首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonium contents of biotites from metamorphic and granitic rocks of Japan have been determined, and correlated with the 18O16O ratios of the rocks.NH4 contents of biotites averaged 22 ppm in granitic rocks of non-metamorphic terranes, 67 ppm in granitic rocks in the Ryoke metamorphic belt, and 279 ppm in metamorphosed sedimentary rocks of the Ryoke belt. In granitic rocks, enrichment of NH4 in biotites is a result of the interaction between the granitic magma and surrounding sedimentary rocks. In metasedimentary rocks, the high NH4 content in biotites is due to inheritance from original organic material in sedimentary rocks.Biotites from migmatites of the Ryoke belt contain more NH4 (average, 475 ppm) than those from metasedimentary rocks. This suggests the existence of a metamorphic fluid or anatectic magma enriched in NH4.  相似文献   

2.
To better understand the process of crustal contamination/assimilation, 23 Pb isotopic compositions and 12 concentrations have been measured on lavas and basement rocks from the Edgecumbe volcanic field, SE Alaska. Measured isotopic ratios have the following ranges: 206Pb204Pb = 18.477–19.161; 207Pb204Pb = 15.562–15.679; 208Pb204Pb = 38.17–38.85. While the data form well-constrained linear arrays on Pb-Pb diagrams, no simple correlation exists with major element composition. Basaltic lavas (≤ 51 wt% SiO2) are characterized by two isotopic groups. The olivine basalt (≤ 48% SiO2) is more radiogenic than the plagioclase basalt (48–51%) which also shows more heterogeneity. In the silica range 52–55%, Pb isotopic ratios increase significantly but remain fairly constant in the range 55–70% SiO2. Lead concentrations vary from 1 ppm in the basalts to 7 ppm in the rhyodacites. Analyzed basement rocks are more radiogenic than any of the lavas (206Pb204Pb = 19.20; 207Pb204Pb = 15.65; 208Pb204Pb = 38.86. The Pb isotopic data are qualitatively consistent with the contamination process described by Myerset al. (1984). However, because of fundamental differences in the mixing relations between the Sr system studied earlier and the Pb system, the new Pb data have revealed details of the process not apparent from the Sr data alone. In particular, it has been shown that the parent magma was more primitive than originally assumed, and that two contamination events are recorded in the lavas. The first event, involving a mafic parent and different crustal contaminants, produced the intermediate and siliceous hybrids in cupolas located above the main basaltic chamber. The types of country rock intruded as well as the degree of partial fusion achieved in individual cupolas controlled the range of hybrid compositions produced while the eruption sequence was determined by the order in which the cupolas were tapped. The second contamination event produced the plagioclase basalt, the most voluminous basaltic unit, by mixing the mafic parent with the olivine basalt, an independent, primary magma. Our results suggest crustal contamination models that assume bulk assimilation of crustal end members may be too simplistic.  相似文献   

3.
Stable carbon isotope fractionation by seventeen species of marine phytoplankton, representing the classes of Bacillariophyceae, Chlorophyceae, Prasinophyceae, Chrysophyceae, Haptophyceae and Dinophyceae have been determined in laboratory culture experiments using bicarbonate enriched artificial sea water. The ΔHCO3? values (ΔHCO3? = δ13C of algae vs HCO3?) range from ?22.1 to ?35.5%. Nitzschia closterium shows the smallest fractionation of ? 22.1% and Isochrysis galbana, the greatest of ?35.5%,. Since these algae were cultured under identical laboratory conditions, the wide range of ΔHCO3? values is seemingly due to the presence of different metabolic pathways within these organisms.A temperature dependent fractionation of 0.36% per °C with decreasing temperatures was measured for Skeletonema costatum whereas, smaller temperature dependencies of ?0.13, +0.15 and ?0.07%. per °C were observed for Dunaliella sp., Monochrysis lutheri and Glenodinium foliaceum, respectively.The consistency of ΔHCO3? values of Skeletonema costatum, Dunaliella sp. and Monochrysis lutheri grown at salinities of 22, 26, 32 and 36% indicates that natural salinity variations have negligible effects on the isotopic composition of marine phytoplankton.  相似文献   

