首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
贵阳市大气中气态汞形态分布特征的初步研究   总被引:7,自引:1,他引:7  
2002年3月份我们对贵阳市大气的气态汞形态进行了采样分析。大气气态总汞用Tekran537A大气自动测汞仪采集测定。活性气态汞用镀KCl扩散管采集,热还原法分解并以冷原子荧光法(CVAFS)分析。结果显示,采样期间贵阳市气态总汞平均浓度为7.09ng/m^3,活性气态汞平均含量38.3pg/m^3。气态总汞浓度远高于全球背景浓度值;活性气态汞浓度稍高于欧洲和美国的边远地区。活性气态汞浓度与大气相对湿度呈负相关关系,相关系数为—0.39(α<0.01)。由于大气相对湿度较高,活性气态汞只占气态总汞的0.5%。原子态汞和活性气态汞的基本来源是燃煤释放。  相似文献   

2.
汞作为全球性污染物已经引起全球学者的极大关注[1,2]。它在大气中的化学行为对其全球的生物地球化学循环起着极其重要的控制作用[3]。95%以上的大气汞为气态汞(TGM)[4],气态汞主要包括气态单质汞(GEM)和活性气态汞(RGM)。大气汞背景参考值仅为1.5~2.0ng/m3[4],因此有必要建立  相似文献   

3.
民间小规模金矿混汞冶炼活动因缺乏环保措施常常造成周围环境严重的汞污染,目前已被认定为全球最大的人为汞污染排放源。福建省德化县山区土壤汞含量异常升高和该地区民间小规模金矿冶炼活动密切相关,对当地土壤总汞、大气总汞污染分布及土壤表面汞释放的调查研究表明:金矿区周边村子稻田土壤汞平均质量分数达(5.180±7.191)mg/kg,距金矿最近民间冶炼活动最集中的邱村稻田总汞质量分数平均值达到(15.658±12.726)mg/kg,随着距离金矿点越远民间冶炼活动减少,土壤总汞含量呈下降趋势。区域大气总汞平均质量浓度为(36.4±24.3)ng/m~3,邱村大气总汞质量浓度平均值(77.2±42.4)ng/m~3;工作区4个土-气界面汞通量均值分别为:华口(109.6±55.9)ng/(m~2h),邱村(97.1±36.1)ng/(m~2h),大安(63.5±12.6)ng/(m~2h),中仙(25.9±23.5ng/(m~2h)。因地形复杂,微气象条件差异及土地利用差异等综合因素制约,土壤汞含量与大气总汞含量、释放通量间没有显著相关关系,华口测点土壤释汞通量最大。工作区民间金矿冶炼活动历史造成当地环境的汞污染及其环境影响将长期存在。  相似文献   

4.
利用动力学通量箱-大气自动测汞仪联用技术,分别于2002年12月和2003年5月对贵州省西南部滥木厂汞矿区5个采样点的土壤汞释放通量进行了系统的测定.结果表明该区土壤是大气的重要汞释放源.5个采样点土壤释汞通量最高值达10 543.7 ng/(m2·h),平均值最高达(2 283.3±2 434.2)ng/(m2·h)(n=152).结果显示土壤总汞含量与土壤释汞通量关系密切,是决定土壤汞释放的内在因素,光照、温度、湿度和大气汞含量等环境因素与土壤释汞通量有较好的相关性,对土壤汞的释放有显著的影响.  相似文献   

5.
2013年9月至2016年8月对北京市气态元素汞(GEM)进行了连续监测并分析了其含量变化特征。结果显示,监测期间大气GEM总平均浓度为(2.77±1.27)ng/m~3,高于北半球背景值浓度,且其季节变化呈现多样性。2013/9~2014/8和2015/9~2016/8年大气GEM浓度秋冬季节较高,夏季较低;2014/9~2015/8年度则为冬季最低,主要是与大气汞的来源以及季风的风向、路径和风速明显相关。大气GEM浓度日变化为夜间高、白天低。大气GEM浓度与NO_2、SO_2、PM_(2.5)等大气污染物浓度呈明显正相关,雾霾气象条件下细颗粒污染物(PM_(2.5))在低空累积及逆温气象条件易导致大气GEM浓度升高。2004年以来,北京市大气GEM浓度降低的现象与工业燃煤消费总量降低的趋势相同,表明北京市对燃煤等人为排放源的控制在很大程度上降低了大气汞浓度。  相似文献   

