首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2014–2015 Holuhraun eruption, on the Bárðarbunga volcanic system in central Iceland, was one of the best-monitored basaltic fissure eruptions that has ever occurred, and presents a unique opportunity to link petrological and geochemical data with geophysical observations during a major rifting episode. We present major and trace element analyses of melt inclusions and matrix glasses from a suite of ten samples collected over the course of the Holuhraun eruption. The diversity of trace element ratios such as La/Yb in Holuhraun melt inclusions reveals that the magma evolved via concurrent mixing and crystallization of diverse primary melts in the mid-crust. Using olivine–plagioclase–augite–melt (OPAM) barometry, we calculate that the Holuhraun carrier melt equilibrated at 2.1?±?0.7 kbar (7.5?±?2.5 km), which is in agreement with the depths of earthquakes (6?±?1 km) between Bárðarbunga central volcano and the eruption site in the days preceding eruption onset. Using the same approach, melt inclusions equilibrated at pressures between 0.5 and 8.0 kbar, with the most probable pressure being 3.2 kbar. Diffusion chronometry reveals minimum residence timescales of 1–12 days for melt inclusion-bearing macrocrysts in the Holuhraun carrier melt. By combining timescales of diffusive dehydration of melt inclusions with the calculated pressure of H2O saturation for the Holuhraun magma, we calculate indicative magma ascent rates of 0.12–0.29 m s?1. Our petrological and geochemical data are consistent with lateral magma transport from Bárðarbunga volcano to the eruption site in a shallow- to mid-crustal dyke, as has been suggested on the basis of seismic and geodetic datasets. This result is a significant step forward in reconciling petrological and geophysical interpretations of magma transport during volcano-tectonic episodes, and provides a critical framework for the interpretation of premonitory seismic and geodetic data in volcanically active regions.  相似文献   

2.
Hasandağ and Erciyes stratovolcanoes, which produced both calc-alkaline and alkaline eruptive products, are the two important volcanic complexes in Central Anatolia. There are three geochemical evolution stages in the history of the Hasandağ strato volcanic complex: (1) Keçikalesi tholeiitic, (2) Hasandağ calc-alkaline and (3) Hasandağ alkaline. Volcanologic and petrologic characteristics of the Hasandağ and Erciyes calc-alkaline series show that water played an important role on the genesis of these rocks. These rocks are phenocryst-rich with vesicular texture, and contain hydrous mineral phases. The approximate pressure and temperature estimates obtained from the mineral chemistry studies of the Hasandağ strato volcanic complex indicate crystallization temperature of 1100 °C with 2.5–3.4 kbar pressure interval for the first stage of Keçikalesi tholeiitic volcanism, and about 850 °C temperatures with 4.3–9.6 kbar pressure intervals for the second stage of Hasandağ calc-alkaline volcanism.The geochemical evolution of Erciyes volcanic complex also exhibits three distinct evolutionary stages: (1) Koçdağ alkaline, (2) Koçdağ calc-alkaline and (3) Erciyes calc-alkaline. The temperature of Koçdağ alkaline volcanism is 1097–1181 °C and in a range of 5.1–6.7 kbar pressure, for Koçdağ calc-alkaline volcanism 850–1050 °C temperature to 2.0–6.6 kbar pressure interval, and for Erciyes calc-alkaline volcanism about 950 °C temperature, to 3.2–7.9 kbar pressure intervals were calculated. Polybaric origin of magma chambers for calc-alkaline and alkaline rocks and disequilibrium parameters observed in phenocrysts indicate that the rocks were affected by magma mixing processes in crustal magma chambers. The disequilibrium features of amphibole and plagioclase phenocrysts in these rocks point the latent heat in magma chambers and periodic recharging with mafic magma chambers and also show that magmas reequilibrate before the eruption.  相似文献   

