首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enthalpies of solution in 2PbO · B2O3 at 981 K have been measured for glasses in the system albite-orthoclase-silica and along the join Na1.6Al1.6Si2.4O8-K1.6Al1.6Si2.4O8. The join KAlSi3O8-Si4O8 shows zero heat of mixing similar to that found previously for NaAlSi3O8-Si4O8 glasses. Albite-orthoclase glasses show negative heats of mixing symmetric about Ab50Or50 (Wn = ? 2.4 ± 0.8 kcal). Negative heats of (Na, K) mixing are also found at Si(Si + Al) = 0.6. Ternary excess enthalpies of mixing in the glassy system Ab-Or-4Q are positive but rarely exceed 1 kcal mol?1.Using earlier studies of the thermodynamic properties of the crystals, the present calorimetric data and the “two-lattice” entropy model, the albite-orthoclase phase diagram is calculated in good agreement with experimental data. Attempts to calculate albite-silica and orthoclase-silica phase diagrams reveal complexities probably related to significant (but unknown) mutual solid solubility between cristobalite and alkali feldspar and to the very small heat and entropy of fusion of SiO2.  相似文献   

2.
The mixing properties of aluminosilicate melts in the pseudobinary system NaAlSi3O8-KAlSi 3O8 have been determined by measuring the compositions of their saturated vapours by hightemperature Knudsen cell mass spectrometry. The melts mix close to ideally over most of the composition range with small positive deviations from ideality for K-rich compositions. These may be related to incipient partial ordering of melt constituents into leucite-like and SiO2-like structures above the feldspar liquidus.  相似文献   

3.
Enthalpies of solution in 2PbO· B2O3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO2-SiO2, Ca0.5AlO2-SiO2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO2-SiO2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si4O8-CaAl2Si2O8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive.Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by Taylor and Brown (1979a, b) and others for the structure of aluminosilicate glasses.  相似文献   

4.
Glasses in the systems NaAlSi3O8-KAlSi3O8 and NaAlSi3O8-Si4O8 have been studied by means of hydrofluoric acid solution calorimetry at 50°C. Results indicate small negative enthalpies of mixing in the former system and small positive departures from ideality in the latter.  相似文献   

5.
The mixing properties of aluminosilicate melts in the systems NaAlSi4O10-KAlSi4O10 and NaAlSi5O12-KAlSi5O12 have been determined by measuring the compositions of their saturated vapours by Knudsen cell mass spectrometry. The melts mix very close to ideally over the whole composition range in agreement with theoretical models and the predictions of our previous work.  相似文献   

6.
A thermodynamic model is proposed for calculation of liquidus relations in multicomponent systems of geologic interest. In this formulation of mineral-melt equilibria, reactions are written in terms of the liquid oxide components, and balanced on the stoichiometry of liquidus phases. In order to account for non-ideality in the liquid, a ‘Margules solution’ is derived in a generalized form which can be extended to systems of any number of components and for polynomials of any degree. Equations are presented for calculation of both the excess Gibbs free energy of a solution and the component activity coefficients.Application to the system CaO-Al2O3-SiO2 at one atmosphere pressure is achieved using linear programming. Thermodynamic properties of liquidus minerals and the melt are determined which are consistent with adopted error brackets for available calorimetric and phase equilibrium data. Constraints are derived from liquidus relations, the CaO-SiO2 binary liquid immiscibility gap, solid-solid P-T reactions, and measured standard state entropies, enthalpies, and volumes of minerals in this system.Binary and ternary liquidus diagrams are recalculated by computer programs which trace cotectic boundaries and isothermal sections while checking each point on a curve for metastability. The maximum differences between calculated and experimentally determined invariant points involving stoichiometric minerals are 17°C and 1.5 oxide weight per cent. Because no solid solution models have been incorporated, deviations are larger for invariant points which involve non-stoichiometric minerals.Calculated heats of fusion, silica activities in the melt, and heats of mixing of liquids compare favorably with experimental data, and suggest that this model can be used to supplement the limited amount of available data on melt properties.  相似文献   

