首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results from a pile load testing program for a bridge construction project in Louisiana. The testing includes two 54-in. open-ended spun cast concrete cylinder piles, one 30-in. open-ended steel pile and two (30- and 16-in.) square prestressed concrete (PSC) piles driven at two locations with very similar soil conditions. Both cone penetration tests (CPTs) and soil borings/laboratory testing were used to characterize the subsurface soil conditions. All the test piles were instrumented with vibrating wire strain gauges to measure the load distribution along the length of the test piles and measure the skin friction and end-bearing capacity, separately. Dynamic load tests were performed on all test piles at different times after pile installations to quantify the amount of setup with time. Static load tests were also performed on the PSC and open-ended steel piles. Due to expected large pile capacities, the statnamic test method was used on the two open-ended cylinder piles. The pile capacities of these piles were evaluated using various CPT methods (such as Schmertmann, De Ruiter and Beringen, LCPC, Lehane et al. methods). The result showed that all the methods can estimate the skin friction with good accuracy, but not the end-bearing capacity. The normalized cumulative blow counts during pile installation showed that the blow count was always higher for the PSC piles compared to the large-diameter open-ended cylinder pile, regardless of pile size and hammer size. Setup was observed for all the piles, which was mainly attributed to increase in skin frictions. The setup parameters “A” were back-calculated for all the test piles and the values were between 0.31 and 0.41.  相似文献   

2.
The plugging of pipe piles is an important phenomenon, which is not adequately accounted for in the current design recommendations. An open-ended pipe pile is said to be plugged when the soil inside the pile moves down with the pile, resulting in the pile becoming effectively closed-ended. Plugging is believed to result in an increase in the horizontal stresses between the pile and the surrounding soil, which results in an increase in skin friction. A total number of 60 model pile tests are carried out to investigate the behavior of plugs on the pile load capacity and the effects of plug removal. Different parameters are considered, such as pile diameter–to–length ratio, types of installation in sands of different densities, and removal of the plug in three stages (50, 75, and 100 %) with respect to the length of plug. The changes in the soil plug length and incremental filling ratio (IFR) with the penetration depth during pile driving show that the open-ended piles are partially plugged from the outset of the pile driving. The pile reached a fully plugged state for pressed piles in loose and medium sand and partially plugged (IFR = 10 %) in dense sand. For driven piles, the IFR is about 30 % in loose sand, 20 % in medium sand, and 30 % in dense sand. The pile load capacity increases with increases in the length of the plug length ratio (PLR). The rate of increase in the value of the pile load capacity with PLR is greater in dense sand than in medium and loose sand. Based on test results, new empirical relation for the estimation of the load carrying capacity of open-ended piles based on the IFR is proposed.  相似文献   

3.
4.
超长桩荷载传递性状研究   总被引:30,自引:4,他引:26  
根据超长桩的现场静载荷试验资料,分析了超长桩的单桩荷载传递特性。结果表明,超长桩表现出端承摩擦桩的特性,桩顶以下l/3桩长及桩端以上l/6范围内的桩侧摩阻力极限值接近规范推荐值,而中间部分的桩侧摩阻力远远大于规范值,表现出强化效应,桩端注浆桩的侧摩阻力强化效应更加明显。根据其荷载传递特性,提出了单桩极限承载力的估算公式,实例计算结果和实测结果较吻合。  相似文献   

5.
砂土中开口管桩沉桩过程的颗粒流模拟研究   总被引:1,自引:0,他引:1  
基于颗粒流理论,采用PFC2D程序,模拟再现不同型号开口管桩在沉桩过程中土塞的形成演化规律、土颗粒细观结构变化以及桩周土应力场分布情况,并通过分析土体细观变化模式揭示沉桩过程中宏观力学响应的内在机制。计算结果表明,管桩直径对土塞效应影响很大,外径为30 mm的开口管桩,沉桩过程中土塞增量填充率(IFR)值较小,土塞效应明显,土塞高度小,类似闭口桩;随着管桩直径的增大,土塞效应迅速减小,大直径管桩在砂土中沉桩全部闭塞的可能性很小。细观因素(孔隙率和滑动比例)与土体宏观位移表现之间存在着明显的相互对应关系,并依此将桩周土划分3个区域。桩周土体水平应力、竖向应力和剪应力都在桩底附近形成“应力核”,不同型号管桩桩周土应力场分布相近。  相似文献   