3.
The mass of volatiles emitted during volcanic eruptions is often estimated by comparing the volatile contents of undegassed melt inclusions, trapped in crystals at an early stage of magmatic evolution, with that of the degassed matrix glass. Here we present detailed characterisation of magmatic volatiles (H2O, CO2, S, Fl and Cl) of crystal-hosted melt and fluid inclusions from the 2014–2015 Holuhraun eruption of the Bárðarbunga volcanic system, Iceland. Based on the ratios of magmatic volatiles to similarly incompatible trace elements, the undegassed primary volatile contents of the Holuhraun parental melt are estimated at 1500–1700 ppm CO2, 0.13–0.16 wt% H2O, 60–80 ppm Cl, 130–240 ppm F and 500–800 ppm S. High-density fluid inclusions indicate onset of crystallisation at pressures?≥?0.4 GPa (~?12 km depth) promoting deep degassing of CO2. Prior to the onset of degassing, the melt CO2 content may have reached 3000–4000 ppm, with the total magmatic CO2 budget estimated at  23–55 Mt. SO2 release commenced at 0.12 GPa (~?3.6 km depth), eventually leading to entrapment of SO2 vapour in low-density fluid inclusions. We calculate the syn-eruptive volatile release as 22.2 Mt of magmatic H2O, 5.9–7.7 Mt CO2, and 11.3 Mt of SO2 over the course of the eruption; F and Cl release were insignificant. Melt inclusion constraints on syn-eruptive volatile release are similar to estimates made during in situ field monitoring, with the exception of H2O, where field measurements may be heavily biased by the incorporation of meteoric water.  相似文献   

4.
Late Cretaceous alkali magmatic rocks occur widely in the Hasancelebi and Basören regions (Malatya). The Hasancelebi and Basören intrusive rocks are mainly peralkaline and alkaline-oversaturated. The Hasancelebi intrusive rocks are made up of syenite to quartz monzonite. On the other hand the Basören intrusive rocks mainly contain feldspathoidal syenites that are cut by feldspathoid-bearing dykes. The Hasancelebi intrusive rocks show comparable field, petrographic and geochemical characteristics with A-type rocks. All intrusive rocks show enrichment in LILE and LREE relative to HFSE. The Th/Yb versus Ta/Yb diagram indicates that all magmatic rocks formed from an enriched mantle source region(s). The parental magma for the Basören rocks has a higher intraplate component than that from the Hasancelebi rocks which could be attributed to mantle source heterogeneity before collision in east-central Anatolia. Either delamination of the thermal boundary layer or slab-breakoff are likely mechanisms for the initiation of post-collisional magmatism in the Hasancelebi–Basören areas.  相似文献   

5.
《Lithos》1987,20(2):153-168
The Thorsmörk ignimbrite, southern Iceland, contains a suite of granophyre xenoliths displaying magmatic or high-temperature sub-solidus mineral assemblages. These granophyres are consanguineous with the erupting comenditic magma. Four types of mineral assemblages are distinguished:
  • 1.(A) oligoclase, edenitic hornblende, salitic pyroxene, magnesian biotite, magnetite and sphene;
  • 2.(B) oligoclase, manganoan to sodic ferro-augite, fayalite, richterite, ilmenite and magnetite;
  • 3.(C) anorthoclase, ferrohedenbergite to aegirine hedenbergite, ilmenite, magnetite and (riebeckite);
  • 4.(D) cryptoperthite, aegirine hedenbergite to (aegirine), aenigmatite, arfvedsonite, ilmenite and magnetite.
Geothermometry shows that the xenoliths have crystallized between 900°C and 500°C at moderate oxygen fugacities, just above the FMQ buffer. It is further demonstrated that a hot vapour phase heavily charged with sodium and halogens, played a major role in the late sub-solidus crystallization of the different types.  相似文献   