4.
The apparent constants (K'i) for the ionization of carbonic acid in seawater at various salinities (S,%.) have been fit to equations of the form ln K'i = ln Ki + AiS12 + BiSwhereKi is the thermodynamic ionization constant in water, Ai, and Bi are adjustable parameters. The temperature dependence (TK) of Ki, Ai and Bi were of the form, a0 + a1/T + a3 ln T. Equations of similar forms have been used to analyze the ionization constants for water and boric acid and the solubility product of calcite in seawater. The effect of pressure on the apparent constants (KpiKoi) have been fit to equations of the form ln (KpiKoi) = ? (ΔVP + 0.5 ΔK P2)/RT where the volume (ΔV) and compressibility (ΔK) changes are polynomial functions of temperature. The equations generated for various açids in seawater have been used to examine the carbonate system in seawater. Equations relating the NBS and Tris pH scales have been derived as well as equations of pH as a function of temperature and pressure. The equations from Hansson (1972, Ph.D. Thesis, University of Göteborg, Sweden) and Mehrbachet al. (1973, Limnol. Oceanogr.18, 897–907) have been used to examine the components of the carbonate system. At a fixed total alkalinity and total carbon dioxide, differences of ±0.01 m-equiv kg?1 in HCO?3 and CO2?3 were found; however, the [CO2] and Pco2 are nearly the same. The contribution of borate ion, B(OH)?4 determined from the equations of Hansson (1972, Ph.D. Thesis, University of Göteborg, Sweden) and Lyman (1957, Ph.D. Thesis, University of California, Los Angeles) differ by ±0.01 m-equiv kg?1 for waters with the same salinity and temperature.  相似文献   

5.
6.
7.
Dissolution rate as a function of degree of undersaturation was measured on shells of individual species of coccoliths and foraminifera, various size fractions of sediment from the Ontong-Java Plateau and the Rio Grande Rise, a collection of large pteropods, and on synthetic calcite and aragonite powder.Results of the study indicate that all biogenic and synthetic calcium carbonate follows the rate law R% = k%(1 ? Ω)n where Ω  [Ca2+][CO32?]/K'sp and K'sp is the apparent solubility product of calcite or aragonitic seawater. In the case of all calcite samples, nc = 4.5, while for aragonitic samples na = 4.2. The ‘rate constant’, k%, varies widely between samples and in many cases is inversely correlated with grain size. However, the individual species of coccoliths, E. huxleyi and C. neohelis, which were cultured in the laboratory appear not to follow this rule, with dissolution rates an order to magnitude lower than expected.  相似文献   

8.
40Ar39Ar incremental-release ages have been determined for 15 hornblende and 20 biotite concentrates separated from rocks collected across the garnet and kyanite zones of Grenvillian metamorphism in southwestern Labrador. Most hornblende spectra from the kyanite zone are slightly discordant, with low-temperature increments yielding ages older than the ca 1000 Ma date suggested for culmination of Grenvillian metamorphism in the area. However, all the hornblende concentrates record well-defined plateau ages. These range from 968 to 905 Ma across the kyanite zone and date times of diachronous post-metamorphic cooling. The discordant spectra are interpreted to result from low-temperature liberation of excess 40Ar components from grain margins. Two hornblende concentrates from the garnet zone display very discordant spectra (total-gas ages of 2100 and 3017 Ma) in which incremental dates systematically decrease during analysis. This pattern of discordance suggests that excess argon components are inhomogeneously distributed throughout these hornblende grains.Most biotites from the garnet and kyanite zones record total-gas or plateau ages in excess of 1000 Ma (2066-857 Ma), reflecting the widespread presence of excess argon components. Because most of the 40Ar39Ar age spectra are internally concordant, the ratios of excess 40Ar relative to radiogenic 40Ar must have been uniform in the various gas fractions liberated from each sample. This is also reflected in the inability of isotope correlation diagrams to differentiate between excess, radiogenic, and atmospheric argon components. The biotite total-gas or plateau dates show marked local variation. This is interpreted to indicate that the biotite grains were in contact with a post-metamorphic intergranular vapor phase that was characterized by large and variable 40Ar36Ar ratios. Such ratios most likely resulted from widespread diffusion of the argon liberated from adjacent Archean basement gneisses during the Grenvillian metamorphic overprint.  相似文献   