7.
Enthalpies of solution in 2PbO · B2O3 at 974 K have been measured for glasses along the joins Ca2Si2O6 (Wo)-Mg2Si2O6 (En) and Mg2Si2O6-MgAl2SiO6 (MgTs). Heats of mixing are symmetric and negative for Wo-En with WH = ?31.0 ± 3.6 kJ mol?. Negative heats of mixing were also found for the En-MgTs glasses (WH = ?33.4 ± 3.7 kJ mol?).Enthalpies of vitrification of pyroxenes and pyroxenoids generally increase with decreasing alumina content and with decreasing basicity of the divalent cation.Heats of mixing along several glassy joins show systematic trends. When only non-tetrahedral cations mix (outside the aluminosilicate framework), small exothermic heats of mixing are seen. When both nontetrahedral and framework cations mix (on separate sublattices, presumably), the enthalpies of mixing are substantially more negative. Maximum enthalpy stabilization near compositions with Al/Si ≈ 1 is suggested.  相似文献   

8.
The enthalpies of solution of several synthetic garnets on the join Mg3Al2Si3O12-Ca3Al2Si3O12 (pyrope-grossular) and of several synthetic clinopyroxenes on the join CaMgSi2O6-CaAl2SiO6 (diopside-Ca-Tschermak's molecule) were measured in a melt of composition 2PbO · B2O3 at 970 K. The determinations were made with sufficient precision so that thermochemical characterizations of the solid solutions could be achieved.The pyrope-grossular solutions show positive enthalpies of mixing. The non-ideality in the range 0–30 mole % grossular is relatively the largest and is in good agreement with the predictions of Ganguly and Kennedy (1974) based largely on cation partitioning of natural high grade metamorphic garnets with biotite, and with the deductions of Hensenet al. (1975) based on measurement of the compositions of synthetic pyrope-rich garnets equilibrated with anorthite, Al2SiO5 and quartz. However, the garnets show smaller excess enthalpies at higher grossular contents. This would lead to an asymmetric solvus with a critical temperature lower than predicted by the symmetrical regular solution model of Ganguly and Kennedy (1974). The composition-dependent non-ideality can be understood by simple ionic size considerations in solid substitution and is analogous to the situations for the calcite-dolomite and enstatite-diopside solvi.The heats of solution of pyropes crystallized in the range 1000–1500°C were all the same, within the precision of measurement, and thus we have found no evidence for temperature-dependent cation disordering as a possible explanation of the high entropy of pyrope, as suggested by Charluet al. (1975). Positional disorder of dodecahedral Mg is a more probable reason.The diopside-CaTs join is also non-ideal, with the larger positive enthalpy deviations near the diopside end. The calorimetric data in the magnesian range are consistemt with the model for completely disordered tetrahedral Si and Al which results from the free energy derivations of wood (1975) based on syntheses of diopside-rich aluminous pyroxenes in the presence of anorthite and quartz. At higher Al concentrations the calorimetric data seem more consistent with the ‘local charge-balance’ model of Wood (1975).No evidence for temperature-dependent disorder was found for either the diopside or CaTs end-members.  相似文献   

9.
Five hundred eighty-five viscosity measurements on 40 melt compositions from the ternary system CaMgSi2O6 (Di)-CaAl2Si2O8 (An)-NaAlSi3O8 (Ab) have been compiled to create an experimental database spanning a wide range of temperatures (660-2175°C). The melts within this ternary system show near-Arrhenian to strongly non-Arrhenian properties, and in this regard are comparable to natural melts. The database is used to produce a chemical model for the compositional and temperature dependence of melt viscosity in the Di-An-Ab system. We use the Vogel-Fulcher-Tammann equation (VFT: log η = A + B/(T − C)) to account for the temperature dependence of melt viscosity. We also assume that all silicate melts converge to a common viscosity at high temperature. Thus, A is independent of composition, and all compositional dependence resides in the parameters B and C. The best estimate for A is −5.06, which implies a high-temperature limit to viscosity of 10-5.06 Pa s. The compositional dependence of B and C is expressed by 12 coefficients (bi=1,2.6, cj=1,2..6) representing linear (e.g., bi=1:3) and higher order, nonlinear (e.g., bi=4:6) contributions. Our results suggest a near-linear compositional dependence for B (<10% nonlinear) and C (<7% nonlinear). We use the model to predict model VFT functions and to demonstrate the systematic variations in viscosity due to changes in melt composition. Despite the near linear compositional dependence of B and C, the model reproduces the pronounced nonlinearities shown by the original data, including the crossing of VFT functions for different melt compositions. We also calculate values of Tg for melts across the Di-An-Ab ternary system and show that intermediate melt compositions have Tg values that are depressed by up to 100°C relative to the end-members Di-An-Ab. Our non-Arrhenian viscosity model accurately reproduces the original database, allows for continuous variations in rheological properties, and has a demonstrated capacity for extrapolation beyond the original data.  相似文献   

