首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spectral analysis of the diurnal variations in the geomagnetic field horizontal component, observed at Kamchatka and Barrow polar observatory in September–October 1999, has been performed. The complete set of oscillations of thermal tidal atmospheric waves with T = 24, 12, 8, and 4 h has been detected in the variation spectral power (Sq) at Kamchatka, and only the fundamental harmonic with T = 24 h has been distinguished at Barrow. The above periods vary in both directions relative to stable maximums during strong geomagnetic disturbances. The relative spectral intensity at subharmonics also vary toward the fundamental harmonic with a period of 24 h. In the frequency band 0.5–3 h (IGW periods), the maximal intensity in the background spectra is observed at T ~ 2 h and increases by an order of magnitude with increasing geomagnetic activity at both Kamchatka and Barrow. A day before earthquakes, the intensity of this maximum is below the rms background values, and the spectra widen toward the region of periods shorter than 2 h. A similar effect was previously observed in the power spectra of the diurnal variations in the quasistatic electric field and VLF noise, simultaneously measured in September–October 1999.  相似文献   

2.
An analysis was conducted of time variations in geomagnetic field components on the day of the Chelyabinsk meteorite event (February 15, 2013) and on control days (February 12 and 16, 2013). The analysis uses the data collected by magnetic observatories in Novosibirsk, Almaty, Kyiv, and Lviv. The distance R from the explosion site to the observatories varies in the range 1200–2700 km. The flyby and explosion of the Chelyabinsk cosmic body is found to have been accompanied by variations mainly in the horizontal component of the geomagnetic field. The variations are quasi-periodic with a period of 30–40 min, an amplitude of 0.5–2 nT for R ≈ 2700?1200 km, respectively, and a duration of 2–3 h. The horizontal velocity of the geomagnetic field disturbances is close to 260–370 m/s. A theoretical model of wave disturbances is proposed. According to the model, wave disturbances in the geomagnetic field are caused (a) by the motion of the gravity wave generated in the atmosphere by the falling space body and (b) by traveling ionospheric disturbances, which modulate the ionospheric current at dynamo altitudes. The calculated amplitudes of the wave disturbances are 0.6–1.8 nT for R ≈ 2700?1200 km, respectively. The estimates are in good agreement with the observational data. Disturbances in the geomagnetic field level (geomagnetic pulsations) in the period range 1–1000 s are negligible (less than 1 nT).  相似文献   

3.
The period of interplanetary, geomagnetic and solar disturbances of September 7–15, 2005, is characterized by two sharp increases of solar wind velocity to 1000 km/s and great Dst variation of the geomagnetic field (~140 nT). The time variations of theoretical and experimental geomagnetic thresholds observed during this strong geomagnetic storm, their connection with solar wind parameters and the Dst index, and the features of latitudinal behavior of geomagnetic thresholds at particular times of the storm were studied. The theoretical geomagnetic thresholds were calculated with cosmic ray particle tracing in the magnetic field of the disturbed magnetosphere described by Ts01 model. The experimental geomagnetic thresholds were specified by spectrographic global survey according to the data of cosmic ray registration by the global station network.  相似文献   

4.
The dynamics of wave disturbances in the ionospheric E region in the band of periods of thermal tidal waves and waves of planetary scales (T = 48, 72, and 192 h) has been studied based on the variations in the horizontal component of the geomagnetic field, observed at Paratunka and Barrow observatories in September–October 1999. It has been found that, at midlatitudes during high geomagnetic activity, the intensity of oscillations in the power spectra with T = 24 and 12 h varies with a periodicity of 16 days different from the periodicity of changes in the ΣKp index. The maximal deviations of these periods from the values under quiet conditions coincide with the maximal changes in the ΣKp index. The variations in the 48–192 h band of periods (especially with T ~192 h) intensify simultaneously with increasing geomagnetic activity. The intensity of this harmonic is several times as high as that of the harmonic with T ~ 24 h. The periodicity of changes in the harmonics intensity within the 48–192 h band coincides with the periodicity of changes in the ΣKp index. In the polar ionosphere, the effect of high geomagnetic activity is observed as an increase in the variations with a quasi-period of T ~ 24 h and as an appearance of variations in the 48–192 h band with the periodicity coinciding with the maximums in the ΣKp index variations.  相似文献   