6.
The Katherina ring complex (KRC) in the central part of south Sinai, Egypt, is a typical ring complex of late Neoproterozoic age (605–580 Ma). It was developed during the final tectono-magmatic stage of the north Arabian–Nubian Shield (ANS) during evolution of the Pan-African crust. The KRC includes Katherina volcanics, subvolcanic bodies, ring dykes and Katherina granitic pluton. The Katherina volcanics represent the earliest stage of the KRC, which was subsequently followed by emplacement of the subvolcanic bodies and ring dykes. The Katherina granitic pluton depicts as the latest evolution stage of the KRC that intruded all the early formed rock units in the concerned area. The Katherina volcanics are essentially composed of rhyolites, ignimbrite, volcanic breccia and tuffs. Mineralogically, the peralkaline rhyolites contain sodic amphiboles and aegirine. The rhyolite whole rock chemistry has acmite-normative character. The subvolcanic bodies of the KRC are represented by peralkaline microgranite and porphyritic quartz syenite. The ring dykes are semicircular in shape and consist mainly of quartz syenite, quartz trachyte and trachybasalt rock types. The Katherina subvolcanic rocks, volcanic rocks as well as the ring dykes are alkaline or/and peralkaline in nature. The alkaline granitic pluton forms the inner core of the KRC, including the high mountainous areas of G. Abbas Pasha, G. Bab, G. Katherina and G. Musa. These mountains are made up of alkaline syenogranite and alkali feldspar granite. The mantle signature recorded in the KRC indicates a juvenile ANS crust partial melting process for the generation of this system. The evolution of the KRC rocks is mainly dominated by crystal fractionation and crustal contamination. Mineral geothermometry points to the high temperature character of the KRC, up to 700–1100 °C.  相似文献   

7.
We conducted geochemical and isotopic studies on the Oligocene–Miocene Niyasar plutonic suite in the central Urumieh–Dokhtar magmatic belt, in order better to understand the magma sources and tectonic implications. The Niyasar plutonic suite comprises early Eocene microdiorite, early Oligocene dioritic sills, and middle Miocene tonalite + quartzdiorite and minor diorite assemblages. All samples show a medium-K calc-alkaline, metaluminous affinity and have similar geochemical features, including strong enrichment of large-ion lithophile elements (LILEs, e.g. Rb, Ba, Sr), enrichment of light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, e.g. Nb, Ta, Ti, P). The chondrite-normalized rare earth element (REE) patterns of microdiorite and dioritic sills are slightly fractionated [(La/Yb)n = 1.1–4] and display weak Eu anomalies (Eu/Eu* = 0.72–1.1). Isotopic data for these mafic mantle-derived rocks display ISr = 0.70604–0.70813, ?Nd (microdiorite: 50 Ma and dioritic sills: 35 Ma, respectively) = +1.6 and ?0.4, TDM = 1.3 Ga, and lead isotopic ratios are (206Pb/204Pb) = 18.62–18.57, (207Pb/204Pb) = 15.61–15.66, and (208Pb/204Pb) = 38.65–38.69. The middle Miocene granitoids (18 Ma) are also characterized by relatively high REE and minor Eu anomalies (Eu/Eu* = 0.77–0.98) and have uniform initial 87Sr/86Sr (0.7065–0.7082), a range of initial Nd isotopic ratios [?Nd(T)] varying from ?2.3 to ?3.7, and Pb isotopic composition (206Pb/204Pb) = 18.67–18.94, (207Pb/204Pb) = 15.63–15.71, and (208Pb/204Pb) = 38.73–39.01. Geochemical and isotopic evidence for these Eocene–Ologocene mafic rocks suggests that the magmas originated from lithospheric mantle with a large involvement of EMII component during subduction of the Neotethyan ocean slab beneath the Central Iranian plate, and were significantly affected by crustal contamination. Geochemical and isotopic data of the middle Miocene granitoids rule out a purely crustal-derived magma genesis, and suggest a mixed mantle–crustal [MASH (melting, assimilation, storage, and homogenization)] origin in a post-collision extensional setting. Sr–Nd isotope modelling shows that the generation of these magmas involved ~60% to 70% of a lower crustal-derived melt and ~30% to 40% of subcontinental lithospheric mantle. All Niyasar plutons exhibit transitional geochemical features, indicating that involvement of an EMII component in the subcontinental mantle and also continental crust beneath the Urumieh–Dokhtar magmatic belt increased from early Eocene to middle Miocene time.  相似文献   

