首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
In present day marine sediments, almost all of which are deposited in normal oxygenated seawater, rates of burial of organic carbon (C) and pyrite sulfur (S) correlate positively and bear a constant ratio to one another (C/S ~- 3 on a weight basis). By contrast, calculations, based on the isotopic model of Garrels and Lerman (1981), indicate that at various times during the Phanerozoic the worldwide burial ratio must have been considerably different than the present day value. This ratio change is caused by the requirement that, increases in the worldwide mass of organic carbon must be accompanied by equivalent decreases in the mass of sedimentary pyrite sulfur, in order to maintain a roughly constant level of O2 in the atmosphere. Such apparently contradictory behavior can be explained if the locus of major organic carbon burial has shifted over time from normal marine environments, as at present, to non-marine freshwater, or to euxinic environments, in the geologic past. A shift to predominantly freshwater burial can help explain predicted high C/S ratios in Permo-Carboniferous sediments, and a shift to euxinic environments can help explain predicted low C/S ratios during the early Paleozoic. It is demonstrated that the three environments today exhibit distinguishably different average C/S ratios.  相似文献   

2.
《Applied Geochemistry》1998,13(2):213-233
Porewater concentration profiles were determined for Fe, trace elements (As, Cd, Co, Cu, Mn, Ni, Pb, Zn), sulfide, SO4 and pH in two Canadian Shield lakes (Chevreuil and Clearwater). Profiles of pyrite, sedimentary trace elements associated with pyrite and AVS were also obtained at the same sites. Thermodynamic calculations are used, for the anoxic porewaters where sulfide was measured, to characterize diagenetic processes involving sulfide and trace elements and to illustrate the importance of sulfide, and possibly polysulfides and thiols, in binding trace elements. The ion activity products (IAP) of Fe sulfide agree with the solubility products (Ks) of greigite or mackinawite. For Co, Ni and Zn, IAP values are close to the KS values of their sulfide precipitates; for Cu and Pb, IAP/Ks indicate large oversaturations, which can be explained by the presence of other ligands (not measured) such as polysulfides (Cu) and thiols (Pb). Cobalt, Cu, Ni and Zn porewater profiles generally display a decrease in concentration with increasing ΣH2S, as expected for transition metals, whereas Cd, Pb and Zn show an increase (mobilisation). The results suggest that removal of trace elements from anoxic porewaters occurs by coprecipitation (As and Mn) with FeS(s) and/or adsorption (As and Mn) on FeS(s), and by formation of discrete solid sulfides (Cd, Cu, Ni, Pb, Zn and Co). Reactive Fe is extensively sulfidized (51–65%) in both lakes, mostly as pyrite, but also as AVS. Similarities between As, Co, Cu and Ni to Fe ratios in pyrite and their corresponding mean diffusive flux ratios suggest that pyrite is an important sink at depth for these trace elements. High molar ratios of trace elements to Fe in pyrite from Clearwater Lake correspond chronologically to the onset of smelting activities. AVS can be an important reservoir of reactive As, Cd and Ni and, to a lesser extent, of Co, Cu and Pb. Overall, the trace elements most extensively sulfidized were Ni, Cd and As (maximum of 100%, 81% and 49% of the reactive fraction, respectively), whereas Co, Cu, Mn, Pb and Zn were only moderately sulfidized (11–16%).  相似文献   

3.
A comparative analysis of two sediment cores from perialpine lakes (L. Zürich and L. Geneva) helped to clarify pathways of sulphur fixation in freshwater sediments. Despite greater than three-fold differences in lake water sulphate concentration equal amounts of sulphur are fixed in the sediments. The maximum sedimentary sulphur concentrations attain 1% (dry weight) which is similar to the sulphur content of modem, near-shore marine sediments. This is also expressed in low C org/Stot ratios which range from 2.5–8.
An analysis of the sulphur pools showed that organic sulphur compounds are the main components of the sedimentary sulphur, accounting for ˜ 80% and ˜ 60% of the total sulphur in Lakes Zürich and Geneva, respectively. The largest single sulphur pool is the sulphate-esters, which comprise 40–60% of the total sedimentary sulphur. Substantial amounts of the organic sulphur compounds must be formed within the sediment by boundary-layer microbial communities at the oxic-anoxic transition zone. This possibly suggests rapid recycling of sulphur in suboxic zones. Because of low concentration of SO24-- in the watermass, the zone of sulphate reduction is very thin. This coupled with the mobility of some sulphide oxidizing microbial colonies (e.g. Beggiutoa ) potentially results in an almost complete recycling of the sulphur pool near the sediment-water interface. Reduced sulphur caught in this cycling process is unavailable for sedimentary pyrite formation. The Corg/Spyriteratios for these sediments are thus high. If organically bound sulphur is not completely transformed into pyrite during late diagenesis, the Corg/ Spyrite ratio can serve as a sensitive indicator for the salinities of anaent depositional environments.  相似文献   

