首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution, variability and chemical behaviour of dissolved organic carbon (DOC) was investigated over 212 years in the Severn Estuary and Bristol Channel, UK. The concentrations of riverine DOC (3.1–7.8 mg C l?1) covaried with river flow and were invariably conservative in this turbid slowly flushing (~200 days) estuary, indicating that any microbial degradation, chemical flocculation or adsorption processes do not affect the flux of riverine DOC through the estuary. The DOC inputs from the Severn (1.7–2.7 × 1010 g Cyr?1) and other rivers (2.6–3.4 × 1010 g Cyr?1) are the principal sources of DOC in the estuary and correspond to an export of 0.7–1.1% of the terrestrial productivity from the river catchment to the ocean. This export rate is in accord with recent predictions derived from global compilations of organic inputs from rivers and would imply that the global flux of riverine DOC could be as high as 7.8 × 1014 g Cyr?1 which is 5 times greater than some previous estimates.The geochemical significance of a conservative delivery of riverine DOC to the ocean is that irrespective of which flux estimate is considered, such river inputs would make a significant contribution (~SO%) to oceanic DOC, and that the steady-state oceanic DOC flux would have to be significantly greater than present estimates (2.9 × 1014 g Cyr?1) which are based on a mean radio carbon age of 3400 yr.An alternative, more realistic DOC flux model, which assumes a polydisperse age distribution about the mean age, is shown to yield the higher oceanic DOC fluxes required. Flocculation and adsorption processes would remove less than 10% and 0.2% respectively of riverine DOC in estuaries.  相似文献   

2.
Transport of dissolved organic carbon (DOC) in four river systems in different physiographic regions of the United States was related to link magnitude by a power function, log Y = ?0.84 + 1.24 log X. Multiple linear regression indicated that discharge, watershed area, and link magnitude explained almost all variation in DOC transport. For purposes of ecosystem comparison, link magnitude appeared superior to other classification systems, such as stream order.In two of the river systems, the largest fraction of DOC was transported in the spring. A third has a winter transport maximum; the last had bimodal spring and fall maxima.Streams transporting similar total amounts of DOC may vary widely in DOC concentration (mg. 1?1). Particulate organic matter concentration was not simply related to that of DOC.Ranges and means of DOC concentration, mean DOC: POC ratios, annual load of transported DOC as well as annual watershed DOC output were tabulated for 45 streams and rivers, representing a broad range of stream systems and physiographic regions. Mean DOC concentration for these 45 waterways ranged from 0.7 to 28 mg. 1?1. The very low DOC values are found in undisturbed streams; many of the higher values are associated with larger streams influenced by human activities. Most DOC outputs fell within the range 0.21–5.42 metric tons. km?2.yr?1; mean DOC:POC ranged between 0.09 and 70.A comparison was made among several biomes of the ratio of experted DOC to watershed gross and net primary production. DOC, while playing a major role in aquatic ecosystem organic budgets, appears to be of little significance in the nutrient balance of watersheds.  相似文献   

3.
Particulate organic carbon (POC), dissolved organic carbon (DOC), and plant pigments (chlorophylls and carotenoids) were measured approximately bimonthly from March 1992 to October 1993 in the Sabine-Neches estuary (Sabine Lake region), located on the Texas-Louisiana border. High freshwater inflow into this shallow turbid estuary results in the shortest hydraulic residence time (ca. 7 d) of all Texas estuaries (Baskaran et al. in press). Annual averages of chlorophyll-a (3.0 μg l?1) and particulate organic carbon (1.1 mg l?1) in the water column were extremely low in comparison to other shallow estuaries. The highest chlorophyll-a concentrations were observed in October 1993, in the mid and lower regions of the estuary, during the lowest river discharge. Zeaxanthin and fucoxanthin concentrations suggested that much of the chlorophyll-a during this low flow period was represented by cyanobacteria and diatoms that entered from the Gulf of Mexico. The range of DOC concentrations was generally high (4.4–20.9 mg l?1) and were significantly correlated with POC, but not with chlorophyll-a concentrations. When total suspended particulate (TSP) concentrations were below 20 to 30 mg l?1, there were significant increases in %POC and %PON of the TSP. The unusually high POC: chlorophyll-a ratios (highest value of 1423) suggested that much of the POC contained low concentrations of chlorophyll-a that had degraded during transport from wetlands in the Sabine and Neches rivers. Based on these data, this estuary can be characterized as a predominantly heterotrophic system, with low light penetrance, short particle-residence times, high DOC, and low inputs from autochthonous carbon sources.  相似文献   

