透过率,采用牛顿迭代法获取大气平均温度,并用最小...  相似文献   

17.
采用线性回归和最小二乘法拟合建立无线电探空可降水量(RS-PWV)与GPS对流层延迟(GPS-ZTD)、地面温度及大气压之间的直接转换模型,并将直接转换模型得到的PWV分别与RS-PWV及GPS反演得到的可降水量(GPS-PWV)进行比较。结果表明,RS-PWV与GPS-ZTD之间存在良好的线性关系,相关系数达0.927 6;RS-PWV与4阶拟合温度和大气压呈现较好的相关性,相关系数分别为0.640 1和-0.626 3;基于ZTD的单阶单因子模型PWV与GPS-PWV的相关系数达到0.969 9;基于ZTD、温度及大气压的单阶多因子模型PWV比基于ZTD的单阶单因子模型PWV精度明显提高,RMS从4.3 mm提高到3.3 mm。  相似文献   

18.
A method for sea surface wind field retrieval from SAR image mode data   总被引:2,自引:0,他引:2  
To retrieve wind field from SAR images, the development for surface wind field retrieval from SAR images based on the improvement of new inversion model is present. Geophysical Model Functions(GMFs) have been widely applied for wind field retrieval from SAR images. Among them CMOD4 has a good performance under low and moderate wind conditions. Although CMOD5 is developed recently with a more fundamental basis, it has ambiguity of wind speed and a shape gradient of normalized radar cross section under low wind speed condition. This study proposes a method of wind field retrieval from SAR image by combining CMOD5 and CMOD4 Five VV-polarisation RADARSAT2 SAR images are implemented for validation and the retrieval results by a combination method(CMOD5 and CMOD4) together with CMOD4 GMF are compared with QuikSCAT wind data. The root-mean-square error(RMSE) of wind speed is 0.75 m s-1 with correlation coefficient 0.84 using the combination method and the RMSE of wind speed is 1.01 m s-1 with correlation coefficient 0.72 using CMOD4 GMF alone for those cases. The proposed method can be applied to SAR image for avoiding the internal defect in CMOD5 under low wind speed condition.  相似文献   

19.
Synthetic aperture radar(SAR)is a suitable tool to obtain reliable wind retrievals with high spatial resolution.The geophysical model function(GMF),which is widely employed for wind speed retrieval from SAR data,describes the relationship between the SAR normalized radar cross-section(NRCS)at the copolarization channel(vertical-vertical and horizontal-horizontal)and a wind vector.SAR-measured NRCS at cross-polarization channels(horizontal-vertical and vertical-horizontal)correlates with wind speed.In this study,a semi-empirical algorithm is presented to retrieve wind speed from the noisy Chinese Gaofen-3(GF-3)SAR data with noise-equivalent sigma zero correction using an empirical function.GF-3 SAR can acquire data in a quad-polarization strip mode,which includes cross-polarization channels.The semi-empirical algorithm is tuned using acquisitions collocated with winds from the European Center for Medium-Range Weather Forecasts.In particular,the proposed algorithm includes the dependences of wind speed and incidence angle on cross-polarized NRCS.The accuracy of SAR-derived wind speed is around 2.10ms−1 root mean square error,which is validated against measurements from the Advanced Scatterometer onboard the Metop-A/B and the buoys from the National Data Buoy Center of the National Oceanic and Atmospheric Administration.The results obtained by the proposed algorithm considering the incidence angle in a GMF are relatively more accurate than those achieved by other algorithms.This work provides an alternative method to generate operational wind products for GF-3 SAR without relying on ancillary data for wind direction.  相似文献   

20.
The seasonal response of surface wind speed to sea surface temperature(SST)change in the Northern Hemisphere was investigated using 10 years(2002-2011)high-resolution satellite observations and reanalysis data.The results showed that correlation between surface wind speed perturbations and SST perturbations exhibits remarkable seasonal variation,with more positive correlation is stronger in the cold seasons than in the warm seasons.This seasonality in a positive correlation between SST and surface wind speed is attributable primarily to seasonal changes of oceanic and atmospheric background conditions in frontal regions.The mean SST gradient and the prevailing surface winds are strong in winter and weak in summer.Additionally,the eddy-induced response of surface wind speed is stronger in winter than in summer,although the locations and numbers of mesoscale eddies do not show obvious seasonal features.The response of surface wind speed is apparently due to stability and mixing within the marine atmospheric boundary layer(MABL),modulated by SST perturbations.In the cold seasons,the stronger positive(negative)SST perturbations are easier to increase(decrease)the MABL height and trigger(suppress)momentum vertical mixing,contributing to the positive correlation between SST and surface wind speed.In comparison,SST perturbations are relatively weak in the warm seasons,resulting in a weak response of surface wind speed to SST changes.This result holds for each individual region with energetic eddy activity in the Northern Hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号