9.
The Roving Automated Rare Gas Analysis (RARGA) lab of Berkeley's Physics Department was deployed in Yellowstone National Park for a 19 week period commencing in June, 1983. During this time 66 gas and water samples representing 19 different regions of hydrothermal activity within and around the Yellowstone caldera were analyzed on site. Routinely, the abundances of five stable noble gases and the isotopic compositions of He, Ne, and Ar were determined for each sample. In a few cases the isotopes of Kr and Xe were also determined and found to be of normal atmospheric constitution.Correlated variations in the isotopic compositions of He and Ar can be explained within the precision of the measurements by mixing of only three distinct components. The first component is of magmatic origin and is enriched in the primordial isotope 3He with 3He4He ≥ 16 times the air value. This component also contains radiogenic 40Ar and possible 36Ar with 40Ar36Ar ≥ 500, resulting in a 3He36Ar ratio ≥ 41,000 times the air value. The second component is assumed to be purely radiogenic 4He and 40Ar (41He401Ar = 4.08 ± .33). This component is the probable carrier of observed excesses of 211Ne, attributed to the α,n reaction on 18O. Its radiogenic character implies a crustal origin in U. Th, and Krich aquifer rocks. The third component, except for possible mass fractionation, is isotopically indistinguishable from the noble gases in the atmosphere. This component originates largely from infiltrating run-off water saturated with atmospheric gases.In addition to exhibiting nucleogenic 211Ne, Ne data show anomalies in the ratio 20Ne20Ne, which correlate roughly with the 21Ne22Ne anomalies for the most part, but not as would occur from simple mass fractionation. Some exaggerated instances of the 20Ne22Ne anomaly occur which could be explained by combined mass fractionation of Ne and Ar isotopes to a severe degree coupled with remixing with normally isotopic gases. Otherwise exotic processes have to be invoked to explain the 20Ne data.Relative abundances of the non-radiogenic and non-nucleogenic noble gases (22Ne, 36Ar, 84Kr, and 132Xe) are highly variable but strongly correlated. High Xe/Ar ratios are always accompanied by low Ne/ Ar ratios and vice versa. Except for water from the few cold (T < 20°C) springs analyzed, none of the samples have relative abundances consistent with air saturated water and the observed variations are not readily explained by the distillation of air saturated water.In characterizing each area of hydrothermal activity by the highest 3He4He ratio found for that area, we find that within the caldera this parameter is somewhat uniform at ~7 ± 1 times the air value. There are exceptions, most notably at Mud Volcano, an area located along a crest of recent and rapid uplift. Here the maximum 3He4He ratio is ~ 16 times the air value. Also noteworthy is Gibbon Basin which is in the vicinity of the most recent rhyolitic volcanism and exhibits a 3He4He ratio ~ 13 times the air value. Immediately outside the caldera the maximum sol3He4He ratio decreases rapidly to values < ~3 times the air value.  相似文献   

10.
Differences in the chemical composition of metamorphic and igneous pyroxene minerals may be attributed to a transfer reaction, which determines the Ca content of the minerals, and an exchange reaction, which determines the relative Mg:Fe2+ ratios. Natural data for associated Ca pyroxene (Cpx) and orthopyroxene (Opx) or pigeonite are combined with experimental data for Fe-free pyroxenes, to produce the following equations for the Cpx slope of the solvus surface: > 1080°C: T = 1000(0.468 + 0.246XCpx ? 0.123 ln (1–2 [Ca]))< 1080°C: T = 1000(0.054 + 0.608XCpx ? 0.304 ln (1–2 [Ca])), and the following equation for the temperature-dependence of the Mg-Fe distribution coefficient: T = 1130(ln Kp + 0.505), where T is absolute temperature, X is Fe2+(Mg + Fe2+)), [Ca] is Ca(Ca + Mg + Fe2+) in Cpx, and KD is the distribution coefficient, defined as XOpx/(1 ? XOpx) ÷ XCpx/(1 ? Cpx).The transfer and exchange equations form useful temperature indicators, and when applied to 9 sets of well-studied rocks, yield pairs of temperatures that are in good agreement. For example, temperatures obtained for the Bushveld Complex are 1020°C (solvus equation) and 980°C (exchange equation), based on 7 specimens. The uncertainty in these numbers, due to precision and accuracy errors, is estimated to be ±60°.  相似文献   