4.
Montmorillonite, kaolinite, goethite, and particulate and soluble natural organic materials influence the rate of Mn(II) oxidation. While surfaces accelerate the reaction, apparently by bonding Mn2+ in a manner which fulfills the requirements of the transition state, soluble organic materials retard the reaction by complexing the oxidizable species. It is doubtful whether particulate matter would influence the oxidation process under natural loading conditions since 50–500 mg l?1quantities are required to produce measurable changes in the reaction rate. Complexation by humic materials, however, might be expected to reduce the rate of oxidation by an amount proportional to the dissolved organic carbon concentration. Oxidation followed by precipitation is predicted to be an important mechanism for Mn2+ removal in oceanic waters. The situation is less predictable in lake waters.  相似文献   

5.
《Applied Geochemistry》2003,18(9):1453-1477
Observed As concentrations in groundwater from boreholes and wells in the Huhhot Basin of Inner Mongolia, northern China, range between <1 μg l−1 and 1480 μg l−1. The aquifers are composed of Quaternary (largely Holocene) lacustrine and fluvial sediments. High concentrations are found in groundwater from both shallow and deep boreholes as well as from some dug wells (well depths ranging between <10 m and 400 m). Populations from the affected areas experience a number of As-related health problems, the most notable of which are skin lesions (keratosis, melanosis, skin cancer) but with internal cancers (lung and bladder cancer) also having been reported. In both the shallow and deep aquifers, groundwaters evolve down the flow gradient from oxidising conditions along the basin margins to reducing conditions in the low-lying central part of the basin. High As concentrations occur in anaerobic groundwaters from this low-lying area and are associated with moderately high dissolved Fe as well as high Mn, NH4, dissolved organic C (DOC), HCO3 and P concentrations. Many of the deep groundwaters have particularly enriched DOC concentrations (up to 30 mg l−1) and are often brown as a result of the high concentrations of organic acid. In the reducing groundwaters, inorganic As(III) constitutes typically more than 60% of the total dissolved As. The highest As concentrations tend to be found in groundwater with low SO4 concentrations and indicate that As mobilisation occurs under strongly reducing conditions, where SO4 reduction has been an active process. High concentrations of Fe, Mn, NH4, HCO3 and P are a common feature of reducing high-As groundwater provinces (e.g. Bangladesh, West Bengal). High concentrations of organic acid (humic, fulvic acid) are not a universal feature of such aquifers, but have been found in groundwaters from Taiwan and Hungary for example. The observed range of total As concentrations in sediments is 3–29 mg kg−1 (n=12) and the concentrations correlate positively with total Fe. Up to 30% of the As is oxalate-extractable and taken to be associated largely with Fe oxides. The release of As into solution under the reducing conditions is believed to be by desorption coupled with reductive dissolution of the Fe oxide minerals. The association of dissolved As with constituents such as HCO3, DOC and P may be a coincidence related to the prevalent reducing conditions and slow groundwater flow, but they may also be directly involved because of their competition with As for binding sites on the Fe oxides. The Huhhot groundwaters also have some high concentrations of dissolved U (up to 53 μg l−1) and F (up to 6.8 mg l−1). In contrast to As, U occurs predominantly under the more oxidising conditions along the basin margins. Fluoride occurs dominantly in the shallow groundwaters which have Na and HCO3 as the dominant ions. The combination of slow flow of groundwater and the young age of the aquifer sediments are also considered potentially important causes of the high dissolved As concentrations observed as the sediments are likely to contain newly-formed and reactive minerals and have not been well flushed since burial.  相似文献   

