首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction parameters derived using empirical calibration methods indicate strong non-ideality in the mixing of octahedrally-coordinated cations in muscovite and biotite. The data set used for calibration comprises mineral compositions from 49 samples containing quartz, muscovite, biotite, garnet, plagioclase and Al2SiO5 (kyanite or sillimanite). Pressures and temperatures in the data set were determined through the simultaneous application of geothermometry based on the garnet-biotite FeMg1 exchange equilibrium and geobarometry based on the anorthite-breakdown equilibrium. Two equilibria yielded simple expressions from which binary interaction parameters for octahedrally-coordinated cations in biotite could be directly determined. A four-component (Fe2+, Mg, Al, Ti) regular symmetric mixing model was assumed for biotite. One equilibrium yielded a simple expression from which an interaction parameter for the mixing of the MgAl-celadonite component in muscovite could be directly determined. Two sets of calculations were performed utilizing different calibrations of the garnet-biotite geothermometer and the anothite-breakdown geobarometer and different garnet activity models. Both placed samples within or near the stability field of the Al2SiO5 phase present in each sample and both yielded similar values for the interaction parameters within narrow uncertainties, indicating that the values are insensitive to differences in the underlying methods. Using the derived interaction parameters, activity models were formulated for the annite, phlogopite, eastonite, and siderophyllite components of biotite, and for the MgAl-celadonite component of muscovite. These were utilized for the empirical calibration of 45 fluid-independent equilibria involving unique combinations of phase components from the mineral assemblage garnet + plagioclase±biotite±muscovite±quartz. Forty-three of the equilibria may be applied as geobarometers to equilibrium assemblages of quartz + muscovite + biotite + garnet + plagioclase when care is taken to insure that applications are restricted to valid compositional ranges. For these, the calibrations yielded multiple correlation coefficients ranging from 0.953 to 0.998 and standard deviations of the residuals ranging from 597 to 118 bars.  相似文献   

2.
The cation exchange reaction Fe3Al2Si3O12 +KMg3AlSi3O10(OH)2 = Mg3Al2Si3O12+KFe3-AlSi3 O10(OH)2 has been investigated by determining the partitioning of Fe and Mg between synthetic garnet, (Fe, Mg)3Al2Si3O12, and synthetic biotite, K(Fe, Mg)3AlSi3O10(OH)2. Experimental results at 2.07 kbar and 550 °–800 ° C are consistent with In [(Mg/Fe) garnet/(Mg/Fe) biotite] = -2109/T(°K) +0.782. The preferred estimates for ¯H and ¯S of the exchange reaction are 12,454 cal and 4.662 e.u., respectively. Mixtures of garnet and biotite in which the ratio garnet/biotite=49/1 were used in the cation exchange experiments. Consequently the composition of garnet-biotite pairs could approach equilibrium values in the experiments with minimal change in garnet composition (few tenths of a mole percent). Equilibrium was demonstrated at each temperature by reversal of the exchange reaction. Numerical analysis of the experimental data yields a geothermometer for rocks containing biotite and garnet that are close to binary Fe-Mg compounds.  相似文献   

3.
Under hydrous conditions the stability field of the assemblage Mg-cordierite+K feldspar+quartz is limited on its low-temperature side by the breakdown of cordierite+K feldspar into muscovite, phlogopite and quartz, whereas the high-temperature limit is given by eutectic melting. The compatibility field of the assemblage ranges from 530° C to 745° C at 1 kbar , from 635 to 725° C at 3 kbars , from 695 to 725° C at 5 kbars and terminates at 5.5 kbars . Most components not considered in the model system will tend to restrict this field even more. However, the condition < P total will increase the range of stable coexistence drastically, making the assemblage common at elevated temperatures from contact metamorphic rocks up to intermediate pressure granulites of appropriate bulk composition.  相似文献   