11.
18O16O, 13C12C and 87Sr86Sr ratios have been measured on the same samples for carbonatite complexes. The results show that besides the ‘carbonatite box’ of Tayloret al. (1967) there exist higher δ18O and δ13C values than can be explained by late magmatic or deuteric processes. These processes correspond to high concentrations of CO2 and lead to big enrichments in 18O and 13C as well as in some ‘volatile’ elements. Strontium results are consistent with a model of selective contamination of deep-seated material by highly radiogenic strontium. The whole study leads to the opinion that parent magmas of carbonatites differentiated in a crustal environment with or without significant contamination.  相似文献   

12.
Major and seventeen trace element distribution coefficients between main phenocrysts (olivine, clinopyroxene, amphibole, mica, feldspars and Fe-Ti oxides) and groundmass have been measured in the alkali basalt suite of Chaîne des Puys (Massif Central, France). The suite appears to be a well behaved crystal fractionation series. We pinpoint key elements whose behavior is closely related to the appearance or disappearance of specific crystal phases in the fractionation process. Ta, for instance, clearly indicates the role of hydrous silicates (amphiboles and micas). Distribution coefficients are shown to vary systematically along the differentiation trend. Significantly the hygromagmaphile tendency (Treuilet al., 1979) of U, Th, Ta and La is variable along the series.The mass balance equations,
Di=;xjDjii
where Di and Dji are the bulk and mineral/liquid distribution coefficients respectively, and xj the weight fractions of the fractionating phases, are solved by least square resolution of the overdetermined system, taking into account the analytical errors on data. The solution applied to the Chaîne des Puys suite leads to a coherent and quantitative model of the fractional crystallization process. The suite has apparently evolved in three stages. Each stage is characterized by constant bulk distribution coefficients and a specific mineral assemblage. Amphibole fractionation plays an important role in the early stages. Some intensive parameters (T, ? ?O2, PH2O) as well as f (weight fraction of residual liquid) are also estimated.  相似文献   

13.
Weathered quartz grus and stream transported quartz of the Harney Peak Granite, Black Hills, South Dakota, contain low concentrations of Rb (generally 0.3–6.8 ppm) and Sr (0.2–2.0 ppm) and variable Sr isotopic ratios (0.759–1.070).Six of seven single grains of large composite quartz grus which recently entered the weathering environment define an apparent isochron age (about 1800 Myr) and initial 87Sr86Sr ratio (0.7066) that approximate the whole-rock isochron age (1707 Myr) and initial ratio (0.7143) of the Harney Peak Granite. Apparently the Rb-Sr systematics of these grains were not significantly altered during initial weathering. Leached fluid inclusion material from a ca. 2 g aggregate of composite quartz grains contains very little Rb or Sr (0.019 and 0.17 μg, respectively) and has a very low 87Sr86Sr ratio (0.739). The Rb and Sr content of the quartz grains appears to be concentrated in minute, heterogeneously-distributed mineral inclusions.Five aggregates of more completely weathered, small non-composite quartz grains produce a widely scattered pattern on an isochron diagram with all samples plotting below the 1707 Myr isochron. Examination by SEM of these grains shows solution and precipitation features on their relatively large effective surface areas. The differential precipitation of Rb is believed to have been the major perturbating chemical process during weathering.Three aggregates of stream quartz grains define an apparent isochron age of 1777 Myr and an initial 87Sr86Sr ratio of 0.720 that suggest the initial ‘igneous’ Rb-Sr characteristics of the stream quartz were re-attained during their transportation, probably as a result of removal of the outer weathered surface by abrasion. The apparent resistance to chemical weathering of stream quartz and quartz which has just entered the weathering environment suggests that this mineral may be extremely useful in studies of provenance and the geochronology of strongly weathered terranes.  相似文献   