6.
Dissolved organic carbon (DOC) dynamics in the Pawcatuck River estuary, a small temperate estuary in Rhode Island, United States, were examined through the use of field transect and in situ production studies. In late summer, when river discharge was minimal, phytoplankton blooms occurred in the upper reaches of the estuary and released large amounts of autochthonous DOC that accumulated in the middle reaches of the estuary. DOC production rates in August months, calculated both by mixing diagrams and in situ DOC incubations, ranged from 6.67 to 34.7 μmol C l−1 d−1 and were positively correlated with DCMU-enhanced fluorescence, an estimate of phytoplankton photosynthetic activity (r2=0.796, p<0.001). The percent extracellular release (PER) of DOC from phytoplankton, calculated from measured in situ DOC production and net phytoplankton production (NPP) rates, ranged from 5.8% to 40.6% and was negatively correlated with NPP (r2=0.80, p<0.01). Accumulated DOC was principally nonhumic in nature, and the humic DOC component behaved quite differently with either conservative mixing or significant removal at the head of the estuary. Humic removal at times amounted to approximately 50% of the humic material and 25% of the total incoming riverine DOC. These large humic losses were not observed in bulk DOC-salinity mixing diagrams but required distinct analyses of the humic and nonhumic components. DOC addition and removal processes co-occur in this system and observation of bulk DOC mixing diagrams may mask the true dynamic nature of the estuarine DOC pool. The net result of the DOC addition and removal processes is a seasonally variable transformation of a humic-rich incoming riverine DOC to a nonhumic enriched bulk DOC component that varies seasonally and with river discharge.  相似文献   

7.
《Applied Geochemistry》2006,21(7):1226-1239
Natural organic matter (NOM) from the Han River, Korea was fractionated into humic and non-humic fractions by absorbing onto XAD-7HP, and these fractions were analyzed using UV-absorption, and for dissolved organic C (DOC). The humic fraction (i.e. humic substances; HS) was extracted and its characteristics were compared to commercial humic materials using various spectroscopic methods such as Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H-NMR) and fluorescence spectroscopy. The humic fraction as organic C was 47.0% on the average, however, a rainfall event brought a higher humic fraction into Han River water. The molar ratios of H/C and O/C in the HS from Han River water (HRHS) were 1.40 and 0.76, respectively, and the ratio of aliphatic to aromatic protons in the HS (PAl/PAr ratio) was 5.8. Aromaticity and humification degree (i.e., degree of condensation) of HRHS were relatively lower than those from other humic materials, while the portion of oxygenated functional groups was relatively higher. FT-IR, 1H-NMR and fluorescence spectroscopy showed distinct differences between HRHS and the commercial humic materials. Commercial humic materials are not representative of HS extracted from Han River water. The fluorescence spectra, relatively simple measurements, were found to be most useful as fingerprints for humic materials from particular sources.  相似文献   

8.
We measured dissolved and particulate organic carbon (DOC and POC) in samples collected along 13 transects of the salinity gradient of Chesapeake Bay. Riverine DOC and POC end-members averaged 232±19 μM and 151±53 μM, respectively, and coastal DOC and POC end-members averaged 172±19 μM and 43±6 μM, respectively. Within the chlorophyll maximum, POC accumulated to concentrations 50–150 μM above those expected from conservative mixing and it was significantly correlated with chlorophylla, indicating phytoplankton origin. POC accumulated primarily in bottom waters in spring, and primarily in surface waters in summer. Net DOC accumulation (60–120 μM) was observed within and downstream of the chlorophyll maximum, primarily during spring and summer in both surface and bottom waters, and it also appeared to be derived from phytoplankton. In the turbidity maximum, there were also net decreases in chlorophylla (?3 μg l?1 to ?22 μg l?1) and POC concentrations (?2 μM to ?89 μM) and transient DOC increases (9–88 μM), primarily in summer. These occurred as freshwater plankton blooms mixed with turbid, low salinity seawater, and we attribute the observed POC and DOC changes to lysis and sedimentation of freshwater plankton. DOC accumulation in both regions of Chesapeake Bay was estimated to be greater than atmospheric or terrestrial organic carbon inputs and was equivalent to ≈10% of estuarine primary production.  相似文献   