4.
采用(斜长石+黑云母+石英)这三种单矿物组合与1mol/L NaCl或0.5mol/L NaCl 0.5mol/L NaHCO3溶液在450-250℃和50MPa条件下反应7d。实验表明,反应后流体pH值发生了变化,NaCl介质向酸性变化,N aCl NaHCO3介质向中性转化。溶液中K,Ca,Mg,Fe和Au量也随之发生变化。矿物表面发生溶解和离子置换等反应。斜长石表面形成钠长石反应边,黑云母变色,石英重结晶,反应器皿金管中的金被溶解后在金管壁和黑云母表面重结晶,黑云母周边出现红色Fe2O3,在450℃的NaCl介质中,金含量可达1070μg/g,但随温度下降迅速减低,在NaCl NaHCO3介质中,金含量较低,显著,金的活化迁移和富集与Cl,pH,Fe^3 /Fe^2 密切相关,这中金起到示踪作用,显示出金在水/岩反应中的原电池效应。  相似文献   

5.
Massonne (1981) reported experiments on the composition of muscovite in the assemblage phlogopite-muscovite-K-feldspar-quart. The experimental data have been used to recalculate the equilibrium conditions for the chlorite-muscovite-biotite-quartz assemblage which has been proposed as a new geobarometer by Powell and Evans (1983).The recalculated equilibrium shows much steeperdp/dT slopes than those calculated by Powell and Evans (1983). Nevertheless, with the necessary precautions it is suggested that the barometer may provide the critical user with valuable pressure estimates.  相似文献   

6.
Metapelites containing muscovite, cordierite, staurolite and biotite (Ms+Crd+St+Bt) are relatively rare but have been reported from a number of low-pressure (andalusite–sillimanite) regional metamorphic terranes. Paradoxically, they do not occur in contact aureoles formed at the same low pressures, raising the question as to whether they represent a stable association. A stable Ms+Crd+St+Bt assemblage implies a stable Ms+Bt+Qtz+Crd+St+Al2SiO5+Chl+H2O invariant point (IP1), the latter which has precluded construction of a petrogenetic grid for metapelites that reconciles natural phase relations at high and low pressure. Petrogenetic grids calculated from internally consistent thermodynamic databases do not provide a reliable means to evaluate the problem because the grid topology is sensitive to small changes in the thermodynamic data. Topological analysis of invariant point IP1 places strict limits on possible phase equilibria and mineral compositions for metamorphic field gradients at higher and lower pressure than the invariant point. These constraints are then compared with natural data from contact aureoles and reported Ms+Crd+St+Bt occurrences. We find that there are numerous topological, textural and compositional incongruities in reported natural assemblages that lead us to argue that Ms+Crd+St+Bt is either not a stable association or is restricted to such low pressures and Fe-rich compositions that it is rarely if ever developed in natural rocks. Instead, we argue that reported Ms+Crd+St+Bt assemblages are products of polymetamorphism, and, from their textures, are useful indicators of P–T  paths and tectonothermal processes at low pressure. A number of well-known Ms+Crd+St+Bt occurrences are discussed within this framework, including south-central Maine, the Pyrenees and especially SW Nova Scotia.  相似文献   

7.
8.
9.
周潭群变质岩中石榴石、斜长石和黑云母微区化学成分变化明显,石榴石变斑晶具典型的生长环带,由晶体中心向两侧边缘XMg、XFe值以光滑曲线递增,XCu、XMn值以光滑曲线递减,反映其增温过程;晶体最边缘的化学成分反映变质峰期的温度条件。通过石榴石变斑晶生长环带剖面分析,应用Grt-Bi温度计和GASP压力计,确定本区变质作用PT轨迹为顺时针形式,发生于大陆碰撞造山带环境。  相似文献   