6.
Han  Fei  Ganju  Eshan  Salgado  Rodrigo  Prezzi  Monica 《Acta Geotechnica》2019,14(6):1785-1803

Slow-maintained static load tests were performed on closed-ended and open-ended steel pipe piles driven side by side in a gravelly sand soil profile. The site investigation consisted of multiple cone penetration tests (CPTs) and standard penetration tests (SPTs), as well as laboratory tests on soil samples collected at various depths from the test site to determine basic soil properties. The test piles were densely instrumented with a combination of electrical-resistance and vibrating-wire strain gauges. The open-ended test pile was a specially fabricated double-wall, fully-instrumented pile, allowing for separation of the measurements of the inner and outer shaft resistances. Detailed comparison of the load test results, in terms of driving resistance, load response and profiles of unit shaft and base resistances for the two test piles, is presented and discussed. The applicability of three CPT-based pile design methods is assessed through a layer-by-layer comparison of the estimated resistances with those measured in the static load tests.

  相似文献   

7.
张继红  朱合华 《岩土力学》2015,36(8):2339-2344
将抗拔桩侧阻力分解为与桩侧正压力不相关的桩-土黏结强度 、与桩侧有效正压力成正比的摩擦力 两部分,采用摩擦定律计算摩擦力 。基于轴对称条件,假定土体为半无限弹性体,以Mindlin公式积分计算分析极限平衡状态下桩-土共同作用,依据平面应变条件下柱状孔扩张的弹性力学解建立桩-土界面位移协调方程,推导出抗拔桩极限平衡方程,给出了求解方法及计算参数确定方法。该方程能反映桩与土的材料特性、桩体尺寸、桩顶埋深、群桩效应、卸荷效应等多因素对抗拔桩极限承载力的影响。结合海上风电大直径超长抗拔钢管桩足尺试验进行验证。对比分析结果表明,该方法计算的抗拔极限承载力与实测值接近,计算精度远高于现行规范推荐方法,其结果可为工程应用及抗拔桩承载力机制研究提供参考。  相似文献   

8.
Pile foundation system in limestone rock layers is commonly used in Riyadh area, Saudi Arabia, for high-rise building, bridges, and other structures. Especially in Riyadh region, bored piles are used for bridges and underpasses not only because of bearing capacity but mainly because of limited spaces for using shallow foundations. In addition, piles are used for bridges over wadis to avoid scouring effects. The loads are transferred by the pile from a superstructure to the rock strata through side friction and end-bearing resistance. However, there are no studies conducted in Riyadh area to quantify the skin friction capacity of pile embedded in limestone rock. Accordingly, this experimental study describes in details the behavior of load transfer mechanism through side friction only on a reinforced concrete pile (75 mm diameter and 150 mm long) constructed on hard limestone rock sample. Soft material (Styrofoam) was placed at the bottom of the pile to eliminate the effect of end-bearing resistance. Unconfined compression test was conducted on intact rock sample to find out the properties of the rock used. The result of the ultimate side friction obtained from the test was compared with values predicted by other researcher methods mentioned in the literature.  相似文献   

9.
Zheng  Changjie  Kouretzis  George  Luan  Lubao  Ding  Xuanming 《Acta Geotechnica》2021,16(3):895-909

This paper presents an analytical solution for determining the time-harmonic response of single open-ended pipe piles subjected to vertically propagating seismic P-waves. Following the presentation of the formulation, we employ the solution to derive closed-form expressions of seismic pipe pile displacements, as well as robust expressions to determine the depth- and frequency-dependent parameters of complex Winkler springs, for use with beam-on-dynamic-Winkler-foundation models. Finally, the importance of considering the contribution of the inner soil in the seismic analysis of pipe piles is quantified via a parametric sensitivity analysis.

  相似文献   

10.
ABSTRACT

This paper describes compressive static load tests of concrete driven piles confined by Carbon Fibre Reinforced Polymer (CFRP). The tested piles include one concrete pipe pile and one concrete rectangular pile which are all partially confined by CFRP, and other two piles with the same dimensions without CFRP application. Tests program was performed to obtain the behaviours of these composite piles. Four Static Loading Tests (SLTs) were conducted and the results shown that those two types of composite pile demonstrate less vertical displacement with the same loading of traditional concrete piles. Furthermore, the traditional methods of Load-settlement (Q-s) curves, Settlement-lg (Load) (s-lgQ) curves and Settlement-lg (Time) curves are analysed. Due to un-plunging condition, the interpretation methods of Davisson’s, DeBeers, Double-Tangent as well as Chin’s methods are demonstrated for the ultimate bearing capacity of these four piles. It is concluded that the CFRP confinement increased the ultimate bearing capacity and this composite material can be perfectly applied in geotechnical condition.  相似文献   