9.
The rate of aerobic oxidation of methane was calculated based on average profiles of the tritiumhelium age of the Baikal waters and concentrations of the dissolved methane in the water column. In the deep lake zone (>200 m), the intensity of oxidation vertically decreases and is (2–0.3) × 10?2 nl CH4l?1 days?1 in southern and central Baikal and (2.8–1.0) × 10?2 nl CH4 l?1 days?1 in northern Baikal. The effective coefficient of the oxidation rate in the lake depressions is 3.6 × 10?4, 3.3 × 10?4, and 3.7 × 10?4 days?1, respectively. At current methane concentrations in the water column, about 80 t of methane is oxidized per year. Oxidation of the dissolved methane in the water column was estimated at a possible increase of its concentration.  相似文献   

10.
Organic matter is an important factor that cannot be neglected when considering global carbon cycle. New data including organic matter geochemistry at the small watershed scale are needed to elaborate more constrained carbon cycle and climatic models. The objectives are to estimate the DOC and DIC yields exported from small tropical watersheds and to give strong constraints on the carbon hydrodynamic of these systems. To answer these questions, we have studied the geochemistry of eleven small watersheds around Basse-Terre volcanic Island in the French West Indies during different hydrological regimes from 2006 to 2008 (i.e. low water level versus floods). We propose a complete set of carbon measurements, including DOC and DIC concentrations, δ13C data, and less commonly, some spectroscopic indicators of the nature of organic matter. The DOC/DIC ratio varies between 0.07 and 0.30 in low water level and between 0.25 and 1.97 during floods, indicating that organic matter is mainly exported during flood events. On the light of the isotopic composition of DOC, ranging from ? 32.8 to ? 26.2‰ during low water level and from ? 30.1 to ? 27.2‰ during floods, we demonstrate that export of organic carbon is mainly controlled by perennial saprolite groundwaters, except for flood events during which rivers are also strongly influenced by soil erosion. The mean annual yields ranged from 2.5 to 5.7 t km? 2 year? 1 for the DOC and from 4.8 to 19.6 t km? 2 year? 1 for the DIC and exhibit a non-linear relationship with slopes of watersheds. The flash floods explain around 60% of the annual DOC flux and between 25 and 45% of the DIC flux, highlighting the important role of these extreme meteorological events on global carbon export in small tropical volcanic islands. From a carbon mass balance point of view the exports of dissolved carbon from small volcanic islands are important and should be included in global organic carbon budgets.  相似文献   

11.
Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d?1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d?1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20–75 μM; 0.26–1 mg L?1) and ultraviolet absorption coefficient values (a 254?<?5 m?1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.  相似文献   

12.
Langat River drains a tropical watershed in the southwest of the Malaysian Peninsula. The watershed is heavily urbanized in its downstream portion. Water samples were collected from May 2010 to December 2011, at three localities along the main stem river, 1 location at its Semenyih tributary and from an upstream groundwater source. Concentration and δ13C data of riverine DIC and DOC indicate the dominance of C3 plant-derived material as the primary source of carbon, with δ13CDIC values enriched in 13C relative to that of the C3 source. This enrichment is likely due to CO2 outgassing, as calculated concentrations of riverine CO2 are significantly higher than ambient atmospheric values, with methanogenic activity a theoretically possible contributing factor, particularly at the upstream location. The Langat River therefore acts as a net source of CO2, with a total sub-basin flux of 19.7 × 103 t C year?1. This is comparable to the sum of riverine DOC, DIC and POC loss rates from the sub-basin, calculated as 24.5 × 103 t C year?1, and highlights the significance of CO2 evasion from water bodies to the atmosphere for balancing the budget of the terrestrial carbon cycle. The DIC and DOC concentration and δ13C data also suggests that in the more urbanized downriver areas, much of the organic carbon input may be anthropogenicaly derived due to ubiquity of sewage treatment plants and landfill sites. Such human-induced perturbations to riverine carbon cycling should be taken into account in future studies of urbanized watersheds.  相似文献   