4.
Sulphur isotope compositions and S/C ratios of organic matter were analysed in detail by combustion-isotope ratio monitoring mass spectrometry (C-irmMS) in eastern Mediterranean sediments containing three sapropels of different ages and with different organic carbon contents (sapropel S1 in core UM26, formed from 5–9 ka ago with a maximum organic carbon content of 2.3 wt%; sapropel 967 from ODP Site 160-967C, with an age of 1.8 Ma and a maximum organic carbon content of 7.4 wt%; and sapropel 969 from ODP Site 160-969E, with an age of 2.9 Ma and a maximum organic carbon content of 23.5 wt%). Sulphur isotopic compositions (34S) of the organic matter ranged from -29.5 to +15.8 and the atomic S/C ratio was 0.005 to 0.038. The organic sulphur in the sediments is a mixture of sulphur derived from (1) incorporation of 34S-depleted inorganic reduced sulphur produced by dissimilatory microbial sulphate reduction; and (2) biosynthetic sulphur with an isotopic signature close to seawater sulphate. The calculated biosynthetic fraction of organic sulphur in non-sapropelic sediments ranges from 68–87%. The biosynthetic fraction of the organic sulphur of the sapropels (60–22%) decreases with increasing organic carbon content of the sapropels. We propose that uptake of reduced sulphur into organic matter predominantly took place within sapropels where pyrite formation was iron-limited and thus an excess of dissolved sulphide was present for certain periods of time. Simultaneously, sulphide escaped into the bottom water and into sediments below the sapropels where pyrite formation occurred.  相似文献   

5.
Sediments from unpolluted and highly polluted lakes in northern Ontario have been fractionated into acid volatile sulfide, HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester sulfate and carbon-bonded sulfur and the isotopic composition of each fraction determined. In general, reduced inorganic S constitutes 25–50% of the total S in the polluted surficial sediments, but is <20% in the unpolluted samples, with pyrite formation being a minor process of S diagenesis in lake sediment ecosystems. Organic S in the form of ester sulfate and carbon-bonded S predominates and both the C/S ratios and the isotopic data suggest that, in unpolluted lakes, plant detritus can be a major contributor of organic-S to the sediments. The depth profiles observed suggest that the more labile ester sulfate is diagenetically converted to the carbon-bonded form. For the polluted sediments from the Sudbury basin, the isotopic data suggest that (a) the elemental S is derived from the oxidation of acid volatile sulfide in the aerobic surficial sediments, and (b) the isotopically light reduced S species are incorporated into the organic material. S diagenesis in lake sediments generally results in the release of 34S to the overlying water. The suggestion is made that sulfate concentrations over 5 mg/1 accompanied by an enrichment of surficial sediments with isotopically different S may signal significant inputs of pollutant S into the lake and its basin.  相似文献   

6.
《Applied Geochemistry》1988,3(3):333-344
The sediments of Lake Anna, Virginia, act as a major sink for incoming acid mine drainage (AMD) pollutants (Fe, SO42−, H+) due to bacterial sulfate reduction (SR). Acid-volatile sulfide (AVS), elemental S, and pyrite concentrations in the sediments of the polluted arm of the lake are significantly greater than those in unpolluted sections of the lake. Measurements of SR using 35SSO42− showed that AVS and S0 are the major short-term (48 h) products of SR in these sediments. Inorganic forms of S(AVS, S0, and FeS2) made up from 60 to 100% of the total sediment S concentration. Pyrite concentrations in the sediment were high but decreased exponentially with distance from the AMD source, suggesting that the pyrite was deposited as stream detritus from the abandoned mines. Iron monosulfide and elemental S concentrations were highest at a station 1 km away from the AMD inflow, indicating formation in situ. There was no evidence for the formation of organic S species. The results suggest that in Fe- and S-rich locations such as those contaminated with acid mine drainage, the distribution of end products of SR may vary substantially from those reported for more moderate environments.  相似文献   

