首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long nonlinear topographic waves in a continuously stratified ocean with a linear bottom slope are investigated. It is shown that odd cross-channel modes are governed by the Korteweg-de Vries (K-dV) equation. The solitary waves are those of a low pressure type. The long waves are shown to be modulationally stable because of the nonlinear effect due to irrotational motion. All these results are missed if the conventional quasi-geostrophic approximation is adopted.  相似文献   

2.
We study trapped baroclinic topographic waves in the northwest shelf of the Black Sea for the actual slopes of the bottom and stratification. The time scales of trapped waves are determined. The space scales of the amplitude of oscillations are computed. It is shown that the vertical distribution of the amplitude of oscillations is in qualitative agreement with the experimentally observed distribution. The energy of topographic waves trapped by the sloping bottom is concentrated in the bottom layer, which agrees with the data of measurements. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 5, pp. 44–52, September–October, 2006.  相似文献   

3.
In the Boussinesq approximation, we study baroclinic topographic waves trapped by the flat meridional slope. The existence of these waves is explained by stratification, inclined bottom, and Earth's rotation. We deduce the evolutionary equation for the square of the envelope of a narrow-band wave packet of trapped waves. In the second order of smallness relative to the wave amplitude, we find the mean fields of velocity and density induced by the packet. It is shown that, in the limiting case of weakly nonlinear plane waves, the induced current is zonal. In the Northern hemisphere, depending on the slope of the bottom γ1, the sign of the phase velocity σ/k (k is the zonal wave number) is either always positive (for γ11cr) or always negative (for γ11cr). If we neglect the vertical component of the Coriolis acceleration, then γ1cr=0. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

4.
In the Boussinesq approximation, we consider trapped topographic waves in an inhomogeneous current directed along isobaths. The influence of the current on the dispersion properties of trapped topographic waves in the Norwegian Sea is studied. We determine the mean currents and nonoscillatory (on the time scale of the waves) density corrections induced by the waves due to their nonlinearity. It is shown that the influence of currents is significant in the short-wave region. Its influence leads to a decrease in the wavelength for the constant period of waves, whereas the mean current caused by nonlinearity noticeably varies, especially in the bottom layer.  相似文献   

5.
The structure of trapped symmetric disturbances in rotating stratified shear flows is investigated theoretically. It is shown that the arrangement of the trapping region is determined by atmospheric stratification. For example, if the characteristic Brunt-Väisälä frequency is greater (smaller) than the inertial frequency, waves are trapped in the region of anticyclonic (cyclonic) velocity shear. Accordingly, in the first (second) case, the frequencies of trapped waves are smaller (greater) than the inertial frequency. The problem of finding the frequencies of trapped waves is reduced to solving the Schrödinger equation but with a more complex dependence on a spectral parameter. Exact solutions to the problem are obtained for a triangular jet and a hyperbolic shear layer.  相似文献   

6.
In the Boussinesq approximation, we study weakly nonlinear topographic waves trapped by a flat slope of arbitrary orientation. We compute the mean currents induced by the waves due to the nonlinearity in the quadratic approximation with respect to the wave amplitude in the presence of dissipation of the wave energy into the turbulent motion. In the diffusion approximation, we determine the vertical distribution of the concentration of wave-suspended sediments. It is shown that the consumption of sediments across the isobaths is directed downward along the slope. At the same time, the consumption of sediments along the isobaths has the same direction as the projection of the horizontal wave vector.  相似文献   

7.
The characteristics of free topographic trapped waves are investigated numerically for a two-layer model with basic flow, which is uniform, geostrophically balanced motion flowing parallel to the coast. Six modes are identified for this model with depth variations. They are external and internal Kelvin modes, a topographic Rossby mode, and additional three modes. The two of the additional modes are interesting. The first one is a quasi-geostrophic surface-trapped mode, while the second one is a quasi-geostrophic bottom-trapped mode. It is suggested that baroclinic instability takes place when these two modes take a resonance coupling each other.  相似文献   