13.
Pore-water dissolved organic carbon (PWDOC) concentrations were examined in vegetated and bare sediments of aHalodule wrightii seagrass bed, and in a mud bottom sediment of a southern Texas estuary. Temporal variability was examined at diel (dawn and noon) and bimonthly time scales. Distribution patterns of PWDOC were compared with physical, chemical, and biological factors thought to exert control on PWDOC. Concentration of PWDOC, bacterial production, and resultant PWDOC turnover times displayed statistically significant spatial and temporal variability. Concentration of PWDOC ranged from 14 mg C 1?1 to 107 mg C 1?1 of pore water, or 9–71 μg C cm?3 wet sediment. PWDOC was more variable and was approximately 5 times higher than DOC concentrations in the water column. Low PWDOC concentrations (mean = 14.6 μg C cm?3) and high bacterial production rates (mean = 1.92 μg C cm?3 h?1) were observed at the mud station, whereas PWDOC concentrations were high (mean = 24.6 μg C cm?3) and bacterial production rates were low (mean = 0.43 μg C cm?3 h?1) at the bare station. PWDOC turnover times (Tt), assuming 50% bacterial growth efficiency (1–840 h) were shortest at the mud station (mean=13 h) and longest at the bare station (mean=180 h). In the overlying water column, Tt values were longer, ranging from 1,000–10,000 h. PWDOC concentrations were 25% higher in vegetated sediments than in neighboring bare sediments. This difference was probably due to inputs of labile photosynthetic excretia, since bacterial production rates in vegetated sediments displayed significant diel variability and were 4 times greater than that of bare sediments. Based upon the entire data set, PWDOC was significantly related to macrofaunal biomass, sediment POC, sediment C:N ratios, and oxygen metabolism, but was significantly correlated only to the latter two variables in stepwise multiple regression. Our findings suggest that organism activities and detrital quality are the major determinants controlling variability in PWDOC.  相似文献   

14.
Two organic rich sediments, an oxic muddy sand and a silty mud containing sulphate reducing and methane producing metabolic zones, were sampled from Loch Duich, a fjord type estuary in the N.W. coast of Scotland. Dissolved organic carbon (DOC), as measured by dry combustion and UV absorption, remained constant (8.3–15.8 mg C/l) with depth in the oxic pore waters at a concentration at least twice that of the overlying seawater. DOC in the anoxic pore waters increased linearly with depth from 13.6 at the surface to 55.9–70.5 mg C/l at 80cm. Most of the DOC was present in the high molecular weight (HMW) fraction as separated by ultrafiltration; the low molecular weight (LMW) fraction remained constant (10.0 mg C/l) in both oxic and anoxic pore waters. Spectroscopic data showed the ‘humic’ fraction of the HMW dissolved organic matter was mainly fulvic acid, a small proportion (approx 1%) of humic acid, and a third fraction, possibly melanoidins, which increased relative to fulvic acid with depth. These data confirm the pathway of humification (NissenBaum et al, 1971; nissenbaum and Kaplan, 1972) where HMW organic matter accumulates in pore waters as condensation products of LMW organic substances.  相似文献   