8.
Major and trace element and isotopic ratios (Sr, Nd and Pb) are presented for mafic lavas (MgO > 4 wt%) from the southwestern Yabello region (southern Ethiopia) in the vicinity of the East African Rift System (EARS). New K/Ar dating results confirm three magmatic periods of activity in the region: (1) Miocene (12.3–10.5 Ma) alkali basalts and hawaiites, (2) Pliocene (4.7–3.6 Ma) tholeiitic basalts, and (3) Recent (1.9–0.3 Ma) basanite-dominant alkaline lavas. Trace element and isotopic characteristics of the Miocene and Quaternary lavas bear a close similarity to ocean island basalts that derived from HIMU-type sublithospheric source. The Pliocene basalts have higher Ba/Nb, La/Nb, Zr/Nb and 87Sr/86Sr (0.70395–0.70417) and less radiogenic Pb isotopic ratios (206Pb/204Pb = 18.12–18.27) relative to the Miocene and Quaternary lavas, indicative of significant contribution from enriched subcontinental lithospheric mantle in their sources. Intermittent upwelling of hot mantle plume in at least two cycles can explain the magmatic evolution in the southern Ethiopian region. Although plumes have been originated from a common and deeper superplume extending from the core–mantle boundary, the diversity of plume components during the Miocene and Quaternary reflects heterogeneity of secondary plumes at shallower levels connected to the African superplume, which have evolved to more homogeneous source.  相似文献   

9.
《International Geology Review》2012,54(13):1666-1689
ABSTRACT

The Wulonggou area in the Eastern Kunlun Orogen (EKO) in Northwest China is characterized by extensive granitic magmatism, ductile faulting, and orogenic gold mineralizations. The Shidonggou granite is located in the central part of the Wulonggou area. This study investigated the major as well as trace-element compositions, zircon U–Pb dates, and zircon Hf isotopic compositions of the Shidonggou granite. Three Shidonggou granite samples yielded an average U–Pb zircon age of 416 Ma (Late Silurian). The Late Silurian Shidonggou granite is peraluminous, with high alkali contents, high Ga/Al ratios, high (K2O + Na2O)/CaO ratios, and high Fe2O3T/MgO ratios, suggesting an A-type granite. The Shidonggou granite samples have zircon εHf(t) values ranging from ?7.1 to +4.4. The Hf isotopic data suggest that the Late Silurian granite was derived from the partial melting of Palaeo- to Mesoproterozoic juvenile mantle-derived mafic lower crust. Detailed geochronological and geochemical data suggest that the Late Silurian granite was emplaced in a post-collisional environment following the closure of the Proto-Tethys Ocean. Combining data of other A-type granitic rocks with ages of Late Early Silurian to Middle Devonian, such post-collisional setting related to the Proto-Tethys Ocean commenced at least as early as ~430 Ma (Late Early Silurian), and sustained up to ~389 Ma (Middle Devonian) in the EKO.  相似文献   

10.
The Xinqiao deposit is one of several polymetallic deposits in the Tongling ore district. There are two types of mineralization in the Xinqiao: skarn-type and stratiform-type. The skarn-type mineralization is characterized by iron oxides such as magnetite and hematite, whereas stratiform-type mineralization is characterized by massive sulfides with small amounts of magnetite and hematite. We defined three types of ores within the stratiform-type mineralization by the mineral assemblages and ore structures. Type I ore is represented by magnetite crosscut by minor calcite veins. Type II is a network ore composed of magnetite and crosscutting pyrite. Type III is a massive ore containing calcite and hematite. Type I magnetite is characterized by highly variable trace element content, whereas Type II magnetite has consistently higher Si, Ti, V, and Nb. Type III magnetite contains more In, Sn, and As than the other two types. Fluid–rock interaction, oxygen fugacity (fO2), and temperature (T) are the main factors controlling element variation between the different magnetite types. Type I magnetite was formed by more extensive fluid–rock interaction than the other two types at moderate fO2 and T conditions. Type II magnetite is thought to have formed in relatively low fO2 and high-T environments, and Type III in relatively high fO2 and moderate-T environments. Ca?+?Al?+?Mn and Ti?+?V discrimination diagrams show that magnetite in the Xinqiao deposit is hydrothermal in origin and is possibly linked with skarn.  相似文献   