7.
The formation of sedimentary iron sulfides was studied in sandy sediments of the Laguna Madre, TX, in order to better understand how this process operates in sediments where reactive iron is likely to be limiting for sulfide mineral formation. These sediments usually had reactive iron and total reduced sulfide concentrations one to two orders of magnitude less than in typical shallow water terrigenous muds, but organic-C concentrations typical of fine-grained sediments due to the extensive presence of seagrass beds. This resulted in moderate (0–150 m) dissolved H2S concentrations with maximum concentrations in the upper (3–:5 cm) root zone. Based on citrate dithionite extractable-Fe the degree of sulfidization was usually 100% or greater. Acid volatile sulfides (AVS) typically comprised roughly 60% of total reduced sulfur and the proportion of AVS generally increased instead of decreasing with depth. The unusual proportion of TRS as AVS and persistence of AVS are attributed to exceptionally slow pyrite formation kinetics. The probable reasons for these slow reaction kinetics are the high (>7.8) pH of the sediments, which favors the slow polysulfide pathway for pyrite formation, high (typically about 2–4 mm) dissolved organic carbon concentrations that inhibit growth of pyrite and the low concentration of reactants which greatly increases the average transport distances necessary for diffusion controlled reactions.  相似文献   

8.
Total trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn), Al, and pyrite- and reactive-associated metals were measured for the first time in a microbial mat and its underlying anoxic-sulfidic sediment collected in the saltern of Guerrero Negro (GN), Baja California Sur, Mexico. It is postulated that the formation of acid volatile sulfide (AVS) and pyrite in the area of GN could be limited by the availability of reactive Fe, as suggested by its limited abundance (mat and sediment combined average value of only 19 ± 10 ??mol g?1; n = 22) as well as the low pyrite (0.89?C7.9 ??mol g?1) and AVS (0.19?C21 ??mol g?1) concentrations (for anoxic-sulfidic sediments), intermediate degrees of pyritization (12?C50%), high degrees of sulfidization (14?C100%), generally low degrees of trace metal pyritization, and slight impoverishment in total Fe. This is a surprising result considering the large potential reservoir of available Fe in the surrounding desert. Our findings suggest that pyrite formation in the cycling of trace metals in the saltern of GN is not very important and that other sedimentary phases (e.g., organic matter, carbonates) may be more important reservoirs of trace elements. Enrichment factors [EFMe = (Me/Al)sample/(Me/Al)background] of Co, Pb, and Cd were high in the mat (EFMe = 2.2 ± 0.4, 2.8 ± 1.6 and 34.5 ± 9.8, respectively) and even higher in the underlying sediment (EFMe = 4.7 ± 1.5, 14.5 ± 6.2 and 89 ± 27, respectively), but Fe was slightly impoverished (average EFFe of 0.49 ± 0.13 and 0.50 ± 0.27 in both mat and sediment). Organic carbon to pyrite-sulfur (C/S) molar ratios measured in the mat (2.9 × 102?C27 × 102) and sediment (0.81 × 102?C6.6 × 102) were, on average, approximately 77 times higher than those typically found in marine sediments (7.5 ± 2.1). These results may indicate that ancient evaporation basins or hypersaline sedimentary environments could be identified on the basis of extremely high C/S ratios (e.g., >100) and low reactive Fe.  相似文献   

9.
The organic matter-rich Toolebuc Formation of eastern Australia was deposited in a Lower Cretaceous epicontinental sea. Parameters from biological marker studies indicate that the organic matter is immature to marginally mature for hydrocarbon generation. The occurrence of abundant coccoliths and the distribution of alkane biomarkers suggest that the organic matter (Type II) is largely of planktonic origin and only in the southeastern part of the depositional area can a terrestrial influence be discerned. Variations in kerogen composition can be attributed to the extent of the oxidation of the source materials and the degree of incorporation of sulphur. The atomic H/C ratios (c. 1.1) are remarkably constant for most of the Toolebuc Formation. Atomic O/C ratios vary from 0.1 and 0.4 and can be related both to depth and paleogeographic position. Kerogen sulphur contents range up to 7%, and the highest values occur in the most carbonate-rich sediments. Total sulphur (inorganic + organic) to carbon ratios in the sediments vary from 1 to <0.2 and are a function of paleogeographic position and lithology. Most of the sulphur in the sediments is in the form of pyrite, but the proportion of sulphur in organic form increases as the total sulphur content decreases. The evidence for oxidation of the organic matter and incorporation of sulphur into it during deposition suggests that bituminite, which is the dominant organic maceral in the Toolebuc Formation, was formed from an organic gel derived by decay of predominantly algal material. These data support a modified gyttja model (Kauffman, 1981) for the deposition of organic matter in the Toolebuc Formation.  相似文献   

