首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymptotic recurrence formulas for treating nonlinear oscillation problems are presented. These formulas are based on a Lie transform similar to that described by Deprit for Hamiltonian systems. It is shown that the basic formulas have essentially the same forms as those obtained by Deprit and by the present author in the Hamiltonian case.  相似文献   

2.
This paper gives a constructive method for finding canonical forms for symplectic and Hamiltonian matrices. No restrictions are made on the eigen values or their multiplicity. Real canonical forms are treated in detail.  相似文献   

3.
Mass-weighted symplectic forms provide a unified framework for the treatment of both finite and vanishingly small masses in the N-body problem. These forms are introduced, compared to previous approaches, and their properties are discussed. Applications to symplectic mappings, the definition of action-angle variables for the Kepler problem, and Hamiltonian perturbation theory are outlined This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The algorithm for Hamiltonian transformation in the quadratic perturbation technique of one of the authors admits of various equivalent forms. Using as a criterion the number of inter-term multiplications required for transformation, however, the amount of effort required to obtain the transformed Hamiltonian is not equivalent among these forms. Each is considered in some detail, and general guidelines for the choice of most efficient algorithm to be used in a given problem are provided. Their utility is demonstrated by application to Duffing's equation.  相似文献   

5.
The problem of two gyrostats in a central force field is considered. We prove that the Newton-Euler equations of motion are Hamiltonian with respect to a certain non-canonical structure. The system posseses symmetries. Using them we perform the reduction of the number of degrees of freedom. We show that at every stage of the reduction process, equations of motion are Hamiltonian and give explicit forms corresponding to non-canonical Poisson brackets. Finally, we study the case where one of the gyrostats has null gyrostatic momentum and we study the zero and the second order approximation, showing that all equilibria are unstable in the zero order approximation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We reexamine the classical virial theorem for bounded orbits of arbitrary autonomous Hamiltonian systems possessing both regular and chaotic orbits. New and useful forms of the virial theorem are obtained for natural Hamiltonian flows of arbitrary dimension. A discrete virial theorem is derived for invariant circles and periodic orbits of natural symplectic maps. A weak and a strong form of the virial theorem are proven for both flows and maps. While the Birkhoff Ergodic Theorem guarantees the existence of the relevant time averages for both regular and chaotic orbits, the convergence is very rapid for the former and extremely slow for the latter. This circumstance leads to a simple and efficient measure of chaoticity. The results are applied to several problems of current physical interest, including the Hénon–Heiles system, weak chaos in the standard map, and a 4D Froeschlé map.  相似文献   

7.
A necessary and sufficient condition is given for the unique normal forms about critical elements-equilibrium points and periodic orbits. With some applications to the Birkhoff's normal form along with its generalized form by K.R. Meyer, the restricted problem of three bodies near L4, the Birkohoff's normalization procedure, and the singular perturbation, of Hamiltonian systems are discussed.  相似文献   

8.
The normal forms of the Hamiltonian 1:2:ω resonances to degree three for ω = 1, 3, 4 are studied for integrability. We prove that these systems are non-integrable except for the discrete values of the parameters which are well known. We use the Ziglin–Morales–Ramis method based on the differential Galois theory.  相似文献   

9.
10.
We compute the normal forms for the Hamiltonian leading to the epicyclic approximations of the (perturbed) Kepler problem in the plane. The Hamiltonian setting corresponds to the dynamics in the Hill synodic system where, by means of the tidal expansion of the potential, the equations of motion take the form of perturbed harmonic oscillators in a rotating frame. In the unperturbed, purely Keplerian case, the post-epicyclic solutions produced with the normal form coincide with those obtained from the expansion of the solution of the Kepler equation. In all cases where the perturbed problem can be cast in autonomous form, the solution is easily obtained as a perturbation series. The generalization to the spatial problem and/or the non-autonomous case is straightforward.  相似文献   

11.
This paper deals with Hamiltonian perturbation theory for systems which, like Euler-Poinsot (the rigid body with a fixed point and no torques), are degenerate and do not possess a global system of action-angle coordinates. It turns out that the usual methods of perturbation theory, which are essentially local being based on the construction of normal forms within the domain of a local coordinate system, are not immediately usable to study perturbations of these systems, since degeneracy makes impossible to control that the system does not fall into a singularity of the coordinates. To overcome this difficulty, we develop a global formulation of Hamiltonian perturbation theory, in which the normal forms are globally defined on the phase space manifold. The key for this study lies in the geometry of the fibration by the invariant tori of an integrable degenerate Hamiltonian system, which is described by some generalizations of the Liouville-Arnol'd theorem and is reviewed in the paper. As an application, we provide a global formulation of Nekhoroshev's theorem on the stability for exponentially long times.  相似文献   