10.
黑云母、斜长石等矿物可作为寄主岩石的岩浆演化的指示剂。本文借助电子探针微区分析技术,通过对赣杭构造带中相山盆地火山侵入杂岩中这些矿物的化学组成进行定量分析发现:碎斑熔岩、花岗斑岩及石英二长斑岩的斜长石环带不明显,并且主要是中长石;石英二长斑岩中黑云母矿物成分为镁质黑云母和铁质黑云母,化学成分更为接近研究区镁铁质微粒包体中黑云母的成分,而碎斑熔岩及花岗斑岩中黑云母的镁含量较低。结合黑云母、斜长石矿物的化学特征及前人的工作研究,相山碎斑熔岩和花岗斑岩的物质来源主要是壳源,没有明显地幔物质的加入,而石英二长斑岩有一定量的地幔物质的加入,并且这个地幔物质的加入发生在石英二长斑岩的黑云母开始结晶之前。  相似文献   

11.
A mineralogic geobarometer based on the reaction garnet+clinopyroxene+quartz=2 orthopyroxene+anorthite is proposed. The geobarometric formulations for the Fe- and Mg- end member equilibria are $$\begin{gathered} P_{({\text{Fe}})} {\text{ }}({\text{bars}}){\text{ = 32}}{\text{.097 }}T{\text{ }} - {\text{ 26385 }} - {\text{ 22}}{\text{.79 (}}T - 848 - T1{\text{n(}}T/848{\text{))}} \hfill \\ {\text{ }} - (3.655 + 0.0138T){\text{ }}\left( {\frac{{{\text{(}}T - 848{\text{)}}^{\text{2}} }}{T}} \right) \hfill \\ {\text{ }} - {\text{(3}}{\text{.123) }}T1{\text{n }}\frac{{(a_{a{\text{n}}}^{{\text{Plag}}} )(a_{{\text{fs}}}^{{\text{P}}\ddot u{\text{x}}} )^2 }}{{(a_{{\text{alm}}}^{{\text{Gt}}} )(a_{{\text{hed}}}^{{\text{Opx}}} )}} \hfill \\ P_{({\text{Mg}})} {\text{ (bars) = 9}}{\text{.270 }}T + 4006 - 0.9305{\text{ }}(T - 848 - T1{\text{n (}}T/848{\text{)}}) \hfill \\ {\text{ }} - (1.1963{\text{ }} - {\text{ }}6.0128{\text{ x 10}}^{ - {\text{3}}} T)\left( {\frac{{(T - 848)^2 }}{T}} \right) \hfill \\ {\text{ }} - 3.489{\text{ }}T1{\text{n }}\frac{{(a_{an}^{{\text{Plag}}} ){\text{ }}(a_{{\text{ens}}}^{{\text{Opx}}} )}}{{{\text{(}}a_{{\text{pyr}}}^{{\text{Gt}}} {\text{) (}}a_{{\text{diop}}}^{{\text{Cpx}}} {\text{)}}}}. \hfill \\ \end{gathered}$$ The end member thermodynamic data have been taken from the data base of Helgeson et al. (1978) and Saxena and Erikson (1983). The activities of pyroxene components and anorthite in plagioclase have been modelled after Wood and Banno (1973) and Newton (1983) respectively. The activities of pyrope and almandine are calculated from the binary interaction parameters for garnet solid solutions proposed by Saxena and Erikson (1983). Pressures computed from these equations for fifty sets of published mineral data from several granulite areas are comparable with those obtained from dependable geobarometers. The pressure values determined from the Fe-end member equilibrium appear to be more reasonable than those from the Mg-end member reaction. It is likely that the difference in pressures computed from the Fe- and Mg-end members, ΔP *, have been caused by non-ideal mixing in the phases, especially in garnets.  相似文献   

12.