15.
《Applied Geochemistry》2003,18(1):25-36
The controls on the internal neutralization of low productivity, highly acidified waters by sulfide accumulation in sediments are yet poorly understood. It is demonstrated that the neutralization process is constrained by organic matter quality and thermodynamic effects which control the relative rates of SO4 and Fe reduction, and the fate of the reduced Fe and S in the sediments. The investigated sediments were rich in dissolved Fe(II) (0.005–12 mmol l−1) and SO4 (1.3–22 mmol l−1). The pH ranged from 3.0 to 6.8. Contents of reduced inorganic S (0.1–9.5%), molar C/N ratios of the organic matter (12–80) and metabolic turnover rates (1–110 μeq cm−3 a−1) varied strongly. Substantial amounts of Fe sulfides were only found at a simultaneous partial thermodynamic and solubility equilibrium of the involved biogeochemical processes. Sulfide oxidation was apparently inhibited, and SO4 and Fe reduction coexisted. In this type of sediment increases in C availability cause enhanced neutralization rates. In the absence of a partial equilibrium, the sediments were in a sulfide oxidizing and Fe reducing state, and did not accumulate Fe sulfides. The latter type of sediment will increase neutralization rates in response to decreasing deposition of reactive Fe oxides but not necessarily in response to increases in lake productivity by e.g. fertilization measures.  相似文献   

16.
Thermokarst lakes, formed during permafrost thaw in Western Siberia Plain over past tens to hundreds years, cover overall territory close to million km2 and may represent significant source of CO2 and CH4 to the atmosphere. These acidic (3 < pH < 6) and humic [10 < dissolved organic carbon (DOC) < 50 mg/L] lakes are essentially inhabited by heterotrophic bacterioplankton with rare phytoplankton bloom occurring during warm periods. In order to understand possible effects of phytoplankton bloom on thermokarst lake hydrochemistry under climate warming scenario, we cultured pure cyanobacterium (Gloeocapsa sp.) and native cyanobacterial associate separated from the natural lake water. As substrates, sterilized thermokarst lake water and peat leachate from western Siberia were used. In these laboratory microcosm experiments which lasted 10 days, we monitored daily pH, biomass, DOC, and 40 major and trace elements. Despite significant variation of pH (4 to ~10.5) and biomass (a factor of 3–5), very few dissolved elements responded to massive cyanobacterial growth. The DOC varied within a factor of 1.2–1.5, exhibiting slow increase due to exometabolite production in thermokarst lake water and an initial decrease due to photodegradation in peat leachate. Elements appreciably affected by photosynthesis in both lake water and peat leachate substrates were P, Zn, Mn, and, in a lesser degree, Cd, K, Rb, Sr, Ba, Cr, Al, and U. While P, K (Rb), Mn, and Zn removal from solution during cell growth could be linked to biological demand by cyanobacteria, the adsorption of Cd, Sr, Ba, Al, Cr, U on the cell surface in response to the pH rise is most likely. Many other trace elements did not exhibit any significant evolution of the concentration during 10-day experiment either due to their strong complexation with allochthonous organic matter and essentially organic/organo-mineral colloidal status (Fe, Ni, Co, Cu, Pb, REEs, Ti, Zr, Hf, Th) or due to the lack of element interaction with cyanobacterial cells, via both adsorption and intracellular uptake (B, Si, V, Mo, As, Sb, Cs). Therefore, possible intensification of cyanobacterial bloom in thermokarst lakes caused by leaching of thawing peat will likely affect only few macronutrients and micronutrients such as P, K, Mn, and Zn, while the majority of trace elements bound to allochthonous DOC in the form of organic and organo-mineral colloids will not be affected by cyanobacterial biomass production and pH rise due to photosynthesis. Cyanobacterial bloom in organic-rich (20 mg DOC/L) thermokarst lakes exhibited significant potential of carbon sequestration from the atmosphere, which is more than an order of magnitude higher than the CO2 evasion due to heterotrophic plankton respiration of allochthonous DOC.  相似文献   