11.
 The reflectance of sediments (gray level) were measured on 11 sediment cores from the Norwegian–Greenland–Iceland Sea (Nordic seas). The analyzed time interval covers the past five glacial–interglacial cycles. Although the results demonstrate that the gray-level method has a potential for stratigraphic purposes, it is indicated that gray-level changes in the Nordic seas are not necessarily driven by variations in the content of biogenic calcite. A detailed comparison of gray-level values with contents of total CaCO3 (carbonate) and total organic carbon (TOC) reveals no overall causal link between these proxies. However, specific glacial core sections with layers containing organic-rich sediment clasts as a consequence of iceberg-rafting seem to correlate well with law gray-level values. Of those cores which show relatively high and comparable carbonate values in the last three main interglacial intervals (stages 11, 5.5, and 1), stage 11 is always marked by the highest gray-level values. A close inspection of the surface structure of the foraminiferal tests as well as the conduction of reflectance measurements on these tests leads to the conclusion that enhanced carbonate corrosion occurred during stage 11. The test corrosion not only affected the reflectance of the tests by making them appear whiter, it also seems responsible for the comparatively high gray-level values of the total sediment in stage 11. In contrast, the relatively low gray-level values found in stages 5.5, and 1 are not associated with enhanced test corrosion. This observation implies that variable degrees of carbonate corrosion can have a profound effect on total sediment reflectance. Received: 6 September 1998 / Accepted: 4 April 1999  相似文献   

12.
The Ranomandry Complex is a Neoproterozoic, nested intrusion from central Madagascar composed of a gabbroic core within a coeval peraluminous granite ring intruding pelitic metasediments. Although xenocryst entrainment and magma mixing have both contributed to marginal phases of the granite, the primary melt is characterised by steep LREE/HREE ratios and negligible, or slightly positive, Eu anomalies. Both isotopic and trace element systematics preclude an origin from either partial melting of the metapelitic country rock or from fractional crystallisation of the gabbroic magma. However, trace-element modelling suggests an origin from the dehydration melting of a plagioclase-poor, garnet-bearing metagreywacke at temperatures of 850–900 °C and at lower crustal pressures (>10 kbar). Melting of an enriched subcontinental mantle generated gabbroic magmas that caused advective heating and anatexis at the base of thickened continental crust during their ascent. Transport of the resulting granite magma was facilitated by the pre-existing plumbing system that overcame thermal and mechanical problems associated with both diapirism and self-propagating dykes as mechanisms for long-distance transport of granite magmas. The nested geometry of the intrusions is an indication of a structurally homogeneous lower crust that contains no pre-existing shear zones or fault systems.  相似文献   

13.
New age dating (291 Ma) was obtained for one of the largest alkaline granite massifs in the world, the Khan–Bogd Massif (Mongolia). For the first time, apart from zircon, other zirconium silicates, elpidite and armstrongite, have been analyzed. Our determinations showed the highly depleted nature of the mantle sources of granites with εNd = 12. All the studied Zr-silicates demonstrate positive Eu anomalies in the REE patterns, which indicate a low oxidation potential during alkaline granite formation.  相似文献   

14.
《International Geology Review》2012,54(13):1735-1754
Widespread granitic intrusions in the northeast part of the Wulonggou area were previously thought to be emplaced into the Palaeoproterozoic Jinshuikou Group during the Neoproterozoic. This contribution presents detailed LA-ICP-MS zircon U–Pb geochronology, major and trace element geochemistry, and zircon Hf isotope systematic on the Wulonggou Granodiorite and Xiaoyakou Granite from the Wulonggou area. Three granodiorite samples yielded U–Pb zircon ages of 247 ± 2, 248 ± 1, and 249 ± 1 Ma, and one granite sample yielded U–Pb zircon age of 246 ± 3 Ma. The granodiorite samples are metaluminous with an alumina saturation index of 0.90–0.96, as well as intermediate- to high-alkali contents of 5.49–6.14 wt.%, and low Zr+Nb+Ce+Y contents, and low Fe2O3T/MgO ratios, which suggest an I-type classical island arc magmatic source. The granite samples are peraluminous with an alumina saturation index of 1.02–1.03, Sr content of 305.00–374.00 ppm, Sr/Y ratios of between 17.68 and 28.77, (La/Yb)N values of 16.98–25.07, low HREEs (Yb = 1.10–2.00 ppm), and low Y (13.00–21.10 ppm), which suggest adakite-like rocks. All granodiorite samples have zircons εHf(t) values ranging from ?2.9 to +3.9, and granite samples have zircon εHf(t) values ranging from ?7.8 to +3.2. These Hf isotopic data suggest that the Early Triassic granites were derived from the partial melting of a mafic Mesoproterozoic lower crust, although the degree of ancient crustal assimilation may be higher for the Xiaoyakou Granite. It is suggested here that the ca. 246–248 Ma magma was generated during the northward subduction of the Palaeo-Tethys oceanic plate.  相似文献   