11.
采用静载荷试验和ABAQUS有限元模拟相结合的方法进行了新型带肋预应力管桩承载性能的研究。对外径相同(500 mm)的直型桩与带肋桩的现场静载荷试验结果进行了对比研究,结果表明,带肋桩的极限承载力较直型桩提高13.10%。分析了肋部厚度、肋部间距等桩型参数对新型带肋管桩承载性能的影响。提出新型带肋预应力管桩极限承载力的建议计算公式,为今后新型带肋预应力管桩的大规模应用提供参考。  相似文献   

12.
江浩  汪稔  吕颖慧  孟庆山 《岩土力学》2010,31(3):780-784
根据钙质砂中桩基工程的现状,针对取自南沙群岛永暑礁的钙质砂,设计一个室内模型试验装置来研究钙质砂中钢管桩的承载和变形性能以及影响因素,并进行了石英砂中的对比试验。试验结果表明,钢管桩在钙质砂和石英砂中的表现有着显著差异。钙质砂中钢管桩承载能力很低,仅为石英砂的66%~70%,钙质砂中桩身轴力衰减速率缓慢,桩侧摩阻力远远小于石英砂的,仅为石英砂的20%~27%,并具有深度效应,开口钢管桩和闭口钢管桩的桩侧摩阻力相差不大。同时表明,钙质砂中桩侧摩阻力对相对密度的变化没有石英砂敏感,受相对密度影响很小。由颗粒破碎引起的桩周水平有效应力的大幅降低是造成钙质砂中钢管桩桩侧摩阻力低的主要原因。  相似文献   

13.
通过8根挤扩支盘桩与直杆桩的大比例尺模型桩试验,对单桩静载试验和桩身轴力测试结果分析表明,挤扩支盘桩的荷载–沉降曲线为缓变形,在竖向荷载作用下表现出端承桩的受力特征;地基土性质、桩间距、桩径、盘径、支盘数量及支盘竖向间距是影响支盘桩承载力的主要因素。工程实例应用中,支盘桩比同径、同长的普通灌注桩提高单桩承载力89%,节省工程造价28%(541万元),工期提前52d。   相似文献   

14.
Presented in this paper are results of two centrifuge tests on single piles installed in unimproved and improved soft clay (a total of 14 piles), with the relative pile–soil stiffness values varying nearly two orders of magnitude, and subjected to cyclic lateral loading and seismic loading. This research was motivated by the need for better understanding of lateral load behavior of piles in soft clays that are improved using cement deep soil mixing (CDSM). Cyclic test results showed that improving the ground around a pile foundation using CDSM is an effective way to improve the lateral load behavior of that foundation. Depending on the extent of ground improvement, elastic lateral stiffness and ultimate resistance of a pile foundation in improved soil increased by 2–8 times and 4–5 times, respectively, from those of a pile in the unimproved soil. While maximum bending moments and shear forces within piles in unimproved soil occurred at larger depths, those in improved soil occurred at much shallower depths and within the improved zone. The seismic tests revealed that, in general, ground improvement around a pile is an effective method to reduce accelerations and dynamic lateral displacements during earthquakes, provided that the ground is improved at least to a size of 13D × 13D × 9D (length × width × depth), where D is the outside diameter of the pile, for the pile–soil systems tested in this study. The smallest ground improvement used in these tests (9D × 9D × 6D), however, proved ineffective in improving the seismic behavior of the piles. The ground improvement around a pile reduces the fundamental period of the pile–soil system, and therefore, the improved system may produce larger pile top accelerations and/or displacements than the unimproved system depending on the frequency content of the earthquake motion.  相似文献   

15.
轴向荷载对斜桩水平承载特性影响试验及理论研究   总被引:1,自引:0,他引:1  
斜群桩受水平荷载作用时,群桩中的基桩受到径向荷载、轴向荷载和弯矩的共同作用。为研究轴向荷载对斜桩水平承载特性的影响,完成了3根单桩以及1组1×2斜桩的大尺寸模型试验。试验结果表明:轴向拉力作用会降低斜桩的水平刚度和极限承载力;而轴向压力作用则会使其水平刚度和极限承载力提高。基于桩侧浅层土体楔形破坏假定,推导了考虑轴向荷载影响的斜桩水平极限土抗力计算公式,提出了桩侧土抗力的p-y曲线方法,并通过模型试验及现场试验验证其合理性。  相似文献   