12.
The time-transformed leapfrog scheme of Mikkola Aarseth was specifically designed for a second-order differential equation with two individually separable forms of positions and velocities.It can have good numerical accuracy for extremely close two-body encounters in gravitating few-body systems with large mass ratios,but the non-time-transformed one does not work well.Following this idea,we develop a new explicit symplectic integrator with an adaptive time step that can be applied to a time-dependent Hamiltonian.Our method relies on a time step function having two distinct but equivalent forms and on the inclusion of two pairs of new canonical conjugate variables in the extended phase space.In addition,the Hamiltonian must be modified to be a new time-transformed Hamiltonian with three integrable parts.When this method is applied to the elliptic restricted three-body problem,its numerical precision is explicitly higher by several orders of magnitude than the nonadaptive one's,and its numerical stability is also better.In particular,it can eliminate the overestimation of Lyapunov exponents and suppress the spurious rapid growth of fast Lyapunov indicators for high-eccentricity orbits of a massless third body.The present technique will be useful for conservative systems including N-body problems in the Jacobian coordinates in the the field of solar system dynamics,and nonconservative systems such as a time-dependent barred galaxy model in a rotating coordinate system.  相似文献   

13.
Deprit and Miller have conjectured that normalization of integrable Hamiltonians may produce normal forms exhibiting degenerate equilibria to very high order. Several examples in the class of coupled elliptic oscillators are known. In order to test the utility of normalization as a detector of integrability we normalize, to high order, a perturbed Keplerian system known to have several integrable limits; the generalized van der Waals Hamiltonian for a hydrogen atom. While the separable limits give rise to high order degeneracy we find a non-separable, integrable limit for which the normal form does not exhibit degeneracy. We conclude that normalization may, in certain cases, indicate integrability but is not guaranteed to uncover all integrable limits.  相似文献   

14.
In an autonomous Hamiltonian system with three or more degrees of freedom, a family of periodic orbits may become unstable when two pairs of characteristic multipliers coallesce on the unit circle at points not equal to ±1, and then move off the unit circle. This paper develops normal forms suitable for the neighbourhood of such an, instability, and, at this approximation, demonstrates the bifurcation from the periodic orbit of a family of invariant two-dimensional tori. The theory is illustrated with numerical computations of orbits of the planar general three-body problem.  相似文献   

15.
The symplectic integrator has been regarded as one of the optimal tools for research on qualitative secular evolution of Hamiltonian systems in solar system dynamics. An integrable and separate Hamiltonian system H = H0 + Σi=1N εiHi (εi ≪ 1) forms a pseudo third order symplectic integrator, whose accuracy is approximately equal to that of the first order corrector of the Wisdom-Holman second order symplectic integrator or that of the Forest-Ruth fourth order symplectic integrator. In addition, the symplectic algorithm with force gradients is also suited to the treatment of the Hamiltonian system H = H0(q,p) + εH1(q), with accuracy better than that of the original symplectic integrator but not superior to that of the corresponding pseudo higher order symplectic integrator.  相似文献   

16.
In this paper the first variational equations of motion about the triangular points in the elliptic restricted problem are investigated by the perturbation theories of Hori and Deprit, which are based on Lie transforms, and by taking the mean equations used by Grebenikov as our upperturbed Hamiltonian system instead of the first variational equations in the circular restricted problem. We are able to remove the explicit dependence of transformed Hamiltonian on the true anomaly by a canonical transformation. The general solution of the equations of motion which are derived from the transformed Hamiltonian including all the constant terms of any order in eccentricity and up to the periodic terms of second order in eccentricity of the primaries is given.  相似文献   

17.
We use classical definitions and results of differential geometry in studying properties of transformations depending on a small parameter, acting on differential systems. Hori's and Deprit's algorithms can be defined for these systems. A lemma is given to show these algorithms are equivalent. The so-called property of covariance is merely established. The canonical systems are then considered as associated with Hamiltonian vectorfields on symplectic manifolds. The property that the infinitesimal generator of a canonical transformation is an Hamiltonian vectorfield permits to establish separately the generality of Hori's and Deprit's algorithms. We suggest that the Hamiltonian vectorfield property can be extended to the generators of transformations depending on several parameters.  相似文献   

18.
This paper presents a Hamiltonian approach to modelling spacecraft motion relative to a circular reference orbit based on a derivation of canonical coordinates for the relative state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order terms and orbital perturbations within the context of the Clohessy–Wiltshire solution. First, the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton–Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are obtained, called epicyclic elements. The influence of higher order terms and perturbations, such as Earth’s oblateness, are incorporated into the analysis by a variation of parameters procedure. As an example, closed-form solutions for J2-invariant orbits are obtained.  相似文献   

19.
Hamiltonian approximations generally result from series expansions and truncations at different orders. But other ways are possible, and some of them, as the one this paper tries to explore, can speed up Hamiltonian computations and prove useful for studies involving extensive developments, for example solar system bodies with complex dynamics or requiring accurate ephemeris for observational purposes.  相似文献   

20.
辛算法在动力天文中的应用(Ⅲ)   总被引:3,自引:0,他引:3  
刘林  赵长印 《天文学报》1994,35(1):51-66
文[1]和文[2]从哈密顿系统的整体结构保持一角度阐明了辛算法[3-6]的主要功能,本文将从定量的角度进一步表明辛算法的另一独特优点-可以控制天体运动沿迹误差的快速增长,并对可分离哈密顿系统的显式辛差分格式稍加改进,推广应用到一般动力系统,该系统含有小耗散项或小的不可分离项,计算结果表明,效果极佳,因此,辛算法与传统的数值解法相比,确有很多优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号