10.
Abundances of organic carbon, sulfur, and reactive iron in sediments of three upwelling environments (Peru, Oman and Benguela) suggest that organic carbon/reduced sulfur ratios (C/S-ratios) in this category of marine sediments deviate considerably from previously established empirical ratios in normal marine sediments. To clarify the discrepancies, we investigated those components of the diagenetic system that limit the formation of pyrite: sulfate concentrations and reduction rates in pore waters, availability of reactive iron, and the quantity and quality of organic matter. All three limitations are evident in our sample pools. The results suggest that C/S-ratios in recent and fossil marine sediments rich in organic matter may be unsuitable as paleoenvironmental indicators.
  相似文献   

11.
《Applied Geochemistry》2004,19(11):1837-1853
Iron monosulfide formation and oxidation processes were studied in the extensively drained acid sulfate soil environment of the Tweed River floodplain in eastern Australia. Porewater profiles of pH, Eh, SO42−, Fe2+, Fe3+, Cl, HCO3, and metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) were obtained using in situ dialysis membrane samplers (`peepers'). Concentrations of acid volatile S (AVS), pyrite, total S, reactive Fe, total and organic C, simultaneously extracted metals (SEMs) and total elemental composition by X-ray fluorescence, were determined on sediment samples. The oxidation of pyrite in the surrounding landscape provides a source of acidity, Fe, Al, SO4 and metals, which are exported into the drainage system where they accumulate in the sediments and porewaters. Negative porewater concentration gradients of SO42− and Fe2+, and large AVS concentrations in the sediments, indicate Fe monosulfides form rapidly under reducing conditions and consume acidity and metals. Oxidation of the sediments during previous drought episodes has resulted in the conversion of monosulfides and pyrite to oxidised Fe minerals and the release of acidity, SO42−, Fe3+, and metals to the surface waters. These formation and oxidation cycles show that Fe monosulfides play an important role in controlling water quality in the drainage system.  相似文献   

12.
《Applied Geochemistry》1999,14(1):41-52
Concentrations of S, organic C and Fe were investigated in profiles of sediments from two estuarine systems in the SW of Western Australia. In marine-affected sediments, inorganic S dominates total S and concentrations of total S correlate with Fe and not with organic C. In freshwater sediments, organic S dominates total S and concentrations of total S correlate with organic C and not with Fe. Molar Fe/S ratios in the estuarine sediments decrease with increasing salinity and approach unity for marine conditions. Net accumulation rates of S in sediments were estimated with a numerical computer model, calibrated with published data on profiles of marine sediments for diffusion of SO2−4, sedimentation rates and distributions of S. Measured depth-integrated reduction rates of SO2−4 in the marine-affected estuarine sediments approach those obtained for Fe-limited marine conditions at similar rates of sedimentation. Measured concentrations of inorganic S in anoxic freshwater sediments fit a numerically calculated relationship between inorganic S and sedimentation rate.  相似文献   

13.
A mass-flow event triggered by the 1996 flood in the Saguenay region buried the mercury-contaminated indigenous sediments at the head of the Saguenay Fjord under up to 50 cm of postglacial deltaic sediments. The vertical distributions of total mercury and methyl-mercury in the sediments and pore waters were measured in box cores recovered from the Saguenay Fjord within and outside the affected area prior to and on six consecutive years after the flood. The total solid mercury (THgs) profiles show that remobilization was limited and most of the mercury remobilized from the contaminated, indigenous sediments was trapped below or slightly above the former sediment–water interface by authigenic acid-volatile sulfides (AVS). Nonetheless, a small fraction of the remobilized mercury diffused into the flood layer, some of it was methylated and/or scavenged by organic matter and AVS. Elevated solid-phase methyl-mercury concentrations, [MeHgs], at depth in the sediment are correlated to peak AVS and THgs but, in the absence of elevated dissolved methyl-mercury concentrations, [MeHgd], the higher [MeHgs] may reflect an earlier episode of Hg methylation, the product of which was scavenged by the AVS and buried. Throughout the sediment cores, sediment–water partitioning of MeHg and Hg(II) appears to be controlled in great part by the AVS and residual organic matter content of the sediment.  相似文献   