5.
高玉芬  祁燕琴 《地震学报》1981,3(2):143-151
本文利用我国部分台站地磁垂直分量日变幅的资料,采用局部地区日变场的分析方法,研究了地磁垂直分量日变幅在中国地区的空间分布特征.结果表明,在局部地区地磁日变场的研究中,考虑经度影响是必要的,本文所用方法是适宜的;结果还表明,垂直分量日变幅的空间分布呈现出明显的季节变化、逐月变化及逐日变化性.若粗略地把磁静日垂直分量日变幅极大值所处的纬度视为 Sq 高空电流体系的焦点所对应的纬度,则此焦点纬度夏季最高,冬季最低,春秋季居中,并显出明显的逐月及逐日变化性,在相邻的两个静日,焦点纬度的变化可达几度.  相似文献   

6.
The ring current dynamics during the magnetic storm has been studied in the work. The response of the magnetospheric current systems to the external influence of the solar wind, specifically, resulting in the development of the asymmetric ring current component, has been calculated using the magnetic field paraboloid model. The asymmetric ring current has been considered as a family of spatial current circuits in the Northern and Southern hemispheres, composed of the zones of the partial ring current in the geomagnetic equator plane, which close through the system of field-aligned currents into the ionosphere. The value of the total partial ring current has been estimated by comparing the calculated asymmetry of the magnetospheric magnetic field at the geomagnetic equator with the value of the Asym-H geomagnetic index. The variations in the symmetric and asymmetric components of the ring current magnetic field have been calculated for the magnetic storm of November 6–14, 2004. The contributions of the magnetospheric current systems to the Dst and AU geomagnetic indices have been calculated.  相似文献   

7.
Data on the amplitude of variations in the direction of the geomagnetic field and the frequency of reversals in the Vendian-Cambrian are presented. It has been established from these data that (a) distributions of variations in the direction of the geomagnetic field S p are bimodal (modes 9° and 11°); (b) the maximum of the average amplitude S p takes place by 5–10 Myr later than the Vendian-Cambrian boundary; (c) S p tends to increase as plume epicenters are approached; and (d) the plume formation is more often confined to intervals with different frequencies of geomagnetic reversals than to the interval of a stable state of the geomagnetic field without reversals (Vendian hyperchron). The listed features of the geomagnetic field behavior are repeated near all boundaries of geological eras of the Phanerozoic.  相似文献   

8.
The F-region peak electron densities NmF2 measured during daytime quiet geomagnetic conditions at low solar activity on January 22, 2008, April 8, 1997, July 12, 1986, and October 26, 1995, are compared. Ionospheric parameters are measured by the ionosonde and incoherent scatter radar at Millstone Hill and calculated with the use of a 1D nonstationary ionosphere–plasmasphere model of number densities and temperatures of electrons and ions at middle geomagnetic latitudes. The formation of the semiannual anomaly of the midlatitudinal NmF2 under daytime quiet geomagnetic conditions at low solar activity is studied. The study shows that the semiannual NmF2 anomaly occurs due to the total impact of three main causes: seasonal variations in the velocity of plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity; seasonal variations in the composition and temperature of the neutral atmosphere; and the dependence of the solar zenith angle on a number of the day in the year at the same solar local time.  相似文献   

9.
A spectral analysis of simultaneous diurnal variations in the E z component of the quasi-static electric field in the near-Earth atmosphere, VLF radio noise, and the horizontal component of the geomagnetic field, observed at Kamchatka in September 1999, has been performed. These geophysical parameters are indirectly used to study wave processes in the near-Earth atmosphere and in the ionospheric D and dynamo regions within the band of periods of internal gravity waves (T = 0.5?3.5 h). The correlation method in the frequency region is used to analyze the interrelation between the wave processes in these atmospheric regions. The power cross-spectra of various pairs of geophysical parameters have been studied depending on meteorological, seismic, and geomagnetic activities. It is shown that the oscillations in the power spectra in the T ~ 1–1.5 h band of periods are caused by the sources of internal gravity waves in the near-Earth atmosphere and by the remote sources above the dynamo region of the ionosphere within the T ~ 1.5–3 h band of periods.  相似文献   

10.
The typical quiet day variations of the equatorial electrojet (EEJ) current intensity with time of the day, season, sunspot number, and geomagnetic latitude are presented in terms of the corresponding variations of H which is the deviation of the horizontal component (H) of the geomagnetic field from its steady nighttime level. The observed height structure of the current density in the EEJ as measured in rocket flights is presented, along with the theoretically computed structure. Theoretical model results on the polarization electric fields and east-west currents as generated by the local interactions of height-varying winds in the EEJ show large height gradients and reversals for both currents and electric fields; experimental evidence for the reality of such height structures is also shown. The characteristics of the counter-electrojet events are presented and the possible causative mechanisms are discussed critically.Some typical experimental results are presented on the electric field changes in the EEJ which result from its sensitive response to electrodynamic disturbances in the magnetosphere and the auroral-polar latitude ionosphere during geomagnetic substorms and storms; and their implications are discussed. Possibilities for utilizing the EEJ as a very useful medium for important scientific studies on the larger space domain of ionosphere-magnetosphere system, on plasma waves, and on the earth's conductivity are emphasized.  相似文献   