黑云母石英片岩是一种典型的各向异性岩石,为研究其损伤演化规律及各向异性表现特征,针对含0°,45°,90°3种片理角度的试样,开展了等塑性应变循环加卸载试验。结果表明:不同片理面角度试样的破坏模式有所不同,0°片理面试样中的张拉破裂现象与45°片理面中的剪切破坏现象尤为明显。随着塑性应变增加,黑云母石英片岩的弹性模量表现出先强化、后弱化的现象,这一现象在高围压下更为明显。在弱化阶段中,弹性模量演化的转折点与裂纹起裂强度σci稳定时对应塑性应变一致。弹性模量作为岩石损伤劣化过程的评价指标较完整性系数受片理面角度的影响更小。在岩石内部能量演化过程中,耗散能大小与片理面角度的关系为0°>90°>45°,耗散能、弹性能下降的速率大小关系为45°>90°>0°,其降至稳定时与岩石损伤强度σcd稳定时对应塑性应变一致。该研究借助弹性模量和能量演化规律分析,探究了黑云母石英片岩的损伤演化力学行为。

  相似文献   

13.
In contrast to Ferry (1980) (X Ca)-values in garnet even lower than 0.1 have a significant effect on the calculated equilibrium temperature using the experimental calibration of the Fe and Mg paritioning between garnet and biotite. Garnet compositions and Mg/Fe — distribution coefficients from samples of the Eoalpine staurolite — in zone in the southern Ötztal are related by the quadratic regression equation: InK D= -1.7500 (±0.0226) + 2.978 (±0.5317)X Ca Gt -5.906(±2.359)(X Ca Gt )2 Temperatures derived by the Ferry and Spear (1978) calibration using chemistry — correctedK D values are petrologically realistic.Analysis of our data supports non ideal mixing of grossular with almandine — pyrope solid solution. The derived excess mixing energies are quite small for the almandine — pyrope solution (W FeMg= –133 cal/mole) and about +2775 cal/mole for the difference between pyrope-grossular and almandine-grossular solutions (W MgCaW FeCa) at metamorphic conditions of 570° C and 5,000 bar. The mixing parameters proposed by Ganguly and Saxena (1984) are not confirmed by our data as they would result in significantly lower temperatures.  相似文献   

14.
The assemblage paragonite + quartz is encountered frequently in low- to medium-grade metamorphic rocks. With rising grade of metamorphism they react mutually to yield the condensed assemblage albite + Al2SiO5.The univariant curve pertaining to the equilibrium paragonite + quartz=albite + andalusite + H2O has been located experimentally. The reversed P H 2 O-T data are: 1 kb: 470–490° C 2 kb: 510–530° C 3 kb: 540–560° C 4 kb: 560–580° C 5 kb: 590–600° C The univariant curve pertaining to the equilibrium paragonite + quartz=albite + kyanite + H2O runs through the following P H 2 O-T-intervals: 5 kb: 570–625° C 6 kb: 600–630° C 7 kb: 620–640° C Thermodynamic calculations of S 298 0 , H f,298 0 and G f,298 0 of the phase paragonite from the experimental data presented above and those obtained from the equilibria of the reaction paragonite=albite + corundum + H2O (Chatterjee, 1970), agree within the limits of uncertainty. This prompts the idea that Zen's (1969) suggestion of a possible error of approximately 7 kcal in G f,298 0 of the Al2SiO5 polymorphs may in fact be due to an error of similar magnitude in G f,298 0 of corundum.A best estimate of S 298 0 , H f,298 0 and G f,298 0 of paragonite based on these considerations yield: S 298 0 : 67.61±3.9 cal deg–1 gfw–1 H f,298 0 : –1411.4±2.7 kcal gfw–1 G f,298 0 : –1320.9±4.0 kcal gfw–1 These numbers will be subject to change when better thermochemical data on corundum and albite are available.In medium-grade metamorphic rocks the assemblage paragonite + quartz is commonly found in stable coexistence with such other phases as muscovite, staurolite, andalusite, kyanite, but not with cordierite or sillimanite. However, the assemblage paragonite-sillimanite has been reported to be stable in the absence of quartz. All these petrologic observations can be explained on the basis of the stability data of the phases and phase assemblages concerned.  相似文献   