8.
Weakly nonlinear quasi-geostrophic planetary waves on a beta-plane and topographic waves over a linearly inclined bottom are examined by use of shallow water equations for a small beta parameter. Long solitary wave solutions missed by the use of the traditional quasi-geostrophic approximation are found in a channel ocean with neither a sheared current nor a curved (non-linearly inclined) bottom topography. The solutions are missed in the traditional approach because the irrotational motion associated with the geostrophic divergence is neglected by the quasi-geostrophic approximation. Another example which calls attention to the limitation of the traditional quasi-geostrophic approximation is the nonlinear evolution of divergent planetary eddies whose scale is much larger than the Rossby's radius of deformation. Some aspects of a new evolution equation are briefly discussed.  相似文献   

9.
10.
A Modified Form of Mild-Slope Equation with Weakly Nonlinear Effect   总被引:6,自引:0,他引:6  
Nonlinear effect is of importance to waves propagating from deep water to shallow water.Thenon-linearity of waves is widely discussed due to its high precision in application.But there are still someproblems in dealing with the nonlinear waves in practice.In this paper,a modified form of mild-slope equa-tion with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation.The modified form of mild-slope equation is convenient to solvenonlinear effect of waves.The model is tested against the laboratory measurement for the case of a submergedelliptical shoal on a slope beach given by Berkhoff et al,The present numerical results are also comparedwith those obtained through linear wave theory.Better agreement is obtained as the modified mild-slope e-quation is employed.And the modified mild-slope equation can reasonably simulate the weakly nonlinear ef-fect of wave propagation from deep water to coast.  相似文献   

11.
THE NONLINEAR INTERNAL GRAVITY WAVES IN STRATIFIED FLUID   总被引:1,自引:0,他引:1  
In this paper, starting from the equations of the nonlinear internal gravity waves in stratified fluid, using the method of the Taylor expansion nearby the equilibrium point for the nonlinear terms, we find the analytical solutions for nonlinear internal gravity waves. The linear internal gravity waves and solitary waves are its special cases. The nonlinear internal gravity waves satisfy the well-known KdV (Karteweg-de Vries) equation. The nonlinear internal gravity waves are different from linear waves in character. The former dispersive relation contains the amplitude, but the latter does not. The larger the amplitude and the wavelength the faster are waves for the nonlinear internal gravity waves. The smaller the stability of the stratification, the larger is the wavelength (or the width). Some phenomena such as squall line, cumulus, turbulent mass structure in atmosphere, and thermocline in ocean have these natures.  相似文献   

12.
Transmission and reflection coefficients are calculated for Rossby waves incident on a bottom topography with constant slope in a continuously stratified ocean. The characteristics of the coefficients are interpreted in terms of the quasigeostrophic waves on the slope. In the parameter range where only the barotropic Rossby waves can propagate in the region outside the slope, the bottom trapped wave plays the same role as the topographic Rossby wave in a homogeneous ocean, and hence the transmission is weak unless phase matching takes place. When both of the barotropic and baroclinic Rossby waves can propagate outside the slope, the total transmission can be strong. The bottom trapped wave affects the transmission and reflection, and it leads to the possibility that the Rossby wave is transmitted as a mode different from the incident mode. When the number of the wavy modes on the slope is smaller than that of the Rossby wave modes outside the slope, strong reflection occurs.The results for an ocean with linear distribution of the squared Brunt-Väisälä frequency are compared to those in a uniformly stratified ocean. The weakening of the stratification near the bottom is almost equivalent to reducing the effect of the slope.  相似文献   

13.
In the Boussinesq approximation, topographic waves entrained by a sloping bottom are considered with allowance for turbulent viscosity and diffusion. The mean flows induced by a wave through nonlinearity are determined. The turbulent exchange coefficients are expressed in terms of the density of turbulent energy by using the relations of the semiempirical theory of turbulence. The equation for boundary-layer wave solutions and the equation of turbulent energy balance are solved jointly, which makes it possible to determine the vertical distribution of the density of turbulent energy in the area of the given wave. In the diffusion approximation, the vertical distribution of the concentration of wave-suspended sediments is obtained for the case when the tangential bottom stress exceeds the critical values corresponding to the start of sediment motion.  相似文献   

