首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compositions of the interiors and abraded surfaces of 7 chondrules from Semarkona (LL3.0) were measured by neutron activation analysis. For nonvolatile elements, the lithophile and siderophile element abundance patterns in the surfaces are generally similar to those in the corresponding interiors. Siderophile and chalcophile concentrations are much higher in the surfaces, whereas lithophile concentrations are similar in both fractions. Most of the similarities in lithophile patterns and some of the similarities in siderophile patterns between surfaces and interiors may reflect incomplete separation of the fractions in the laboratory, but for 3 or 4 chondrules the siderophile resemblance is inherent, implying that the surface and interior metal formed from a single precursor assemblage. Metal and sulfide-rich chondrule rims probably formed when droplets of these phases that migrated to the chondrule surface during melting were reheated and incorporated into matrix-like material that had accreted onto the surface. The moderately-volatile to volatile elements K, As and Zn tend to be enriched in the surfaces compared with other elements of similar mineral affinity; both enrichments and depletions are observed for other moderately volatile elements. A small fraction of chondrules experienced fractional evaporation while they were molten.  相似文献   

2.
The mineral phases including olivine, orthopyroxene, clinopyroxene, troilite, nickel-iron, plagioclase, chromite and the phosphates were separated from several meteorites. These were a hypersthene chondrite (Modoc), a bronzite chondrite (Guareña), an enstatite chondrite (Khairpur), and two eucrites (Haraiya and Moore County); diopside was separated from the Nakhla achondrite. The purified minerals were analyzed for trace and minor elements by spark source mass spectrometry and instrumental neutron activation analysis. On the meteorites examined our results show that Co, Ni, Cu, Ge, As, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt and Au are entirely or almost entirely siderophile; Na, Rb, Sr, Y, Ba and the rare earth elements lithophile; Se chalcophile. The transition elements So, Ti, V, Cr and Mn are lithophile in most stony meteorites, but show chalcophile affinities in the enstatite chondrites (and enstatite achondrites), as do Zn, Zr and Nb. In the ordinary chondrites Ga shows both lithophile and siderophile affinities, but becomes entirely siderophile in the enstatite chondrites. Molybdenum and tellurium show strong siderophile and weaker chalcophile affinity. The lithophile elements are distributed among the minerals according to the crystallochemical factors, the most effective controlling factor being ionic size.  相似文献   

3.
New bulk-compositional data, including trace siderophile elements such as Ir, Os, Au, and Ni, are presented for 25 ureilites. Without exception, ureilites have siderophile abundances too high to plausibly have formed as cumulates. Ureilites undoubtedly underwent a variety of “smelting,” by which C was oxidized to CO gas while olivine FeO was reduced to Fe-metal. However, pressure-buffered equilibrium smelting is not a plausible model for engendering the wide range (75-96 mol%) of mafic-silicate core mg among ureilites. The smelting reaction produces too much CO gas. Even supposing a disequilibrium process with the smelt-gas leaking out of the mantle, none of the ureilites, least of all the ureilite with the most “reduced” (highest) olivine-core mg (ALH84136), has the high Fe-metal abundance predicted by the smelted-cores model. In principle, the Fe-metal generated by smelting could have been subsequently lost, but siderophile data show that ureilites never underwent efficient depletion of Fe-metal. Ureilites display strong correlations among siderophile ratios such as Au/Ir, Ni/Ir, Co/Ir, As/Ir, Se/Ir, and Sb/Ir. Ureilite siderophile depletion patterns loosely resemble siderophile fractionations, presumably nebular in origin, among carbonaceous chondrites. However, Zn, for an element of moderate volatility, is anomalously high in ureilites. A tight correlation between Au and Ni extrapolates to the low-Ni/Au side of the compositional range of carbonaceous chondrites. From this mismatch, mild but nonetheless significant depletions of refractory siderophile elements such as Ir and Os, and moderate depletions of strongly siderophile, weakly chalcophile elements such as Ni and Au, we infer that the ureilite siderophile fractionations are largely the result of a non-nebular process, i.e., removal of S-rich metallic melt, possibly with minor entrainment of Fe-metal. Several lines of trace-element evidence indicate that melt porosity during ureilite anatexis was at least moderate. The ureilite pattern of very mild depletions of extremely siderophile elements, but much deeper depletions of moderately siderophile, chalcophile elements, suggests that asteroidal core formation probably occurs in two discrete stages. In general, separation of a considerable proportion (several wt%) of S-rich metallic melt probably occurs long before, and at a far lower temperature than, separation of the remaining S-poor Fe-metal. Apart from the Fe-metal itself, only extremely siderophile elements wait until the second stage to sequester mainly into the core.  相似文献   