14.
《Chemical Geology》2004,203(1-2):153-168
The importance of the magnetic iron sulfide minerals, greigite (Fe3S4) and pyrrhotite (Fe7S8), is often underappreciated in geochemical studies because they are metastable with respect to pyrite (FeS2). Based on magnetic properties and X-ray diffraction analysis, previous studies have reported widespread occurrences of these magnetic minerals along with magnetite (Fe3O4) in two thick Plio-Pleistocene marine sedimentary sequences from southwestern Taiwan. Different stratigraphic zones were classified according to the dominant magnetic mineral assemblages (greigite-, pyrrhotite-, and magnetite-dominated zones). Greigite and pyrrhotite are intimately associated with fine-grained sediments, whereas magnetite is more abundant in coarse-grained sediments. We measured total organic carbon (TOC), total sulfur (TS), total iron (FeT), 1N HCl extractable iron (FeA), and bulk sediment grain size for different stratigraphic zones in order to understand the factors governing the formation and preservation of the two magnetic iron sulfide minerals. The studied sediments have low TS/FeA weight ratios (0.03–0.2), far below that of pyrite (1.15), which indicates that an excess of reactive iron was available for pyritization. Observed low TS (0.05–0.27%) is attributed to the low organic carbon contents (TOC=0.25–0.55%), which resulted from dilution by rapid terrigenous sedimentation. The fine-grained sediments also have the highest FeT and FeA values. We suggest that under conditions of low organic carbon provision, the high iron activity in the fine-grained sediments may have removed reduced sulfur so effectively that pyritization was arrested or retarded, which, in turn, favored preservation of the intermediate magnetic iron sulfides. The relative abundances of reactive iron and labile organic carbon appear to have controlled the transformation pathway of amorphous FeS into greigite or into pyrrhotite. Compared to pyrrhotite-dominated sediments, greigite-dominated sediments are finer-grained and have higher FeA but lower TS. We suggest that diagenetic environments with higher supply of reactive iron, lower supply of labile organic matter, and, consequently, lower sulfide concentration result in relatively high Eh conditions, which favor formation of greigite relative to pyrrhotite.  相似文献   

15.
Sulfide Inhibition of Nitrate Removal in Coastal Sediments   总被引:1,自引:0,他引:1  
Microbial nitrate (NO3) removal via denitrification (DNF) at high sulfide (H2S) concentrations was compared in sediment from a coastal freshwater pond in a developed area that receives salt-water influx during storm events, and a saline pond proximal to an undeveloped estuary. Sediments were incubated with added SO42− (1,000 μg per gram dry weight basis (gdw)) to determine whether acid volatile sulfides (AVS) were formed. DNF in the sediments was measured with NO3–N (300 μg gdw−1) alone, and with NO3–N and H2S (1,000 μg S2− gdw−1). SO42− addition to the freshwater sediments resulted in AVS formation (970 ± 307 μg S gdw−1) similar to the wetland with no added SO42− (986 ± 156 μg S gdw−1). DNF rates measured with no added H2S were greater in the freshwater than the wetland site (10.6 ± 0.6 vs. 6.4 ± 0.1 μg N2O–N gdw−1 h−1, respectively). High H2S concentrations retained NH4–N in the undeveloped wetland and retained NO3–N in the developed freshwater site, suggesting that potential salt-water influx may reduce the ability of the freshwater sediments to remove NO3–N.  相似文献   

16.
Sulphate reduction is a key reaction to remove acidity from water bodies affected by acid mine drainage. In this study, 35SSO42− reduction rates determined in sediments from a variety of acidic lignite pit lakes have been compiled. The rates decreased with pH and are strongly dependent on carbon substrate. The rates were fitted to a Monod model adapted to the specific conditions of acidic pit lakes (APL) sediments: i) sulphate reduction rate is independent from sulphate concentration due to the high concentration typically observed in APL systems (10–30 mM), ii) the observed pH dependency of sulphate reduction was accounted for by an inhibition function Finihibt which considers the occurrence of low cell numbers of sulphate reducing bacteria at pH values < 4.75. Simulated steady-state sulphate reduction rates are predicting measured rates at carbon substrate concentrations of <10 μM. Estimated steady-state reaction time scales range between 2.4 h at pH 7 and 41 h at pH 3 at a carbon half-saturation constant of KC−S = 100 μM and are increasing with increasing KC−S values. Time scales at low pH are too long to allow for significant generation of alkalinity during the time of residence of groundwater passing through the top and hence most reactive zone of APL sediments which has important implications for the remediation of acidic pit lakes.  相似文献   

