首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the connections between orbit dynamics and rigid body dynamics are established throughout the Eulerian redundant parameters, the perturbation equations for any conic motion of artificial satellites are derived in terms of these parameters. A general recursive and stable computational algorithm is also established for the initial-value problem of the Eulerian parameters for satellites prediction in the Earth's gravitational field with axial symmetry. Applications of the algorithm are considered for the two cases of short and long term predictions. For the short-term prediction, we consider the problem of the final state prediction of some typical ballistic missiles in the geopotential model with zonal harmonic terms up to J 36, while for the long-term prediction, we consider the perturbed J 2 motion of Explorer 28 over 100 revolutions.  相似文献   

2.
A new formula has been derived for geopotential expressed in terms of orbital elements. The summation sequence was changed so that the terms of the same frequencies would be grouped and the generalized lumped coefficients were derived. The proposed formula has the same form for both odd and evenl-m.Applying Hori's perturbation method, new formulae were derived for tesseral harmonic perturbations in nonsingular orbital elements:l+g, h, e cosg,e sing, L, andH. We show the possibility of effective application of the derived formulae to the calculation of orbits of very low satellites taking into account the coefficients of tesseral harmonics of the Earth's gravitational field up to high orders and degrees. As an example the perturbations up to the order and degree of 90 for the orbit of GRM satellites were calculated. The calculations were carried out on an IBM AT personal computer.  相似文献   

3.
An error analysis of resonant orbits for geodesy indicates that attempts to use resonance to recover high order geopotential coefficients may be seriously hampered by errors in the geopotential. This effect, plus the very high correlations (up to .99) of the resonant coefficients with each other and the orbital period in single satellite solutions, makesindividual resonant orbits of limited value for geodesy. Multiple-satellite, single-plane solutions are only a slight improvement over the single satellite case. Accurate determination of high order coefficients from low altitude resonant satellites requires multiple orbit planes and small drift-periods to reduce correlations and effects of errors of non-resonant geopotential terms. Also, the effects of gravity model errors on low-altitude resonant satellites make the use of tracking arcs exceeding two to three weeks of doubtful validity. Because high-altitude resonant orbits are less affected by non-resonant terms in the geopotential, much longer tracking arcs can be used for them.  相似文献   

4.
Résumé On développe une méthode de construction d'orbites périoldiques dans un système d'axes tournants, pour un satellite gravitant autour d'un sphéroide. Les orbites sont quasi circulaires,i est l'inclinaison sur le plan équatorial de la planète. Pour les petites inclinaisons, la solution est donnée jusqu'aux termes enJ 2 2 etJ 4.Ce modèle peut être appliqué aux satellites de Saturne. Des valeurs observées des longitudes des noeuds ascendants de Mimas et Téthys, on donne une estimation des valeurs deJ 2 etJ 4 du potentiel de Saturne. La valeur deJ 2 est très sensible aux valeurs adoptées pour le rayon équatorial de la planète.
Construction of periodic orbits of satellites in a moving system of axes, I
We give an algorithm for the construction of periodic orbits in a rotating frame for the cases of satellites moving around an oblate planet.The orbits are near to the circular case; the asymptotic developments of the periodic solutions are completely calculated for the termsJ 2 andJ 4 of the potential. The solutions for small inclinations are given up toJ 2 2 .The families of solutions depend on three parameters: the semi-major axis, the inclination of the generating orbit and the initial position on this orbit.These solutions can be applied to the motion of the Saturnian satellites. From the observed longitudes of the ascending nodes of Mimas and Tethys, we estimate the valuesJ 2 andJ 4 of the Saturnian potential, the value ofJ 2 very strongly depends on the adopted value of the planet's equatorial diameter.
  相似文献   

5.
The resonance of GEOS-II (1968-002A) with 13th-order terms of the geopotential is analyzed. The odd-degree geopotential coefficients (13, 13), (15, 13), and (17, 13) given by Yionoulis most accurately model the resonance effects on GEOS-II of any of the published sets of 13th-order coefficients. However, this set is not adequate for precision orbit determination; additional even-degree coefficients are required.Values ofC 14,13(=0.57×10–21) andS 14,13(=6.5×10–21) to be used with the odd-degree set of Yionoulis were obtained from an analysis of the observed along-track position variation of GEOS-II. These coefficients, when used with those of Yionoulis, yield greatly improved fits to the data and orbital prediction capability. However, further refinement is possible because the small effects of the remaining even-degree resonant terms were not modeled.The composite coefficientsC 13,13(=1.7×10–20) andS 13,13(=+2.7×10–20) were obtained under the assumption that the (13, 13) spherical harmonic of the geopotential is responsible for all of the observed along-track variation of GEOS-II due to resonance. The good agreement of these deliberately composite values with some published values ofC 13,13 andS 13,13 suggests that some of the published values may also be composite to some extent.These coefficients are hereinafter referred to as the APL coefficients.  相似文献   