14.
Nine LL-chondrites were studied by a selective etching technique, to characterize the noblegas components in three mineral fractions: HF-HCl-solubles (silicates, metal, troilite, etc.; comprising ~ 99% of the meteorite), chromite and carbon (~ 0.3–0.7%) and Q (a poorly characterized mineral defined by its solubility in HNO3, comprising ~ 0.05% of the meteorite but containing most of the Ar, Kr, Xe and a neon component of 20Ne22Ne = 10.9 ± 0.8). The 20Ne36Ar ratio in Q falls wi petrologic type and rising 36Ar content, as expected for condensation from a cooling solar nebula, but contrary to the trend expected for metamorphic losses. Chondrites of different petrologic types therefore cannot all be derived from the same volatile-rich ancestor, but must have formed over a range of temperatures, with correspondingly different intrinsic volatile contents.The CCFXe (carbonaceous chondrite fission) component varies systematically with petrologic type. The most primitive LL3s (Krymka, Bishunpur, Chainpur) contain substantial amounts of CCFXe in chromite-carbon, enriched relative to primordial Xe as shown by high 136Xe132Xe (0.359–0.459, vs 0.310 for primordial Xe). These are accompanied by He and by Ne with 20Ne22Ne ≈ 8.0 and by variable amounts of a xenon component enriched in the light isotopes. The chromite in these meteorites is compositionally peculiar, containing substantial amounts of Fe(III). These meteorites, as well as Parnallee (LL3) and Hamlet (LL4) also contain CCFXe in phase Q, heavily diluted by primordial Xe (136Xe132Xe = 0.317–0.329). On the other hand, LL5s and 6s (Olivenza, St. Séverin, Manbhoom and Dhurmsala) contain no CCFXe in either mineral. This deficiency must be intrinsic rather than caused by metamorphic loss, because Q in these meteorites still contains substantial amounts of primordial Ne.If CCFXe comes from a supernova, then its distribution in LL-chondrites requires three presolar carrier minerals of the right solubility properties, containing three different xenon components in certain combinations. These minerals must be appropriately distributed over the petrologic types, together with locally produced Q containing primordial gases, and they must be isotopically normal, in contrast to the gases they contain. On the other hand, if CCFXe comes from fission of a volatile superheavy element, then its decrease from LL3 to LL6 can be attributed to progressively less complete condensation from the solar nebula. Ad hoc assumptions must of the host phase Q, its association with ferrichromite and the origin of the associated xenon component enriched in the light isotopes.Soluble minerals in LL3s and LL4s contain a previously unobserved, solar xenon component, which, however, is not derived from the solar wind. Three types of ‘primordial’ xenon thus occur side-by-side in different minerals of the same meteorite: strongly fractionated Xe in ferrichromite and carbon, lightly fractionated Xe in phase Q, and ‘solar’ Xe in solubles. Because the first two can apparently be derived from the third by mass fractionation, it seems likely that all were trapped from the same solar nebula reservoir, but with different degrees of mass fractionation.  相似文献   

15.
The Kiglapait intrusion contains 330 ppm Sr and has SrCa = 5 × 10?3 and RbSr = 3 × 10?3, as determined by summation over the Layered Group of the intrusion. Wholerocks in the Lower Zone contain 403 FL0.141 ppm Sr, where FL is the fraction of liquid remaining; Sr drops to 180 ppm at the peak of augite production (FL = 0.11) and rises to a maximum of 430 ppm in the Upper Zone before decreasing to 172 ppm at the end of crystallization. Feldspars in the Lower Zone contain 532 FL0.090 ppm Sr, increasing to 680 ppm in the Upper Zone before decreasing to 310 ppm at the end. Clinopyroxenes contain 15 to 30 ppm Sr and have a mineral-melt distribution coefficient D = 0.06 except near the top of the intrusion where D = 0.10.The calculated feldspar-liquid distribution coefficient has an average value near 1.75 but shows four distinct trends when plotted against XAn of feldspar. The first two of these are strongly correlated with the modal augite content of the liquid, on average by the relation D = 1.4 + 0.02 AugL. The third (decreasing) trend is due to co-crystallization of apatite, and the fourth (increasing) trend can best be attributed to a triclinic-monoclinic symmetry change in the feldspar at An26, 1030°C. The compound feldspar-liquid distribution coefficient KD for SrCa bears out these deductions in detail and yields ΔGr for the Sr-Ca exchange ranging from nearly zero at the base of the Lower Zone to ?26 kJ/gramatom at the end of crystallization. The compound feldspar-liquid distribution coefficient KD for RbSr varies from 0.3 in the Lower Zone to 1.1 at the end of crystallization.The ratio CaFCaL is about 1.45 for troctolitic liquids containing 5% augite, for which KD (Sr-Ca) = 1.0 and DCa = DSr. For common basaltic liquids containing 20% augite, the Kiglapait data predict solSrFSrL = 1.8, as commonly found elsewhere. The strong dependence of Dsr on augite content of the liquid illuminates the role of liquid composition and structure in determining the feldspar-liquid distribution coefficient. Conversely, a discontinuous change in the trend of DSr when apatite arrives shows that the effect is due to apatite crystallization itself, not to the continuous variation of the liquid as it becomes enriched in apatite component.  相似文献   