6.
黑龙江黑土区农田土壤/大气界面汞交换通量特征研究   总被引:1,自引:0,他引:1  
运用动力学通量箱与Tekran 2537B气态汞分析仪技术,对黑龙江省黑土区农田土壤/大气界面汞交换通量进行了实地监测,结果显示不同地区黑土的汞交换通量存在显著差异,7个监测点土壤/大气界面汞交换通量均值为(69.46±37.08)ng·m-2·h-1,接近我国典型城市城区土壤/大气界面汞交换通量平均水平。影响因素分析显示,土壤汞含量影响土壤释汞能力,汞交换通量与总辐射强度、土壤温度、土壤湿度和风速呈显著正相关,与相对湿度呈显著负相关,与大气压不相关。  相似文献   

7.
对桂林市大气汞系统监测显示,桂林市大气汞含量变化范围在7.69~39.93 ng/m3(表1).总体上,不同功能区大气汞的含量平均值,由工业区→医院→商业区→休闲区→住宅区→文教区依次降低,由22.89~9.94 ng/m3,是全球大气背景含量的1.5 ng/m3的15~6倍.其高于西藏2~6 ng/m3的背景值,也高于贵阳居民区8.4 ng/m3的平均值,略高于北京6~18 ng/m3的一般值,但低于重庆市大气汞含量平均34.4 ng/m3.  相似文献   

8.
夏季红枫湖地区农田土壤-大气界面汞交换通量的初步研究   总被引:11,自引:2,他引:11  
采用动力学通量箱法(Dynamic Flux Chamber)与高时间分辨率大气测汞仪联用技术对贵州红枫湖地区土壤-大气界面间汞交换通量进行了初步研究.结果显示,红枫湖地区土壤-大气界面间汞交换通量变化范围为-8.6 ng~215.3 ng@m-2@h-1,平均27.4士40.1 ng/m2@h(n=255);且土壤与大气界面间的汞交换是双向的既有土壤汞的释放,又有大气汞的沉降,主要以土壤汞的释放为主(n释放=253,n沉降=2n).土壤汞的释放通量与土壤温度、气温、光照强度有强相关关系,相关系数分别为0.80、0.83、0.74.  相似文献   

9.
大气中颗粒态总汞的测定   总被引:3,自引:1,他引:2  
汞在大气中的化学行为对全球的生物地球化学循环起着极其重要的控制作用。大气汞主要包括气态单质汞(Hg~0)、气态活性汞(Hg~(2+))和颗粒态汞。尽管颗粒态总汞(TPM)占大气总汞的5%以下,但它却是大气汞干湿沉降的主要贡献者之一,对于汞在大气中的循环演化意义重大。大气中TPM的含量在Pg·m~(-3)量级上,因此建立TPM的可靠采集与分析方法非常必要。本文利用一种新开发的小型捕集管建立了测定大气中痕量TPM的方法。实验证明,采样流速为1.0~1.5L/min时,平行样的精密度高,最低检出限为2Pg;样品经2次循环分析其热解吸效率在99%以上,分析方法非常简单和省时。  相似文献   

10.
河流对阿哈水库汞迁移转化过程的影响   总被引:2,自引:0,他引:2  
阿哈水库是贵阳市饮用水源,二十世纪九十年代之前阿哈水库流域的煤窑废水污染是其主要污染源;之后,矿山煤窑废水经集中治理,状况得到很大改善,生活水排放成为主要污染源。阿哈水库入库河流总汞浓度为7.1~47.9 ng/L;甲基汞浓度为0.16~2.50 ng/L;活性汞浓度为0.25~2.43 ng/L,且随季节变化明显,枯水期<丰水期。阿哈水库入库河流汞的主要存在形态为颗粒态汞,总汞与颗粒态汞呈显著正相关。阿哈水库唯一的出湖河流小车河中,各种形态的汞均较入湖河流中的汞含量大大减少,这表明水库的沉淀和拦截净化作用相当显著。  相似文献   