11.
The paper generalizes results of study of the intermittency pattern in some wave processes of the burst type in the high-latitude magnetosphere of the Earth. Based on the analysis of distributions of amplitudes and interpeak intervals, it is shown that generation regimes of magnetic impulse events, ipclpulsation burst series, and Pi3 pulsations possess the properties of intermittent processes and are associated with the development of plasma turbulence in their generation regions. The degree of turbulence of the high-latitude magnetosphere plasma is estimated at a qualitative level. Burst-type structures whose behavior corresponds to a typical intermittent process are discovered in variations of the ancient geomagnetic field.  相似文献   

12.
In a set of balloon flights in the Brazilian magnetic anomaly region (BMAr) short time periodic variations were observed, i.e. pulsation, of secondary charged and neutral particle fluxes, X- and -ray fluxes with amplitudes of about 2–4%. The pulsations are accompanied by the geomagnetic Pc4 pulsations and have similar periodicity. The phenomenon was observed over various local times and in quiet and disturbed magnetospheric conditions. One of the explanations of this effect, i.e. periodic variation of local cut-off rigidity, and following pulsations of primary and secondary cosmic ray intensity is suggested.  相似文献   

13.
利用1960—1980年中国北京和广州的地磁场X分量小时值数据,根据徐文耀(1992)提出的用来描述每日Sq变化幅度的地磁活动指数的方法,计算并分析了Asq指数的周期变化特征.结果表明:Asq指数具有11年、年和半年变化等主要周期成分,与F107指数傅氏谱主要周期成分存在对应关系,表明Asq指数的周期变化与太阳辐射密切相关.然而互相关分析表明,日变幅dSq与F107的相关关系略强,这是由于Asq指数计算中每月平均ΔSq(t)携带了部分Sq场的周期变化信息.  相似文献   

14.
Geomagnetic storm-time variations often occur coherently at high latitude and the day-side dip equator where they affect the normal eastward Sq field. This paper presents an analysis of ground magnetic field and ionospheric electrodynamic data related to the geomagnetic storm which occured on 27 May 1993 during the International Equatorial Electrojet Year (IEEY) experiment. This storm-signature analysis on the auroral, mid-latitude and equatorial ground field and ionospheric electrodynamic data leads to the identification of a sensitive response of the equatorial electrojet (EEJ) to large-scale auroral return current: this response consists in a change of the eastward electric field during the pre-sunrise hours (0400–0600 UT) coherently to the high-, mid-, and equatorial-latitude H decrease and the disappearance of the EEJ irregularities between the time-interval 0800–0950 UT. Subsequent to the change in hF during pre-sunrise hours, the observed foF2 increase revealed an enhancement of the equatorial ionization anomaly (EIA) caused by the high-latitude penetrating electric field. The strengthening of these irregularities attested by the Doppler frequency increase tracks the H component at the equator which undergoes a rapid increase around 0800 UT. The H variations observed at the equator are the sum of the following components: SR, DP, DR, DCF and DT.  相似文献   

15.
The observations of the geomagnetic field variations in the range of periods 1–1000 s, which accompanied the launches of 65 Soyuz and Proton rockets from the Baikonur site in 2002–2006, have been analyzed. The measurements were performed near Kharkov (the distance from the launching site is R ≈ 2100 km). Three groups of disturbances, with delays of 6–7, 30–70, and 70–130 min dependent on the time of day, have been revealed. The disturbance duration was 10–30, 50–70, and 45–70 min, respectively. Periods of 3–6, 6–12, and 6–12 min, respectively, predominated in the geomagnetic pulsations. The amplitudes of these pulsations reached 3–6 nT. The physical model of the observed geomagnetic disturbances, which generally agrees with the measurements, has been proposed.  相似文献   