16.
A review of experimental and natural Mg-calcite occurrences indicates that no simple relation exists between mMgmCa in solution and XMgXca in growing calcite crystals. The great variability of the data suggests a strong influence of precipitation kinetics on the distribution of Mg+2 between solution and crystal. We have derived a kinetic formulation for the distribution coefficient (λMg = XMg/XCa/ mMg/mCa) based upon the existence, at steady state conditions, of a constant mass surface phase. The resulting formulation is consistent with both experimental and natural Mg-calcite compositions. The primary factors which influence the value of λMg are temperature and the ratio of KspMCO3 to the activity product ([M+2][CO3?2]/[MCO3]) for magnesite and calcite. The results suggest that Mg-calcite composition (XMg/XCa) is at best a crude measure of the mMg/mCa ratio in paleosolutions.  相似文献   

17.
Systematic sampling of the 39 largest Canadian rivers shows that the weighted average 87Sr86Sr ratio in the dissolved load is 0.7111, similar to previous measurements on such large rivers as the Amazon and Mississippi. Consequently, we believe that the above estimate is likely representative of the global average. This imposes a limit of 6.5 × 1011g yr?1 on the amount of Sr exchanged with basalts in hydrothermal cells on mid-oceanic ridges. Evaluation of geological information suggests that Sr from silicate sources is of considerable importance for all but the largest Canadian rivers. The latter have chemical and isotopic composition consistent with ~4:1 carbonate vs. silicate derivation of Sr, but such interpretation is not unique. In terms of their water discharge, the 39 Canadian rivers studied account for 4.2% of the world total and their weighted average concentrations for other dissolved solutes are: TDS 176 ppm, Ca 18 ppm, Cl 6.8 ppm and Sr 84 ppb.  相似文献   

18.
Determination of amorphous silica solubility in acidified ferric nitrate solutions confirms the presence of ferric silicate complexing. A dissociation constant for the reaction:
FeH3SiO42+Fe3+ + H3SiO4?
of 10?9.8 ± 0.3 pK units at room temperature (22 ± 3°C) is obtained, in close agreement with reported values at 25°C corrected to zero ionic strength of 10?9.9 by Weber and Stumm and 10?9.5 by Olson and O'Melia. Iron-silicate complexing may be of significance to the mobilization of silica in acid waters associated with oxidizing sulphide deposits and coal strip mining and the precipitation of secondary silicate mineral phases.  相似文献   

19.
The kinetics of oxygen isotope self-diffusion in natural samples of hornblende, tremolite, and richterite have been measured. Samples were run under hydrothermal conditions using 18O enriched water. Profiles of 18O(16O + 18O)vs depth into the crystal were obtained using an ion microprobe; the depths of sputtered holes were measured using an optical interferometer. At 1000 bars (100 MPa) water pressure, the activation energies (Q) and pre-exponential factors (D0) for diffusion parallel to c are: D0(cm2/sec) Q (kcal/gm-atom) T (°C) Hornblende 1+20?1 × 10?741 ± 6 650–800 Tremolite 2+30?2× 10?8 39 ± 5 650–800 Richterite 3+5?2 × 10?4 57 ± 2 650–800The diffusion coefficient (D) for hornblende at 800°C and 1000 bars water pressure measured parallel to the c crystallographic direction is at least ten times greater than that parallel to the a or b directions. An increase in water pressure from 200 to 2000 bars increases D by a factor of 2.7 for diffusion parallel to c at 800°C. The D value for hornblende at 800°C is about 0.01 that for quartz and 0.001 that for anorthite. As a result, closure temperatures for oxygen exchange in natural primary amphiboles are significantly higher than for quartz or feldspars. It is unlikely that amphiboles will exchange oxygen isotopes by diffusion under most crustal conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号