11.
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是广泛存在于大气中的一类毒害有机污染物。本研究采集了2018年冬、夏两季珠江三角洲9个地级市的气态和颗粒态(PM2.5)样品,分析了16种美国国家环境保护局优先控制PAHs的浓度水平和时空变化,并结合PM2.5相中的有机碳(OC)、元素碳(EC)和左旋葡聚糖浓度,使用正定矩阵因子分解(PMF)模型对PAHs进行了来源解析。∑16 PAHs的气相浓度范围为7.08~284.08ng/m3,PM2.5相浓度范围为0.30~17.00 ng/m3,两相总浓度(37.48±41.53) ng/m3。季节特征上,∑16 PAHs气相浓度为夏高冬低, PM2.5相浓度则呈现冬高夏低,总∑16 PAHs浓度呈夏高冬低。比值法和PMF源解析结果发现,珠江三角洲9个典型城市大气的PAHs主要来自生物质燃烧(57%)、煤炭燃...  相似文献   

12.
2019年冬季突发新冠病毒疫情,为控制疫情进一步传播,全国各地实行了管控措施,其间人为活动受到很大限制。多环芳烃(PAHs)是一类以人为活动排放为主的污染物,且环渤海区域大气PAHs污染严重。为评估环渤海区域大气PAHs浓度和健康风险对新冠疫情管控的响应,本研究于2018年12月~2020年8月在环渤海区域部署了9个站点采集大气被动样品,对比分析疫情不同时期PAHs的浓度与健康风险变化。结果显示, 2019年12月~2020年5月(疫情期间)15种PAHs(∑15PAHs)的浓度(44.7±15.8 ng/m3)比2018年12月~2019年5月(疫情前1, 104.7±70.5 ng/m3)下降了57.3%,主要由低环PAHs浓度下降引起。2020年6月~8月(复工后)∑15PAHs浓度与2019年6月~8月(疫情前2)相当,中环PAHs浓度升高。疫情期间渤海北部采样点∑15PAHs浓度比南部采样点下降更多。疫情期间大气PAHs增加的终身患癌风险(ILCR)为5.69×10<...  相似文献   

13.
北京市有机氯农药填图与风险评价   总被引:2,自引:0,他引:2  
采用1个样/km2的密度、1个分析组合样/16km2的方法,对北京市784km2范围内的土壤、大气干湿沉降物、大气颗粒物中HCH、DDT的含量和空间分布特征进行有机氯农药填图.查明2000年北京市地表土壤HCH和DDT的平均含量分别为8.80±11.83ng/g、108.99±301.90ng/g.2006年大气干湿沉降物中HCH和DDT平均含量分别为10.09±9.60ng/g、12.99±13.51ng/g,HCH和DDT的年沉降通量分别为996.57±939.96g/a·km2、1291.53±1342.28g/a·km2.2006年大气颗粒物PM10和PM2.5中的HCH含量分别为0.294±0.205ng/m3和0.217±0.137ng/m3,DDT的平均含量分别为1.037±1.301ng/m3和0.522±0.773ng/m3,显著高于2002-2003年度大气颗粒物中HCH(PM100.01786ng/m3,PM250.01731ng/m3)和DDT(PM100.01672ng/m3,PM2.50.02353ng/m3)的含量,表明北京市或周边地区仍在使用含HCH和DDT化学成分的农药.以2000年北京地表土壤和2006年大气干湿沉降物中HCH和DDT的含量为基础,对2020年土壤中HCH和DDT的时空演变的预测显示,即使干湿沉降物中HCH和DDT的沉降通量每年以5%的速率递减,到2020年土壤中HCH和DDT的环境质量仍不能显著改善,而控制和削减北京及周边地区含HCH和DDT成分农药的使用将是改善北京地表土壤环境质量的关键措施.  相似文献   