6.
We say that a planet is Earth-like if the coefficient of the second order zonal harmonic dominates all other coefficients in the gravity field. This paper concerns the zonal problem for satellites around an Earth-like planet, all other perturbations excluded. The potential contains all zonal coefficientsJ 2 throughJ 9. The model problem is averaged over the mean anomaly by a Lie transformation to the second order; we produce the resulting Hamiltonian as a Fourier series in the argument of perigee whose coefficients are algebraic functions of the eccentricity — not truncated power series. We then proceed to a global exploration of the equilibria in the averaged problem. These singularities which aerospace engineers know by the name of frozen orbits are located by solving the equilibria equations in two ways, (1) analytically in the neighborhood of either the zero eccentricity or the critical inclination, and (2) numerically by a Newton-Raphson iteration applied to an approximate position read from the color map of the phase flow. The analytical solutions we supply in full to assist space engineers in designing survey missions. We pay special attention to the manner in which additional zonal coefficients affect the evolution of bifurcations we had traced earlier in the main problem (J 2 only). In particular, we examine the manner in which the odd zonalJ 3 breaks the discrete symmetry inherent to the even zonal problem. In the even case, we find that Vinti's problem (J 4+J 2 2 =0) presents a degeneracy in the form of non-isolated equilibria; we surmise that the degeneracy is a reflection of the fact that Vinti's problem is separable. By numerical continuation we have discovered three families of frozen orbits in the full zonal problem under consideration; (1) a family of stable equilibria starting from the equatorial plane and tending to the critical inclination; (2) an unstable family arising from the bifurcation at the critical inclination; (3) a stable family also arising from that bifurcation and terminating with a polar orbit. Except in the neighborhood of the critical inclination, orbits in the stable families have very small eccentricities, and are thus well suited for survey missions.  相似文献   

7.
The non-spherical gravitational potential of the planet Mars is sig- nificantly different from that of the Earth. The magnitudes of Mars’ tesseral harmonic coefficients are basically ten times larger than the corresponding val- ues of the Earth. Especially, the magnitude of its second degree and order tesseral harmonic coefficient J2,2 is nearly 40 times that of the Earth, and approaches to the one tenth of its second zonal harmonic coefficient J2. For a low-orbit Mars probe, if the required accuracy of orbit prediction of 1-day arc length is within 500 m (equivalent to the order of magnitude of 104 standard unit), then the coupled terms of J2 with the tesseral harmonics, and even those of the tesseral harmonics themselves, which are negligible for the Earth satellites, should be considered when the analytical perturbation solution of its orbit is built. In this paper, the analytical solutions of the coupled terms are presented. The anal- ysis and numerical verification indicate that the effect of the above-mentioned coupled perturbation on the orbit may exceed 10−4 in the along-track direc- tion. The conclusion is that the solutions of Earth satellites cannot be simply used without any modification when dealing with the analytical perturbation solutions of Mars-orbiting satellites, and that the effect of the coupled terms of Mars's non-spherical gravitational potential discussed in this paper should be taken into consideration.  相似文献   

8.
In this paper we calculate explicitly the classical secular precessions of the node and the perigee of an Earth artificial satellite induced by the even zonal harmonics of the static part of the geopotential up to degree l = 20. Subsequently, their systematic errors induced by the mismodelling in the even zonal spherical harmonics coefficients J l are compared to the general relativistic secular gravitomagnetic and gravitoelectric precessions of the node and the perigee of the existing laser-ranged geodetic satellites and of the proposed LARES. The impact of the future terrestrial gravity models from CHAMP and GRACE missions is discussed as well. Preliminary estimates with the recently released EIGEN-1S gravity model including the first CHAMP data are presented.  相似文献   

9.
Within the framework of linear and regular celestial mechanics, a wide class of central force field problems are considered. We take as potential function a polynomial whose variable is the reciprocal of the distance from the origin, and, as regularizing function the square root of a certain reciprocal polynomial, related to the potential function. The relations between the coefficients of both functions, in order to arrive to linear equations, are given. In particular, the case of a quintic polynomial is analyzed, and an application is made to artificial earth satellites considering harmonicsJ 2,J 3,J 4.  相似文献   

10.
The construction of an analytical theory of the motion of the Galilean satellites of Jupiter requires that we keep track of the dynamical parameters, that is, the masses of the satellites, and the harmonic coefficients of the potential of the planet J2 and J4. This is realized here. But as in other theories the solution becomes partly numerical from the resolution of an autonomous system. The aim of this paper is to present a method to obtain developped solutions of this autonomous system. In these solutions the proper motions of the pericenters and nodes are obtained as short series developped in the neighbourhood of a numerical solution. We have used these results to obtain complementary terms in the general solution which give a complete representation of the motions with respect to the dynamical parameters.  相似文献   