17.
Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) optical properties were analyzed along two estuarine river transects during the wet and dry seasons to better understand DOM dynamics and quantify mangrove inputs. A tidal study was performed to assess the impacts of tidal pumping on DOM transport. DOM in the estuaries showed non-conservative mixing indicative of mangrove-derived inputs. Similarly, fluorescence data suggest that some terrestrial humic-like components showed non-conservative behavior. An Everglades freshwater-derived fluorescent component, which is associated with soil inputs from the Northern Everglades, behaved conservatively. During the dry season, a protein-like component behaved conservatively until the mid-salinity range when non-conservative behavior due to degradation and/or loss was observed. The tidal study data suggests mangrove porewater inputs to the rivers following low tide. The differences in quantity of DOM exported by the Shark and Harney Rivers imply that geomorphology and tidal hydrology may be a dominant factor controlling the amount of DOM exported from the mangrove ecotone, where up to 21 % of the DOC is mangrove-derived. Additionally, nutrient concentrations and other temporal factors may control DOM export from the mangroves, particularly for the microbially derived fluorescent components, contributing to the seasonal differences. The wet and dry season fluxes of mangrove DOM from the Shark River is estimated as 0.27?×?109 mg C d?1 and 0.075?×?109 mg C d?1, respectively, and the Harney River is estimated as 1.9?×?109 mg C d?1 and 0.20?×?109 mg C d?1.  相似文献   

18.
Changes in water chemistry along the High Arctic fluvial–lacustrine system located in Wedel Jarlsberg Land in the SW Spitsbergen (Svalbard) were investigated during the summer season of 2010 and 2011. The newly formed river–lake system consists of three lakes connected with the Brattegg River. The first bathymetric measurements of these lakes were made by the authors in 2010. The Brattegg River catchment represents a partly glaciered Arctic water system. The studied lakes are characterized by low mineralization and temperature of water. The value of the electrolytic conductivity (EC) ranges from 30.2 to 50.5 μS cm?1 and the temperature of surface water from 1.5 to 7.8 °C. The temperature increase takes place downstream starting from Upper Lake to the outflow from Myrktjørna Lake. The waters of lakes have higher temperatures than the stream. The predominant ions are HCO3 ? (up to 16.5 mg L?1), Cl? (6.66–8.53 mg L?1), Ca2+ (2.40–4.45 mg L?1) and Na+ (2.65–3.36 mg L?1). The highest values of ammonium and DOC found in the lowest Myrktjørna Lake seem to be related to the presence of aquatic organisms and also birds. From the group of 10 analyzed microelements, increased concentrations of aluminum, up to almost 500 μg L?1, are present in the lakes’ water. Water isotopic composition ranges for δ18O and δ2H, from ?10.6 to ?10.9‰ and from ?70.8 to ?72.3‰, respectively. The vertical zonality of lake waters is manifested in a decrease in the temperature and increase in EC and chemical elements concentrations.  相似文献   

19.
Water quality in less-developed countries is often subject to substantial degradation, but is rarely studied in a systematic way. The concentration and flux of major ions, carbon, nitrogen, silicon, and trace metals in the heavily urbanized Bagmati River within Kathmandu Valley, Nepal, are reported. The concentrations of all chemical species increased with distance downstream with the exceptions of protons and nitrate, and showed strong relationships with population density adjacent to the river. Total dissolved nitrogen (TDN), dominated by NH4, was found in high concentrations along the Bagmati drainage system. The export of dissolved organic carbon (DOC) and TDN were 23 and 33 tons km?2 year?1, respectively, at the outlet point of the Kathmandu Valley, much higher than in relatively undeveloped watersheds. The cationic and silica fluxes were 106 and 18 tons km?2 year?1 at the outlet of the Bagmati within Kathmandu Valley, and 36 and 32 tons km?2 year?1 from the relatively pristine headwater area. The difference between headwaters and the urban site suggests that the apparent weathering flux is three times higher than the actual weathering rate in the heavily urbanized Bagmati basin. Fluxes of cations and silica are above the world average, as well as fluxes from densely populated North American and European watersheds. End-member composition of anthropogenic sources like sewage or agricultural runoff is needed to understand the drivers of this high rate of apparent weathering.  相似文献   

20.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号