14.
北极阿拉斯加春季积雪中汞的时空分布及其来源分析   总被引:1,自引:1,他引:0  
开展北极雪冰中汞分布特征及其来源的探究,不仅可以丰富冰冻圈汞生物地球化学循环的认识,而且对评估北极环境中汞的潜在暴露风险具有现实意义。在2017年4月至5月对美国阿拉斯加的积雪进行大范围样品采集,探讨了该区域积雪中汞的空间分布特征及其成因、汞的沉降后过程以及潜在来源分析。研究表明:积雪中汞的空间分布受大气汞亏损事件(AMDEs)及人为源的共同影响,毗邻北冰洋海岸(如巴罗)积雪中总汞(THg)浓度较高,接近人为源的山地表层雪中THg浓度较高。巴罗雪坑中THg浓度随深度增加呈下降趋势。积雪中主要阴阳离子与THg的相关性分析表明,阿拉斯加积雪中THg的空间分布可能主要受北冰洋海盐气溶胶以及人类活动的影响。  相似文献   

15.
为了弄清楚普定水库汞的地球化学循环特征,用金汞齐-冷原子荧光光谱法(CVAFS)和气相色谱技术(GC), 研究了乌江流域上游普定水库水体剖面和沉积物间隙水剖面汞的赋存形态(总汞 THg)、溶解态汞(DHg)、活性汞(RHg)、颗粒态汞(PHg)、总甲基汞(TMeHg)、溶解态甲基汞(DMeHg)和颗粒态甲基汞(PMeHg)的分布特征.结果显示,普定水库水体总汞浓度为1.29~3.18 ng/L, 活性汞浓度为0.09~0.43 ng/L, 总甲基汞浓度为0.06~0.18 ng/L.沉积物间隙水中溶解态汞浓度为2.65 ~11.47 ng/L, 溶解态甲基汞浓度为0.06 ~1.16 ng/L.实验数据表明,普定水库水体中溶解态汞和颗粒态含量相当,其中颗粒态汞占总汞的比例为46%,并与总汞存在极显著相关性(R=0.929,n=20,P<0.01),溶解态汞与总汞相关性不明显(R=-0.067,n=20);冬季普定水库甲基汞以溶解态甲基汞为主,溶解态甲基汞占总甲基汞的比例为63%,溶解态甲基汞与总甲基汞无明显相关关系(R=0.292,n=20),颗粒态甲基汞与总甲基汞存在极显著的相关性(R=0.815,n=20,P<0.01).试验数据表明沉积物孔隙水溶解态汞与溶解态甲基汞浓度明显高于上覆水体, 是普定水库水体中汞的一个重要来源.  相似文献   

16.
以取自海南岛北部双池玛珥湖SCH17-04岩芯全长为420 cm的沉积物为材料,对其开展了AMS 14C测年和总汞浓度、总有机碳、常量地化元素、干密度等指标的测试分析。通过对多代用指标的综合比对分析,并结合历史文献资料,着重探讨了815~1510 A.D.时段内区域气候环境与人类活动影响下的汞沉积过程及其可能影响因素。研究结果表明:在研究时段内,SCH17-04岩芯中汞浓度(Hg-C)为0.22~3.11μg/g,汞沉积通量(Hg-AR)为0.01~1.92μg/(cm2·a)。进一步分析发现,双池玛珥湖沉积物中汞浓度与各环境代用指标之间呈现出变化步调的不一致性,揭示了有机质吸附、土壤侵蚀、气候变化、海洋释放等自然因素可能对沉积物中汞积累的贡献较为微弱。综合岩芯记录与史料记载分析发现,主要与人类活动关系较为密切的大气汞沉降输入占据着主导地位,其中人为汞信号始于约940 A.D.,对应于五代十国时期,并且在约940~1130 A.D.(五代十国中后期和北宋)和约1320~1420 A.D.(元朝中后期...  相似文献   

17.
在2010年5月调查了沈阳市细河沿岸表层土壤中有机氯农药(OCPs)和多氯联苯(PCBs)的污染现状,评价土壤中OCPs残留的生态风险。沈阳细河沿岸表层土壤中HCHs浓度范围分别为2.32~15.90 ng/g,平均浓度为8.99ng/g。DDTs浓度范围分别为9.06~111.6 ng/g,平均浓度为37.08 ng/g。7种PCBs异构体总平均浓度为1.01ng/g,大部分采样点OCPs和PCBs未超过国家土壤环境质量标准,推断近期可能有林丹的使用但没有新的DDTs污染源输入,但个别地点土壤中的DDTs残留浓度对生态系统健康构成了潜在的威胁。大气蒸汽态HCHs浓度为18.97 ng/m3;DDTs浓度为42.27 ng/m3;PCBs浓度为20.59 ng/m3。研究表明大气长距离传输对该区域的OCPs污染也有较为明显的影响。初步运用逸度概念模型进行分析,发现HCHs和DDTs的逸出方向为从土壤向大气挥发。  相似文献   