10.
The enthalpies of solution of La2O3, TiO2, HfO2, NiO and CuO were measured in sodium silicate melts at high temperature. When the heat of fusion was available, we derived the corresponding liquid-liquid enthalpies of mixing. These data, combined with previously published work, provide insight into the speciation reactions in sodium silicate melts. The heat of solution of La2O3 in these silicate solvents is strongly exothermic and varies little with La2O3 concentration. The variation of heat of solution with composition of the liquid reflects the ability of La(III) to perturb the transient silicate framework and compete with other cations for oxygen. The enthalpy of solution of TiO2 is temperature-dependent and indicates that the formation of Na-O-Si species is favored over Na-O-Ti at low temperature. The speciation reactions can be interpreted in terms of recent spectroscopic studies of titanium-bearing melts which identify a dual role of Ti4+ as both a network-former end network-modifier. The heats of solution of oxides of transition elements (Ni and Cu) are endothermic, concentration-dependent and reach a maximum with concentration. These indicate a charge balanced substitution which diminishes the network modifying role of Na+ by addition of Ni2+ or Cu2+. The transition metal is believed to be in tetrahedral coordination, charge balanced by the sodium cation in the melts.  相似文献   

11.
Enthalpies of solution of synthetic clinopyroxenes on the join CaMgSi2O6-Mg2Si2O6 have been measured in a melt of composition Pb2B2O5 at 970 K. Most of the measurements were made on samples crystallized at 1600°–1700°C and 30 kbar pressure, which covered the range 0–78 mole per cent Mg2Si2O6, and whose X-ray patterns could be satisfactorily indexed on the diopside (C2/c) structure. For the reaction: Mg2Si2O6→-Mg2Si2O6 enstatite diopside the present data, in conjunction with previous and new measurements on Mg2Si2O6 enstatite, determine ΔH° ~ 2 kcal and WH (regular solution parameter) ~ 7 kcal. These values are in good agreement with those deduced by Saxena and Nehru (1975) from a study of high temperature, high pressure phase equilibrium data under the assumption that the excess entropy of mixing is small, but, in light of the recent theoretical treatment of Navrotsky and Loucks (1977, Phys. Chem. Min.1, 109–127), the meanings of these parameters may be ambiguous.Heat of solution measurements on Ca-rich binary diopsides made by annealing glasses at 1358°C in air gave slighter higher values than the higher temperature high pressure samples. This may be evidence for some (Ca, Mg) disorder of the sort postulated by Navrotsky and Loucks (1977, Phys. Chem. Min.1, 109–127), although no differences in heat of solution dependent on synthesis temperature in the range 1350°–1700°C could be found in stoichiometric CaMgSi2O6.  相似文献   

12.
A drop calorimetric study, between 900 and 1800 K, of amorphous SiO2, NaAlSi3O8, NaAlSi2O6, NaAlSiO4 and KAlSi3O8 shows the increase in heat capacity which results from glass transitions. For these glasses, the fictive temperature has a negligible effect on the heat capacity above room temperature, but it has an important influence on the enthalpy of formation as obtained from solution calorimetry. From these results and published Cp and enthalpy of solution data, several properties have been calculated: the enthalpies of fusion of high albite, nepheline, Jadeite and high sanidine, the thermodynamic functions of amorphous NaAlSi3O8 and KAlSi3O8 between 0 and 2000 K, and some mixing properties of liquids along the join SiO2-NaAlSi3O8. The latter data suggest that these liquids behave more closely as athermal solutions than as regular solutions.  相似文献   

13.
A mixing model for high structural state ternary feldspars in the NaAlSi3O8–KAlSi3O8–CaAl2Si2O8 system is presented based exclusively on calorimetric and volumetric measurements. Comparisons with existing mixing models, which are based on phase-equilibrium experiments, reveal distinct differences. The incorporation of K into Ca-rich plagioclase and of Ca into K-rich alkali feldspar is more strongly limited by our calorimetry-based model, whereas the stability field of Na-rich feldspars is broadened. Natural feldspar assemblages from well-studied magmatic and high-grade metamorphic rocks (i.e. a teschenite sill in Scotland, the Klokken syenogabbro in Greenland, and a granulite-facies metapelite in Sri Lanka) were used to test the mixing models. It was found that the new model largely eliminates discrepancies between observed and predicted feldspar compositions that were present in earlier attempts. The reasons for the problems associated with phase-equilibrium based mixing models are discussed.  相似文献   