17.
Organogenic sediments (sapropels) in lakes are characterized by a reduced type of diagenesis, during which organic compounds are decomposed, the chemical composition of the pore waters is modified, and authigenic minerals (first of all, pyrite) are formed. Pyrolysis data indicate that organic matter undergoes radical transformatons already in the uppermost sapropel layers, and the composition of this organic matter is principally different from the composition of the organic matter of the its producers. The sapropels contain kerogen, whose macromolecular structure starts to develop during the very early stages of diagenesis, in the horizon of unconsolidated sediment (0–5 cm). The main role in the diagenetic transformations of organic matter in sediments is played by various physiological groups of microorganisms, first of all, heterotrophic, which amonifying, and sulfate-reducing bacteria. SO42? and Fe2+ concentrations in the pore waters of the sediments are determined to decrease (because of bacterial sulfate reduction), while concentrations of reduced Fe and S species (pyrite) in the solid phase of the sediment, conversely, increase. Comparative analysis shows that, unlike sapropels in lakes in the Baikal area, sapropels in southern West Siberia are affected by more active sulfate reduction, which can depend on both the composition of the organic matter and the SO42? concentration in the pore waters.  相似文献   

18.
Dispersed and concretionary pyrite in chert–clay–carbonate and carbonate rocks of the Abalak Formation (Salym oil field) have been studied. The study was conducted using Scanning Electron Microscopy (SEM), Electron Probe Microanalysis (EPMA), and high spatial resolution Secondary Ion Mass Spectrometry (Nano-SIMS). As a result, three morphological groups of pyrite have been distinguished: large cubic crystals, framboidal pyrite, and fine-crystal aggregates that replace organic remnants. The sulphur isotope ratio allows one to distinguish two genetic types of pyrite. The source of the sulphur for the first genetic group was H2S produced by bacterial sulphate reduction, while the second group pyrite was formed with sulphur as a product of thermochemical sulphate reduction.  相似文献   

19.
Contents and δ34S values of several S compounds, enumerations of S-reducing bacteria (SRB) and Fe-reducing bacteria (IRB), and Fe, Pb and In concentrations were determined for 210Pb-dated sediment cores from two lakes in Quebec, Canada. Both lakes are located approximately 70 km downwind of the Horne smelter and refinery in Rouyn-Noranda. Increases in Fe, Pb and In concentrations and a decrease in the δ34S values of total S in both lake sediment cores coincide with the start-up of the smelter in 1927. The shift towards more negative δ34S values was primarily caused by an increase in the extent of S isotope fractionation during bacterial (dissimilatory) SO4 reduction due to SO4 loading of the lakes after smelting began. Consequently, an enhanced accumulation of 32S-enriched reduced inorganic S compounds is evident in the sediments. δ34S values of organic S in the sediments decreased only slightly due to the smelter emissions between 1930 and 1980. Hence, due to the sulfide depositing mechanisms, S isotope ratios constitute a useful tracer recording the onset of S pollution in sediments of the two previously SO4-limited lakes investigated. In contrast, total S concentrations alone are not reliable indicators for anthropogenic S loading in lake sediment records.  相似文献   

20.
A 3-m sediment core taken from Lake Suigetsu, in which a shift from fresh to brackish water occurred about three hundred years ago, has been examined for variation with depth of organic carbon and fatty acids. From the difference in total amounts of sulphur between sediments under fresh and brackish water environments, the surface sediments above approximately 35 cm depth were deduced to be accumulated under a brackish water environment. The total contents of organic carbon and fatty acids, and percentage composition of fatty acids gave discontinuous profiles above and below the 35–40 cm sediment layer. At a depth of 12.5 cm, the distribution in chain length of the fatty acids changed from a unimodal (the predominance of C12-C18 over C20-C34) to a bimodal pattern, which was mirrored by the composition diversity index (CDI).Although the fatty acids in the surface sediments (0–40 cm) from Lake Suigetsu seemed to suffer milder degradation through microbial activity than those in a core (0–150 cm) from Lake Suwa, a freshwater eutrophic lake, both lacustrine sediments showed similar trends in the alteration of fatty acid composition with depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号