11.
An analytical solution is given for the motion of an artifical Earth satellite under the combined influences of gravity and atmospheric drag. The gravitational effects of the zonal harmonicsJ 2,J 3, andJ 4 are included, and the drag effects of any arbitrary dynamic atmosphere are included. By a dynamic atmosphere, we mean any of the modern empirical models which use various observed solar and geophysical parameters as inputs to produce a dynamically varying atmosphere model. The subtleties of using such an atmosphere model with an analytic theory are explored, and real world data is used to determine the optimum implementation. Performance is measured by predictions against real world satellites. As a point of reference, predictions against a special perturbations model are also given.  相似文献   

12.
Optical observations of the GEOS satellites were used to obtain orbital solutions with different sets of geopotential coefficients. The solutions were compared before and after modification to high order terms (necessary because of resonance) and then analyzed by comparing subsequent observations with predicted trajectories. The most important source of error in orbit determination and prediction for the GEOS satellites is the effect of resonance found in most published sets of geopotential coefficients. Modifications to the sets yield greatly improved orbits in most cases.The sets of coefficients analyzed are APL 3.5, NWL5E-6, Köhnlein (1967), Rapp (1967), Kaula (1967), Smithsonian Astrophysical Observatory (SAO)M-1 (1966), SAO AGU (1969), SAO COSPAR (1969) and SAO 1969 Standard Earth. The SAO 1969 models generally give better orbital fits and prediction results than the other models above. However these models can be improved by corrections to resonant coefficients.The results of these comparisons suggest that with the best optical tracking systems and gravity models, satellite position error due to gravity model uncertainty can reach 50–100 m during a heavily observed 5–6 day orbital arc. If resonant coefficients are estimated, the uncertainty is reduced considerably.  相似文献   

13.
This paper analyses three types of artificial orbits around Mars pushed by continuous low-thrust control: artificial frozen orbits, artificial Sun-Synchronous orbits and artificial Sun-Synchronous frozen orbits. These artificial orbits have similar characteristics to natural frozen orbits and Sun-Synchronous orbits, and their orbital parameters can be selected arbitrarily by using continuous low-thrust control. One control strategy to achieve the artificial frozen orbit is using both the transverse and radial continuous low-thrust control, and another to achieve the artificial Sun-Synchronous orbit is using the normal continuous low-thrust control. These continuous low-thrust control strategies consider J 2, J 3, and J 4 perturbations of Mars. It is proved that both control strategies can minimize characteristic velocity. Relevant formulas are derived, and numerical results are presented. Given the same initial orbital parameters, the control acceleration and characteristic velocity taking into account J 2, J 3, and J 4 perturbations are similar to those taking into account J 2 perturbations for both Mars and the Earth. The control thrust of the orbit around Mars is smaller than that around the Earth. The magnitude of the control acceleration of ASFOM-4 (named as Artificial Sun-Synchronous Frozen Orbit Method 4) is the lowest among these strategies and the characteristic velocity within one orbital period is only 0.5219 m/s for the artificial Sun-Synchronous frozen orbit around Mars. It is evident that the relationship among the control thrusts and the primary orbital parameters of Martian artificial orbits is always similar to that of the Earth. Simulation shows that the control scheme extends the orbital parameters’ selection range of three types of orbits around Mars, compared with the natural frozen orbit and Sun-Synchronous orbit.  相似文献   

14.
The perihelion advance of the orbit of Mercury has long been one of the observational cornerstones for testing General Relativity (G.R.).The main goal of this paper is to discuss how, presently, observational and theoretical constraints may challenge Einstein's theory of gravitation characterized by β=γ=1. To achieve this purpose, we will first recall the experimental constraints upon the Eddington-Robertson parameters γ,β and the observational bounds for the perihelion advance of Mercury, Δωobs. A second point will address the values given, up to now, to the solar quadrupole moment by several authors. Then, we will briefly comment why we use a recent theoretical determination of the solar quadrupole moment, J 2=(2.0 ± 0.4) 10-7, which takes into account both surfacic and internal differential rotation, in order to compute the solar contribution to Mercury's perihelion advance. Further on, combining bounds on γ and J 2 contributions, and taking into account the observational data range for Δωobs,we will be able to give a range of values for β. Alternatively, taking into account the observed value of Δωobs, one can deduce a dynamical estimation of J 2 in the setting of G.R. This point is important as it provides a solar model independent estimation that can be confronted with other determinations of J 2 based upon solar theory and solar observations (oscillation data, oblateness...). Finally, a glimpse at future satellite experiments will help us to understand how stronger constraints upon the parameter space (γω J 2) as well as a separation of the two contributions (from the quadrupole moment, J 2, or purely relativistic, 2α2+2αγ–β) might be expected in the future. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
On the basis of the results by Huang et al. (1990), this paper further discusses and analyses the four post-Newtonian effects in a near-Earth satellite orbit: the Schwarzschild solution, the post-Newtonian effects of the geodesic precession, the Lense-Thirring precession and the oblateness of the Earth. A full analytical solution to the effects including their direct perturbations and mixed perturbations due to the Newtonian oblateness (J 2) perturbation and the Schwarzschild solution is obtained using the quasi-mean orbital element method analogous to the Kozai's mean orbital element one. Some perturbation properties of the post-Newtonian effects are revealed. The results obtained not only can provide a sound scientific basis for the precise determination of a man-made satellite orbit but also is suitable for similar mechanics systems, such as the motions of planets, asteroids and natural satellites.  相似文献   