15.
The Quaternary alkaline volcanic field of Southern Turkey is characterized by intra-continental plate-type magmatic products, exposed to the north of the ?skenderun Gulf along a NE-SW trending East Anatolian Fault, to the west of its intersection with the N–S trending Dead Sea Fault zone. The ?skenderun Gulf alkaline rocks are mostly silica-undersaturated with normative nepheline and olivine and are mostly classified as basanites and alkaline basalts with their low-silica contents ranging between 43 and 48?wt.% SiO2. They display Ocean Island Basalt (OIB)–type trace element patterns characterized by enrichments in large-ion-lithophile elements (LILE) and light rare earth element (LREE), and have (La/Yb)N?=?8.8–17.7 and (Hf/Sm)N?=?0.9–1.6 similar to those of basaltic rocks found in intraplate suites. The basanitic rocks have limited variations Sr-Nd isotopic ratios (87Sr/86Sr?=?0.70307–0.70324, 143Nd/144Nd?=?0.512918–0.521947), whereas the alkali basalts display more evolved Sr-Nd isotopic ratios (87Sr/86Sr?=?0.70346-0.70365, 143Nd/144Nd?=?0.512887–0.521896). The ?skenderun Gulf alkaline rocks also display limited Pb isotopic variations with 206Pb/204Pb?=?18.75–19.09 207Pb/204Pb?=?15.61–15.66 and208Pb/204Pb?=?38.65–39.02, indicating that they originated from an enriched lithospheric mantle source. Calculated fractionation vectors indicate that clinopyroxene and olivine are the main fractionating mineral phases. Similarly, based on Sr-Nd isotopic ratios, the assimilation and fractional crystallization (AFC) modeling shows that the alkali basalts were affected by AFC processes (r?=?0.2) and were slightly contaminated by the upper crustal material.The high TiO2 contents, enrichments in Ba and Nb, and depletions in Rb can likely be explained by the existence of amphibole in the mantle source, which might, in turn, indicate that the source mantle has been affected by metasomatic processes. The modeling based on relative abundances of trace elements suggests involvement of amphibole-bearing peridotite as the source material. ?skenderun Gulf alkaline rocks can thus be interpreted as the products of variable extent of mixing between melts from both amphibole-bearing peridotite and dry peridotite.  相似文献   