15.
Orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages represent the paragenetic link between plagioclase‐free eclogite facies metabasites and orthopyroxene‐bearing granulite facies metabasites. Although these assemblages are most commonly developed under P–T conditions consistent with high pressure granulite facies, they sometimes occur at lower grade in the amphibolite facies. Thus, these assemblages are characteristic but not definitive of high pressure granulite facies. Compositional factors favouring their development at amphibolite grade include Fe‐rich mineral compositions, Ca‐rich garnet and plagioclase, and Ti‐poor hornblende. The generalized reaction that accounts for the prograde development of garnet + clinopyroxene + plagioclase ± quartz from a hornblende + plagioclase + quartz‐bearing (amphibolite) precursor is Hbl + Pl + Qtz=Grt + Cpx + liquid or vapour, depending on whether the reaction occurs above or below the solidus. There are significant discrepancies between experimental and natural constraints on the P–T conditions of orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages and therefore on the P–T position of this reaction. Semi‐quantitative thermodynamic modelling of this reaction is hampered by the lack of a melt model and gives results that are only moderately successful in rationalizing the natural and experimental data.  相似文献   

16.
The reaction muscovite+cordierite→biotite+Al2SiO5 +quartz+H2O is of considerable importance in the low pressure metamorphism of pelitic rocks: (1) its operation is implied in the widespread assemblage Ms + Crd +And± Sil + Bt + Qtz, a common mineral assemblage in contact aureoles and low pressure regional terranes; (2) it is potentially an important equilibrium for pressure estimation in low pressure assemblages lacking garnet; and (3) it has been used to distinguish between clockwise and anticlockwise P–T paths in low pressure metamorphic settings. Experiments and thermodynamic databases provide conflicting constraints on the slope and position of the reaction, with most thermodynamic databases predicting a positive slope for the reaction. Evidence from mineral assemblages and microtextures from a large number of natural prograde sequences, in particular contact aureoles, is most consistent with a negative slope (andalusite and/or sillimanite occurs upgrade of, and may show evidence for replacement of, cordierite). Mineral compositional trends as a function of grade are variable but taken as a whole are more consistent with a negative slope than a positive slope. Thermodynamic modelling of reaction 1 and associated equilibria results in a low pressure metapelitic petrogenetic grid in the system K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) which satisfies most of the natural and experimental constraints. Contouring of the Fe–Mg divariant interval represented by reaction 1 allows for pressure estimation in garnet‐absent andalusite+cordierite‐bearing schists and hornfelses. The revised topology of reaction 1 allows for improved analysis of P–T paths from mineral assemblage sequences and microtextures in the same rocks.  相似文献   

17.
Enthalpy of formation and third law entropy for andradite (Ca3Fe2Si3O12) and hedenbergite (CaFeSi2O6) at standard state have been retrieved from experimental P-T-f(O2) data on the stability relations of these phases. The data for hedenbergite were combined with the thermodynamic data for related phases (Berman 1988) to formulate the geobarometers based on the reactions CaFeSi2O6+2CaAl2Si2O8+2FeTiO3= Ca3Al2Si3O12+Fe3Al2Si3O12+2TiO2 (CPG-IR), 3CaFeSi2O6+3CaAl2Si2O8+3FeTiO3=Ca3Al2Si3O12 +2Fe3Al2Si3O12+3CaTiSiO5 (CPG-IS) and 3CaFeSi2O6+3CaAl2Si2O8=2Ca3Al2Si3O12+ Fe3Al2Si3O12+3SiO2 (CPG-O). The geobarometers involving rutile and sphene are proposed for the first time. In several granulite terranes, pressures have been estimated from the three geobarometers for basic granulites and charnockitic suite of rocks containing the above assemblages. In clinopyroxene-garnet-plagioclase-quartz-ilmenite-rutile assemblages, pressures obtained from CPG-IR are within ±500 bars of pressures calculated from the CPG-Q barometer. However, if rutile is absent, the pressures computed from the CPG-IR barometer are 300 to 1,200 bars higher than those calculated from the CPG-Q barometer. For maximum differences in pressures obtained from the two equilibria TiO2 activity [a(TiO2)] in the rocks is calculated to be 0.8. The sphene-bearing geobarometer (CPG-IS) also registers pressures comparable (<±500 bars) to those obtained from the CPG-Q barometer. The close agreement in pressure values obtained from the CPG-IR and the CPG-IS equilibria with those registered by the CPG-Q geobarometer in assemblages containing quartz implies that the rutile- and sphene-bearing geobarometers which do not involve quartz, can also be applied to estimate pressures from quartz-absent assemblages-assemblages which are not amenable to quantitative geobarometry using existing formulations.  相似文献   