14.
The distribution of interatomic distances in amorphous NaAlSi3O8 has been determined at 805°C by X-ray radial distribution analysis to investigate structural differences between the glass (T < 763°C) and the supercooled liquid (763°C < T < 1118°C). Except for slight differences attributable to thermal expansion, no significant changes were observed. The sample crystallized during the course of the experiment, but at least one crystal-free data set was obtained. The transition from the inferred six-membered ring structure of the supercooled liquid to the four-membered ring structure of the crystal was clearly visible in radial distribution function (RDF's) determined before and after crystallization.RDF's were also determined at 25°C for two NaAlSi3O8 glasses with different histories. The first was derived from a melt that had been cooled slowly from 1600 to 32°C above the melting point (Tf = 1118°C) to detect possible repolymerization to a more ‘crystal-like’ structure as the melt approached Tf. The second glass was prepared by holding a single crystal of Amelia albite at 50°C above Tf to see if the crystalline four-membered ring structure was preserved in melts at temperatures just above the liquidus. No significant differences were observed between these two RDF's and one obtained from a glass quenched from 1800°C. These results suggest that in addition to the destruction of formation of a periodic structure, melting and crystallization in NaAlSi3O8 also involves a repolymerization of tetrahedra. This would explain the observed kinetic barrier to melting and crystallization in the anhydrous system and the catalytic effect of small amounts of water or alkali oxide.  相似文献   

15.
High temperature solution calorimetry of glasses in the system CaMgSi2O6 (Di)-CaAl2SiO6 (CaTs) show them to have negative enthalpies of mixing with a regular enthalpy parameter, WH, of -11.4 ± 0.7 kcal. Negative heats of mixing between alumina-rich and alumina-poor glasses seem to be a general phenomenon in aluminosilicates and are not confined only to glassy systems containing anorthite as a component. The thermodynamic behavior of glasses in the system SiO2-Ca0.5;AlO2-CaMgO2 appears to vary in a smooth fashion, with small positive heats of mixing near SiO2 and substantial negative heats of mixing for other compositions. The exothermic behavior with increasing A1(Al + Si) may be related to local charge balance of M2+ and Al3+. The negative heats of mixing in MgCaSi2O6-CaAl2SiO6, MgCaSi2O6-CaAl2Si2O8 and NaAlSi3O8-CaAl2Si2O8 glasses are in contrast to the positive heats of mixing found in MgCaSi2O6-CaAl2SiO6 (pyroxene) and NaAlSi3O8-CaAl2Si2O8 (high plagioclase) crystalline solid solutions.  相似文献   

16.
Enthalpies and heat capacities of glasses and of stable liquids in the system NaAlSi3O8-CaAl2Si2O8 have been measured by drop and differential scanning calorimetry. Within experimental error, values of C p and of H T 300 of three intermediate compositions fall on straight line interpolations between the end members for both liquids and glasses, indicating that excesses in true and in mean heat capacities [(H T –H 300)/(T–300)] are small or absent. A value for the heat capacity of the An100 liquid component can therefore be derived, and is probably a better estimate than that based on measurements on the pure substance alone. On the assumption of zero excess heat capacity in this system, heats of mixing in the stable liquids are equal to those measured in the glasses by solution calorimetry, and can be as negative as -2 kcal mol–1.Heat capacities of solids and glasses in the Ab-An system are similar and do not vary greatly with composition. The C P's of the liquids, however, increase strongly with An content, suggesting major structural changes take place across the binary.  相似文献   