14.
The nonlinear interactions of waves with a double-peaked power spectrum have been studied in shallow water.The starting point is the prototypical equation for nonlinear unidirectional waves in shallow water,i.e.the Korteweg de Vries equation.By means of a multiple-scale technique two defocusing coupled Nonlinear Schrdinger equations are derived.It is found analytically that plane wave solutions of such a system are unstable for small perturbations,showing that the existence of a new energy exchange mechanism which can influence the behavior of ocean waves in shallow water.  相似文献   

15.
Fully nonlinear interactions between water waves and vertical cylinder arrays in a numerical tank are studied based on a finite element method (FEM). The three-dimensional (3D) mesh is constructed through an extension of a 2D Delaunay surface grid along the vertical line. The velocity potential is obtained by solving a linear matrix system of FEM, and a difference scheme is then used to calculate the velocity on the free surface to track its movement. Waves and hydrodynamic forces are obtained for both bottom mounted and truncated cylinders. The simulations have provided many results to show the nature of mutual interference between cylinders in arrays and its effects on waves and forces at the nearly trapped mode frequency. The effect of the tank wall on waves and forces has been investigated, and the nonlinear features of waves and forces have also been discussed.  相似文献   

16.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

17.
本文从流体力学基本方程组出发,在非地转条件下导得了分层海洋的内孤立波方程—Kbv和mKdv方程,证实了在非地转条件下,一类海洋非线性波动是可以严格满足内孤立波方程的。在地转条件下采用f平面近似导出了KdV方程的演化形式一有源KdV方程,地转的影响含于源项中。由初步的分析得出,f对KdV方程的影响是微弱的。由已得的KdV和mKdV方程的解可知,内孤立波与线性波有着本质差别。  相似文献   

18.
苏高飞  勾莹  滕斌 《海洋工程》2023,41(3):1-13
为高效准确地对完全非线性波浪与二维固定结构物的相互作用进行模拟分析,建立了二维完全非线性时域耦合模型。耦合模型将计算域划分为靠近结构物的内域和远离结构物的外域,每个区域均采用满足完全非线性自由水面边界条件的波浪模型进行求解。在内域使用Laplace方程描述流体运动并采用高阶边界元法(BEM)对其进行求解;而在没有结构物的外域,波浪运动的控制方程为Irrotational Green-Naghdi(IGN)方程并采用有限元法(FEM)对其进行求解。内域和外域通过一段重叠区域进行耦合,从而实现模型间变量的传递。首先利用耦合模型分别对规则波的传播、直墙前立波的生成以及相关物理模型试验进行模拟,数值结果与精确解和试验结果的良好吻合验证了耦合模型耦合方式的合理性以及处理非线性问题的准确性;然后使用耦合模型模拟分析了波浪与固定结构物间的相互作用,并将结果与线性解析解以及完全非线性BEM模型的结果进行了对比分析,进一步证明了耦合模型的正确性与高效性。  相似文献   

19.
In this paper, we derive an unsteady refraction–diffraction model for narrowbanded water waves for use in computing coupled wave–current motion in the nearshore. The end result is a variable coefficient, nonlinear Schrödinger-type wave driver (describing the envelope of narrow-banded incident waves) coupled to forced nonlinear shallow water equations (describing steady or unsteady mean flows driven by the short-wave field). Comparisons with experimental data show that good accuracy can be obtained for cases of nonbreaking wave transformation. Numerical simulations show that the interaction of wave groups with longshore topographic nonuniformities generates strong edge wave resonances, providing a generating mechanism for low-order edge waves.  相似文献   

20.
港口中系泊船在波浪作用下运动问题的本质是浅水波浪与浮体的相互作用。与深水情况不同,浅水问题应当考虑水底、水域边界的影响及浅水波浪自身的特性,单一模型很难实现该模拟过程。为此,建立了Boussinesq方程计算入射波和Laplace方程计算散射波的全时域组合计算模型。有限元法求解的Boussinesq方程能使入射波充分考虑到水底、水域边界的影响和浅水波浪的特性;散射波被线性化,采用边界元法求解,并以浮体运动时的物面条件为入射波和散射波求解的匹配条件。该方法为完全的时域方法,计算网格不随时间变动,计算过程较为方便。通过与实验及其他数值方法的结果进行比较,验证了本模型对非线性波面、浮体的运动都有比较理想的计算结果,显示了本模型对非线性问题具有较好的计算能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号