18.
汞的污染已经引起地学和环境工作者的关注,尤其是作为全球两大汞-锑矿带之一的我国西南地区.近年来,我们系统研究了西南地区自然过程和人为活动向大气的排汞通量、土法炼锌和土法炼汞对生态环境的影响、大规模汞矿开采造成的环境汞污染、高汞背景和多汞污染来源地区水库汞的生物地球化学循环演化特征.研究表明,无论自然过程还是人为活动,西南地区尤其是贵州省是全球大气汞的重要释放源;矿业开采造成了严重的环境汞污染,对当地居民的身体健康构成了严重的危害;这一地区的新建水库是汞甲基化的重要场所,对生态环境有潜在的危害.  相似文献   

19.
北京城区和远郊区大气气溶胶的相似性研究   总被引:1,自引:4,他引:1       下载免费PDF全文
文章通过对北京城区和远郊区采集的气溶胶样品物理化学性质的分析,考察了两地气溶胶性质的相似性。 样品于2001年9月7~16日,11月3~27日,2002年1月30日~2月6日和2003年1月28日~5月21日分别在北 京舞蹈学院(城区)和昌平昭陵(远郊区)进行采集。根据元素富集因子(EF)的分析,几大类元素的源相似,自然源和 人为源对其均有重要的贡献。当然,在两地的大气气溶胶浓度是不同的。秋季总悬浮颗粒物平均浓度城区为177.1 g/m3,远郊区为117.4g/m3。城区气溶胶细粒子Pm2.5质量浓度冬季为153g/m3,秋季为124.3g/m3。城区和 远郊区的大气气溶胶中各类元素占所测元素的百分数相近。两地主要元素百分数序列均为(Fe,Ca,Al)>(K,Na, Mg,Cl)>(S,Sb,As)>(Br,Ba,V,Pb),前3项之和超过94%。城、远郊区大气气溶胶质量浓度和元素浓度的粒径分 布也很相似。用Andersen9级采样器采集的气溶胶质量浓度PM10占其总质量浓度PM(A总)的95%以上,Pm2.1/ PM10>62%。可见,气溶胶中可吸入颗粒物占绝对优势,而可吸入颗粒物又以细粒子为主。细粒子中以人为污染元 素S,As,Pb,Br和Zn为主,其Pm2.1/PM10>60%,最高可达90%。气溶胶细粒子Pm2.5的污染是区域性的。在城 区北京舞蹈学院单点监测的Pm2.5,一定程度上可反应出北京市区Pm2.  相似文献   

20.
汞污染是当前重要的全球性环境问题。在气候变暖的背景下,多年冻土退化能够显著改变土壤环境和水热过程,进而可引发土壤中汞的活化和大量释放,对生态系统产生潜在的风险。本文综述了多年冻土区土壤总汞的浓度和储量、空间分布和影响因素,阐释了多年冻土不同退化过程中(活动层增厚和热喀斯特发育)土壤中汞的迁移转化和释放特征及其环境效应。北半球多年冻土区土壤总汞储量为597 Gg(384~750 Gg),植被吸收作用驱动的大气单质汞[Hg(0)]沉降是土壤中汞的重要来源。多年冻土区土壤中总汞含量和空间分布主要受大气汞沉降、有机质含量和沉降后过程(如淋溶作用)的影响。多年冻土退化不仅能够向大气和水生生态系统释放大量的汞,还可增强微生物甲基化作用生成剧毒的甲基汞(MeHg),已经对全球汞循环及区域环境产生了重要影响,且这一影响在持续加强。未来研究中需结合汞同位素等多技术手段,追踪多年冻土融水径流中汞的迁移转化和传输过程;强化热喀斯特对汞释放的影响研究;结合野外原位观测与模型模拟,全面评估多年冻土退化对土壤汞迁移转化的影响及其环境效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号