16.
Gliese 29 is a 7 to 8 Gyr old, southern Population I turnoff star with a large proper motion of 1″/yr. Using recent direct imaging observations with the 0.8 m Infrared Imaging System (IRIS) of the Universitätssternwarte Bochum near Cerro Armazones in Chile, we demonstrate that the faint source 2MASS J00402651–5927168 at a projected angular separation ρ = 6.″35 is a common‐proper‐motion companion to Gl 29. Provided this source is not part of a further subsystem, the IRIS J ‐ and Ks‐band photometry either implies a spectral type of about L2, based on its absolute magnitude, or an approximate mass MB ≃ 0.077 M, suggesting that it may even be a brown dwarf. Assuming a face‐on circular orbit this faint companion orbits Gl 29 in 1880 years. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The morphology of a solar activity effect apparently connected with the Sun's rotation and showing up in 25-day and 13.6-day oscillations of stratospheric geopotential and temperature fields is analysed in this study. The used data cover the height range between roughly 20 and 30 km and a timespan from July 1965 to October 1971. Most prominent responses are found for zonal harmonic wave number 1 at the oscillation period of 25 days (solar rotation period modulated by seasonal changes) and for the zonally averaged meteorological quantities at the oscillation period of 13.6 days. Additional statistically significant effects show up in the zonal harmonics with wave number 1 and 3 at half the solar rotation period and in the zonal means with periodicities near 25–27 days. The results point towards a modulation of the quasistationary stratospheric planetary wave with a positive geopotential anomaly around roughly 180° longitude by solar activity changes. The direct physical mechanisms of this Sun-climate relationship are not yet clear, but it can be concluded that atmospheric dynamics is an important factor for its morphology and that downward propagation of such effects seems possible and should be investigated in future studies.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

18.
Methanol 72–81 A + is mapped for the first time in Orion KL. Analysing the observed data and solving the statistical equilibrium and radiative transfer equations, it is concluded that line series ofJ 2–(J+1)1 A + (J=7,8,9) is in quasi-thermal emission rather than the masers in Orion KL. The maser spots of methanolJ 2J 1 E (J=6,7) and 80–71 A + are distributed in the northeast part of the contour plot of 72–81 A +. The physical conditions of the regions of maser seriesJ 0–(J–1)1 A + (J=7,8,9) are discussed. Also from the calculation results another maser seriesJ 1–(J–1)2 A (J=10,11,12) that might coexist with maser seriesJ 2J 1 E, is found. The sizes of the 2-dimension Gaussian fit plots of methanol 72–81 A + and HCOOCH3 10(0,10)–9(0,9)A are almost the same, and the main parts overlap each other.  相似文献   

19.
We study the problem of critical inclination orbits for artificial lunar satellites, when in the lunar potential we include, besides the Keplerian term, the J 2 and C 22 terms and lunar rotation. We show that, at the fixed points of the 1-D averaged Hamiltonian, the inclination and the argument of pericenter do not remain both constant at the same time, as is the case when only the J 2 term is taken into account. Instead, there exist quasi-critical solutions, for which the argument of pericenter librates around a constant value. These solutions are represented by smooth curves in phase space, which determine the dependence of the quasi-critical inclination on the initial nodal phase. The amplitude of libration of both argument of pericenter and inclination would be quite large for a non-rotating Moon, but is reduced to <0°.1 for both quantities, when a uniform rotation of the Moon is taken into account. The values of J 2, C 22 and the rotation rate strongly affect the quasi-critical inclination and the libration amplitude of the argument of pericenter. Examples for other celestial bodies are given, showing the dependence of the results on J 2, C 22 and rotation rate.  相似文献   

20.
We compute the perturbations on the motion of the Moon due to the shape of the Earth. The zonal terms inJ 2,J 3, andJ 4 are considered. The accuracy is estimated at 3×10–5 and the results compared with previous theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号