16.
在大桩径、小桩距的群桩条件下,不仅有来自桩侧、桩端和承台传递的多重应力叠加,还有群桩对桩间土的夹持作用影响,桩-土-承台之间作用更加复杂。用有限差分软件模拟固定桩距、桩径,变化竖向荷载下桩-土-承台的相互作用。从各层土的侧摩阻力、不同位置桩的桩顶荷载、荷载-沉降关系、桩间土体位移等方面的计算结果分析桩-土-承台之间的相互影响。结果表明,荷载超出117.8 MN(略大于Pu/2,Pu为群桩极限承载力)后,群桩对上部桩间土的夹持作用开始减小,桩侧上部侧摩阻力增大;桩侧下部侧摩阻力在多重应力叠加作用下呈减小趋势,不同位置的桩侧摩阻力影响范围有差异;用群桩沉降达到5%倍桩径时的荷载作为群桩的竖向极限承载力是可取的;当沉降与桩径的比值超出1%后,承台分担荷载的比例逐渐增大,群桩分担荷载的比例减小。  相似文献   

17.
采用预应力管桩(PHC)作为路基挡土墙基础,可发挥PHC桩质量保证率高、抗压性能好的优势,挡土墙承担水平荷载的要求也给PHC桩基础与基底的连接模式提出了问题。依托广东广清高速公路扩建工程进行现场试验,研究PHC桩基础分别采用有盖板的垫层式和无盖板的嵌入式承连挡土墙基底模式的作用机制。研究表明:垫层式与嵌入式连接的PHC基础桩间土均承担主要荷载,嵌入式连接外桩与桩间土应力比更大,是垫层式两倍左右,嵌入式内、外桩承载力发挥率差别更加明显;垫层式连接基础不能阻止墙体发生偏转,嵌入式连接通过桩体的约束作用控制墙体保持位置状态稳定;垫层式与嵌入式连接的挡墙受力主要表现为底板底面沿路基方向承受拉应力,在垂直路基方向底板底面未出现零压力区;两种连接模式墙体水平位移差别不大,桩间土是承担水平荷载的主体。  相似文献   

18.
郭楠  陈正汉  黄雪峰  杨校辉 《岩土力学》2015,36(Z2):603-609
西北地区深大基础工程日益增多,兼顾基础抗浮和耐久性问题的研究空白,借助西宁火车站综合改造工程,引入大直径布袋桩技术,有效解决了基础抗浮和耐久性问题;选择6根试桩进行了现场单桩抗拔载荷试验,最大加载量为9 060 kN;运用MATLAB软件分别拟合出3种抗拔极限承载力预测函数模型的曲线,同时运用PLAXIS软件对不同等级荷载桩-土位移进行模拟,并与实测的荷载-位移曲线对比分析。研究发现:双曲线和幂函数模型较适合此类抗拔桩极限承载力预测;本地区类似地基预测大直径缓变形抗拔桩极限荷载所需的极限位移标准应由0.030D减小为0.025D;仅根据土层的物理力学特征确定抗拔桩桩周土的极限摩阻力不够完善,至少还要考虑埋深不同对具有相似物理力学特征土层性质的影响。  相似文献   

19.
Open-ended pipe piles are often used in offshore foundations. The response of the soil plug inside a pipe pile is poorly understood, and only limited work has been performed to quantify the response under the different loading conditions relevant to offshore platforms. This paper describes numerical analyses that have been carried out in order to assess the end-bearing capacity of the soil plug under loading conditions which range from undrained to fully drained. The soil plug has been modelled as either elastic, elastic–perfectly-plastic or elastoplastic. The soil–pile interface, an important aspect of the problem, has been examined critically. Comparison with experimental data from model test at laboratory scale indicates that the load–deformation behaviour of the soil plug is modelled well using an elastoplastic model for the soil plug, and an elastic–perfectly-plastic joint element to model the soil–pile interface. The finite element analyses show that, under typical loading conditions, adequate end bearing may be mobilized by the soil plug, largely by high effective stresses in the bottom 3–5 diameters of the soil plug.  相似文献   

20.
In the present study, the end bearing capacity of screw and straight pipe pile under similar pile tip area and ground conditions were investigated. The effect of increasing overburden pressure was also considered in this research. Pile load tests on close-ended screw and straight pipe piles were conducted in the small scale. Dry Toyoura sand was used to develop the model ground. The sand was compacted at relative density of 70, 80 and 92 %. It was observed that in case of straight pipe pile, load settlement curve plunges downward without increase in load around settlement equals to 10 % of pile tip diameter, whereas in case of screw pile, the load settlement curve plunges around settlement equals to 15 % of pile tip diameter. Moreover, the screw piles having helix-to-shaft diameter ratio 2–4.1 showed 2–12 times higher end bearing capacity than straight pipe piles with similar pile shaft diameter. It was also observed from the test results that the end bearing capacity of single-helix screw pile was in average 16.25 % less than straight pipe pile with similar pile tip area and ground conditions irrespective of the effect of increasing overburden pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号