18.
The prograde evolution of minerals in metapelites of a Barrovian sequence from the tri-state area (Massachusetts, Connecticut, New York) of the Taconic Range involves assemblages with garnet (Ga), chlorite (Ch), chloritoid (Ct), biotite (Bi) and staurolite (St). Detailed petrologic observations, mineral compositions and chemical zoning in garnet show: (1) garnet high in Mn and Fe but low in Mg is stable with chlorite at grades below those where chloritoid+biotite is found; (2) early formed garnet reacted partially to form Ct+Bi at intermediate grades; (3) at higher grades garnet (with low Mn)+chlorite is again produced, at the expense of chloritoid+biotite, suggesting a reversal in the continuous reaction involving the phases Ga, Ch, Ct and Bi. Thermodynamic modeling of the assemblage Ga+Ch+Ct+Bi±St in the MnKFMASH system reveals: (1) in the MnKFASH system the prograde reaction is Ga+Ch=Ct+Bi whereas in the KFMASH system the prograde reaction is the opposite: Ct+Bi=Ga+Ch; (2) the Ga–Ch–Ct–Bi–St invariant point in the KFMASH system occurs twice, at approximately 6.5 kbar, 545° C and 14.8 kbar, 580° C (although one of them may be metastable in a complex phase system); the appearance of the petrogenetic grid is markedly different from that of Albee, but similar to that of Spear and Cheney; (3) as a consequence, in the KFMASH system, chloritoid+biotite are stable over a wide range of P-T conditions whereas garnet+chlorite assemblages are restricted to a narrow band of P-T conditions; (4) MnO increases the stability field of Ga+Ch relative to both Ct+Bi at low temperatures, and St+Bi at high temperatures; (5) in natural samples the occurrence of Ct+Bi is controlled more by bulk Mg–Fe(-Mn) composition than P-T conditions. Specifically, Ct+Bi is restricted to bulk compositions with Fe/(Mg+Fe+Mn)>0.6. Rocks with Fe/(Mg+Fe+Mn)<0.5 are likely to display only chlorite+biotite at low grade. These observations are consistent with Wang and Spear and Spear and Cheney.  相似文献   

19.
Experimental data obtained for dry melting of muscovite + quartz show that the stability field of this assemblage is extended to higher temperatures compared with the corresponding melting reactions with excess vapor which have been determined by Storre and Karotke (1971, 1972).  相似文献   

20.
通过对多坝沟地区敦煌杂岩中黑云斜长片麻岩LA-ICP-MS锆石U-Pb年龄和Lu-Hf同位素的研究,对敦煌杂岩的形成时代和敦煌地块的前寒武纪地壳生长演化进行探讨。锆石U-Pb年代学研究表明,710Ma代表了敦煌杂岩的最大沉积时代,黑云斜长片麻岩发育422Ma的早古生代变质事件,表明敦煌地块卷入了早古生代古亚洲洋俯冲-碰撞的演化过程。锆石Hf同位素研究结果表明,敦煌地块具有幕式生长特征,经历了约2.7Ga、2.5Ga、2.3Ga、2.0Ga和1.8Ga多个地壳生长时期。黑云斜长片麻岩发育的约0.9Ga和约0.8Ga的峰值年龄表明,敦煌地块新元古代构造热事件可与塔里木克拉通对比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号