17.
The solubility and stability of synthetic grossular were determined at 800 °C and 10 kbar in NaCl-H2O solutions over a large range of salinity. The measurements were made by evaluating the weight losses of grossular, corundum, and wollastonite crystals equilibrated with fluid for up to one week in Pt capsules and a piston-cylinder apparatus. Grossular dissolves congruently over the entire salinity range and displays a large solubility increase of 0.0053 to 0.132 molal Ca3Al2Si3O12 with increasing NaCl mole fraction (XNaCl) from 0 to 0.4. There is thus a solubility enhancement 25 times the pure H2O value over the investigated range, indicating strong solute interaction with NaCl. The Ca3Al2Si3O12 mole fraction versus NaCl mole fraction curve has a broad plateau between XNaCl = 0.2 and 0.4, indicating that the solute products are hydrous; the enhancement effect of NaCl interaction is eventually overtaken by the destabilizing effect of lowering H2O activity. In this respect, the solubility behavior of grossular in NaCl solutions is similar to that of corundum and wollastonite. There is a substantial field of stability of grossular at 800 °C and 10 kbar in the system CaSiO3-Al2O3-H2O-NaCl. At high Al2O3/CaSiO3 bulk compositions the grossular + fluid field is limited by the appearance of corundum. Zoisite appears metastably with corundum in initially pure H2O, but disappears once grossular is nucleated. At XNaCl = 0.3, however, zoisite is stable with corundum and fluid; this is the only departure from the quaternary system encountered in this study. Corundum solubility is very high in solutions containing both NaCl and CaSiO3: Al2O3 molality increases from 0.0013 in initially pure H2O to near 0.15 at XNaCl = 0.4 in CaSiO3-saturated solutions, a >100-fold enhancement. In contrast, addition of Al2O3 to wollastonite-saturated NaCl solutions increases CaSiO3 molality by only 12%. This suggests that at high pH (quench pH is 11-12), the stability of solute Ca chloride and Na-Al ± Si complexes account for high Al2O3 solubility, and that Ca-Al ± Si complexes are minor. The high solubility and basic dissolution reaction of grossular suggest that Al may be a very mobile component in calcareous rocks in the deep crust and upper mantle when migrating saline solutions are present.  相似文献   

18.
19.
An end member of the tourmaline series with a structural formula □(Mg2Al)Al6(BO3)3[Si6O18](OH)4 has been synthesized in the system MgO-Al2O3-B2O3-SiO2-H2O where it represents the only phase with a tourmaline structure. Our experiments provide no evidence for the substitutions Al → Mg + H, Mg → 2H, B + H → Si, and AlAl → MgSi and we were not able to synthesize a phase “Mg-aluminobuergerite” characterized by Mg in the (3a)-site and a strong (OH)-deficiency reported by Rosenberg and Foit (1975). The alkali-free tourmaline has a vacant (3a)-site and is related to dravite by the □ + Al for Na + Mg substitution. It is stable from at least 300°C to about 800°C at low fluid pressures and 100% excess B2O3, and can be synthesized up to a pressure of 20 kbars. At higher temperatures the tourmaline decomposes into grandidierite or a boron-bearing phase possibly related to mullite (“B-mullite”), quartz, and unidentified solid phases, or the tourmaline melts incongruently into corundum + liquid, depending on pressure. In the absence of excess B2O3 tourmaline stability is lowered by about 60°C. Tourmaline may coexist with the other MgO-Al2O3-B2O3-SiO2-H2O phases forsterite, enstatite, chlorite, talc, quartz, grandidierite, corundum, spinel, “B-mullite,” cordierite, and sinhalite depending on the prevailing PTX-conditions.The (3a)-vacant tourmaline has the space group R3m with a =15.90 A?, c = 7.115 A?, and V = 1557.0 A?3. However, these values vary at room temperature with the pressure-temperature conditions of synthesis by ±0.015 A? in a, ±0.010 A? in c, and ±4.0 A?3 in V, probably as a result of MgAl order/disorder relations in the octahedral positions. Despite these variations intensity calculations support the assumed structural formula. Refractive indices are no = 1.631(2), nE = 1.610(2), Δn = 0.021. The infrared spectrum is intermediate between those of dravite and elbaite. The common alkali and calcium deficiencies of natural tourmalines may at least partly be explained by miscibilities towards (3a)-vacant end members. The apparent absence of (3a)-vacant tourmaline in nature is probably due to the lack of fluids that carry boron but no Na or Ca.  相似文献   

20.
ATR-FTIR spectroscopy is used to understand the adsorption of uranyl-citrate complexes to Al2O3. Spectral data indicate that uranyl-citrate complexes partially dissociate upon adsorption, allowing full or partial hydrolysis of the uranyl ion. Kads values determined for free citrate adsorption are similar to those for citrate in uranyl-citrate complexes, indicating that the complexation of uranyl by citrate does not significantly affect the ability of citrate to bond with the surface. The isotherm data also indicate enhanced citrate adsorption to Al2O3 in the presence of uranyl, suggesting that uranyl may be the central link between two citrate ligands, and that uranyl is associated with the surface through a bridging citrate ligand. Finally, uranyl-citrate complexes interact with citrate adsorbed to Al2O3 through outer sphere interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号