16.
By analyzing the variations of global electron content (GEC) during geomagnetic storm events, the ratio “GEC/GECQT” is found to be closely correlated with geomagnetic Kp index and time weighted Dst index, where GECQT is the quiet time reference value. Moreover, the GEC/GECQT will decrease with the increase of the solar flux F10.7 index. Furthermore, we construct a linear model for storm-time response of GEC. Eighty-two storm events during 1999–2011 were utilized to calculate the model coefficients, and the performance of the model was tested using data of 8 storm events in 2012 by comparing the outputs of the model with the observed GEC values. Results suggest that the model can capture the characteristics of the GEC variation in response to magnetic storms. The component describing the solar activity influence shows a counteracting effect with the geomagnetic activity component; and the influence of Kp index causes an increase of GEC, while the time weighted Dst index causes a decrease of GEC.  相似文献   

17.
Based on the example of the Vrancea zone of concentrated seismicity, it is shown how the stress-strain state of the medium responds to a disturbance of the geomagnetic field. Geomagnetic conditions are examined in relation to earthquakes in the Vrancea zone in the period 1988–1996. It is established that the seismic energy release in the Vrancea zone is associated with differences (“gradients”) in the H component of the geomagnetic field. Such a gradient preceding earthquakes is shown to be the midnight polar substorm and the degree of its mid-latitude effect. The time interval from the maximum of the substorm development to a shock (τ, h) is directly related to the focal depth. The seismic characteristics K en and h (km) are demonstrated to be related to morphological features of the substorm development, namely, its duration T (min), intensity, and background. Differences in the duration of polar substorms before crustal (shallow) and deep earthquakes are revealed. Morphological features of the spectrum of geomagnetic variations preceding the seismic energy release are established.  相似文献   

18.
The results of processing and analyzing the instrumental observations of the Earth’s magnetic field at the Geophysical Observatory Mikhnevo of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (IGD RAS) for 2010–2015 are presented. Quasi-harmonic components with the periods close to the lunar–solar tidal waves are revealed in the spectra of geomagnetic variations over a period of 0.4 to 30 days. The elliptical S1 tidal wave which is detected in the geomagnetic variations has modulations with periods of 1/3, 1/2, and 1 year. The spectra of the geomagnetic variations contain peaks corresponding to the free oscillations of the Earth. The analysis of the time series of the magnetic field for the period of the strong earthquakes in the absence of geomagnetic disturbances revealed the fine structure of the Earth’s fundamental spheroidal mode 0S2, which splits into five singlets. The established features of the spectrum of geomagnetic variations are helping the development of the new method for studying the deep structure of the Earth and the properties of the inner geospheres for estimating the viscosity of the Earth’s outer core and dynamics of the current systems in the outer (liquid) core, as well as for exploring, with the use of empirical data, the general regularities governing the regimes of energy exchange processes in the geospheres.  相似文献   

19.
电离层电场的半年变化对F2区峰值电子浓度的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
利用一个电离层理论模式,模拟了太阳活动低年、地磁宁静情况下,中低纬和赤道地区电离层F2区峰值电子浓度(NmF2)的半年变化规律,重点讨论了电离层电场对NmF2半年变化的影响.模拟结果表明,当输入的电场没有周年和半年变化时,磁赤道地区电离层NmF2本身就具有一定的半年变化特征,而在稍高的纬度上,NmF2半年变化的强度较弱.当输入的电场具有一定的半年变化时,电离层NmF2的半年变化强度有明显的改变,且这种改变随地方时和地磁纬度不同有明显的差别.在地磁赤道附近的电离层赤道槽地区,从上午到午夜的时间内,具有半年变化的电场对电离层NmF2半年变化的强度是减弱的作用,在其他的时间内,电场对电离层NmF2半年变化强度是加强的作用.而在稍高纬度的电离层驼峰地区,情况明显不同.从上午一直到翌日日出前,具有半年变化的电场对电离层NmF2半年变化的幅度都是加强的作用.在其他的时间内,电场对电离层NmF2半年变化的幅度是减弱的作用.同时,研究表明电离层电场对NmF2半年变化的作用和“赤道喷泉”现象强烈相关.  相似文献   

20.
The response of the critical frequency of the ionosphere F2–layer, described by its main Fourier components (daily constant, diurnal and semidiurnal waves) and the lower thermosphere dynamics to the geomagnetic storms in July 1991 and February 1992 is studied. The daily constant displays a negative response, however, the magnitude of reaction depends on the season and latitude. The amplitudes of diurnal and semidiurnal waves increase during a geomagnetic storm, as this enhancement is very strong at high latitudes in winter. The prevailing neutral wind, especially the zonal wind, shows an inclination to decrease during the geomagnetic storm (the effect is more distinct in summer). The amplitudes of diurnal and semidiurnal tides also demonstrate a tendency toward reduction during high geomagnetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号