16.
17.
18.
The Baula-Nuasahi Complex, on the southern flank of the Singhbhum Archaean nucleus in north-eastern India, exposes a series of Mesoarchaean igneous suites. These are (1) a gabbro–anorthosite unit, which is petrographically homogeneous, although mineral-chemistry data hint at a subtle eastward differentiation; (2) a peridotite unit (with three chromitite layers) together with (3) a pyroxenite unit which display cumulate textures, modal layering, and (for the peridotite unit) differentiation trends in both mineralogy and mineral chemistry; and (4) the Bangur gabbro (~3.1 Ga), which defines an oblong intrusion, crosscutting the older igneous suites in the southern part of the complex, with a curvilinear NW-trending apophysis, 2 km long and up to 40 m wide. Magmatic breccia comprising ultramafic and chromitite wall-rock clasts in a gabbro matrix is exposed at the contact of the main Bangur gabbro body and also forms the entire Bangur gabbro apophysis. Concentrations of platinum-group minerals (PGMs) are found where the breccia contains abundant chromitite clasts, and two types of platinum-group-element (PGE) mineralisation are recognised. Type 1 (Pt 1.1–14.2, Pd 0.1–2.1 ppm, with an average Pt/Pd=8–9) is a contact-type mineralisation which occurs in the breccia at the contact between the Bangur intrusion and its ultramafic host. The PGMs—Pt alloys (isoferroplatinum) and sulphides (braggite, malanite)—are enclosed by pyroxene and plagioclase, reflecting a magmatic origin. Significant wall-rock assimilation by the magma (giving rise to the Bangur gabbro) is indicated by changes in pyroxene composition and by the presence of relicts of chromite (from the host) now altered to secondary ferritchromite in the contact zone. Type 2 PGE mineralisation (Pt 0.3–1.6, Pd 1.8–6.0 ppm, with Pt/Pd~0.5–3.0) is restricted to the breccia apophysis of the Bangur gabbro where it occurs in the breccia matrix, associated with an intense hydrothermal alteration which does not exist in the contact zone. PGMs (PGE arsenides, tellurides, bismuthides and antimonides) and, where present, base-metal sulphides (BMSs) form intergrowths with hydrous silicates, reflecting a hydrothermal origin. Oxygen isotope geothermometry documents the main stages of hydrothermal alteration within a decreasing temperature range between 700–1,000 and 500–600 °C, and oxygen, hydrogen and sulphur isotopes show that the hydrothermal fluids were derived from the magma rather than an external source. Pervasive hydrothermal alteration in the breccia apophysis likely represents upward channelling of late-magmatic fluids along a narrow, near-vertical, subplanar conduit which led away from the main magma chamber. We suggest that Type 2 mineralisation was produced by late-magmatic hydrothermal remobilisation and reconcentration of Type 1 PGE mineralisation, and that the composition of the hydrothermal fluids controlled whether BMSs were enriched along with the PGMs.Editorial handling: P. Lightfoot  相似文献   

19.
Mafic to felsic gneisses along the northern margin of the North China Craton (NMNCC), in western Liaoning province, China, were previously assumed to be part of Archean metamorphic basement but are here identified as younger (Permian–Early Triassic) intrusions. LA–ICP–MS zircon U–Pb isotopic dating reveals that the magmatic precursors of the mafic gneisses were emplaced from 295 ± 3 to 259 ± 2 Ma and that the magmatic precursors of the dioritic and monzogranitic gneisses were emplaced at 267 ± 1 and 251 ± 2 Ma, respectively, thus recording a continuum of Permian to Early Triassic magmatism. The mafic and dioritic rocks exhibit zircon εHf(t) values from ?20.7 to ?3.3, suggesting they were mainly derived from a metasomatized lithospheric mantle source, possibly involving some crustal contamination. The monzogranitic rocks display their zircon εHf(t) values of +0.9 to +4.7, indicating the acidic magma was derived from partial melting of juvenile crustal materials from the depleted mantle source. Crustal model ages (T DM C ) obtained from zircon Hf isotopes of these monzogranitic rocks range from 976 to 1,215 Ma, with an average of 1,074 ± 32 Ma, possibly implying an episode of Grenvillian crustal growth in western Liaoning province. These new lines of evidence show that the NMNCC witnessed abundant magmatic activity and interaction of the crust and mantle during the Permian and Early Triassic and that the mafic magmatism was earlier than the monzogranitic activity. These findings indicate that the monzogranitic activity was the result of underplating of mafic magma with an enriched mantle source. In the context of regional Late Paleozoic to Early Mesozoic magmatic activity, the Permian magmatism occurred in an Andean-style continental margin setting when the Paleo-Asian oceanic plate was subducted beneath the NMNCC, and in this context, the Late Permian to Early Triassic magmatism may have been linked to post-collisional extension and asthenospheric upwelling, suggesting that the western Liaoning province in the NMNCC may be an eastward extension of the Late Paleozoic to Early Mesozoic active continental margin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号