4.
Trace elements were measured in the rims and interiors of nine chondrules separated from the Chainpur LL-3 chondrite. Whole rock samples of Chainpur and samples of separated rims were also measured. Chondrule rims are moderately enriched in siderophile and volatile elements relative to the chondrule interiors. The enriched volatile elements include the lithophilic volatile element Zn. The moderate enrichment of volatiles in chondrule rims and the lack of severe depletion in chondrules can account for the complete volatile inventory in Chainpur. These results support a three-component model of chondrite formation in which metal plus sulfide, chondrules plus rims and matrix silicates are mixed to form chondrites.  相似文献   

5.
In section many low-FeO CR chondrules are surrounded by rings of metal; this metal-cladding seems to have formed during chondrule melting events as films of metal that wetted the surface. Electron microprobe studies show that in each ring the metal is very uniform in composition, consistent with efficient mixing during formation of the metal film. In contrast the mean Ni contents of 13 different rings vary by up to a factor of 2. There is no FeS associated with ring metal. Ring metal Co is positively correlated with Ni but the Co/Ni ratio seems to decrease with increasing Ni. We observed a weak negative correlation between ring metal Ni and the fayalite content of the host olivine. Coarse interior metal has higher Ni contents than that in the surrounding rings. At any specific chondrule location, smaller grains tend to have lower Ni contents than larger grains. These trends in Ni seem to reflect two processes: (1) The mean Ni content of metal (and easily reduced sulfides or oxides) in chondrule precursor materials seems to have decreased with the passage of time; on average, the metal in earlier-formed chondrules had higher Ni contents than the metal in later-formed chondrules. (2) Some oxidized Fe was reduced during chondrule formation leading to lower Ni contents in small grains compared to large grains; prior to reduction the Fe was in FeS or in FeO in accessible (fine-grained) sites. We suggest that the compositional evolution of nebular solids was responsible for the interchondrule variations whereas reduction of minor amounts of FeS or FeO was responsible for the size-related small variations in Ni content. We suggest that, during chondrule formation events, CR chondrules experienced relatively long thermal pulses that were responsible for the thorough loss of FeS and the common granoblastic texture observed in low-FeO chondrules. The preservation of the structures of internal rings shows, however, that even though high temperatures occurred in the secondary chondrule, temperatures in the centers of large (>20 μm) metal and silicate grains in the primary chondrule did not get high enough to cause appreciable melting.  相似文献   

6.
CK chondrites constitute the most oxidized anhydrous carbonaceous chondrite group; most of the Fe occurs in magnetite and in FeO-rich mafic silicates. The two observed CK falls (Karoonda and Kobe), along with thirteen relatively unweathered CK finds, have unfractionated siderophile-element abundance patterns. In contrast, a sizable fraction of CK finds (9 of 24 investigated) shows fractionated siderophile abundance patterns including low abundances of Ni, Co, Se and Au; the most extreme depletions are in Ni (0.24 of normal CK) and Au (0.14 of normal CK). This depletion pattern has not been found in other chondrite groups. Out of the 74 CK chondrites listed in the Meteoritical Bulletin Database (2006; excluded considerably paired specimens; see http://tin.er.usgs.gov/meteor/metbull.php) we analyzed 24 and subclassified the CK chondrites in terms of their chemical composition and sulfide mineralogy: sL (siderophiles low; six samples) for large depletions in Ni, Co, Se and Au (>50% of sulfides lost); sM (siderophiles medium; two CKs) for moderately low Ni and Co abundances (sulfides are highly altered or partly lost); sH (siderophiles high; one specimen) for enrichments in Ni, Co, Se and Au; ‘normal’ for unfractionated samples (13 samples). The sole sH sample may have obtained additional sulfide from impact redistribution in the parent asteroid. We infer that these elements became incorporated into sulfides after asteroidal aqueous processes oxidized nebular metal; thermal metamorphism probably also played a role in their mineral siting. The siderophile losses in the sL and sM samples are mainly the result of oxidation of pentlandite, pyrite and violarite by terrestrial alteration followed by leaching of the resulting phases. Some Antarctic CK chondrites have lost most of their sulfides but retained Ni, Co, Se and Au, presumably as insoluble weathering products.  相似文献   

7.
The concentrations of Ni, Cu, Zn, Ga, Ge, and Se in five, fine-grained chondrule rims in the highly unequilibrated CO3 chondrite ALH A77307 (3.0) have been determined for the first time by synchrotron X-ray fluorescence (SXRF) microprobe at Brookhaven National Laboratory. These elements are especially useful for tracing the role of condensation and evaporation processes which occurred at moderate temperatures in the solar nebula. Understanding the distribution of moderately volatile elements between matrix and chondrules is extremely important for evaluating the different models for the volatile depletions in chondritic meteorites. The data show that the trace element chemistry of rims on different chondrules is remarkably similar, consistent with data obtained for the major and minor elements by electron microprobe. These results support the idea that rims are not genetically related to individual chondrules, but all sampled the same reservoir of homogeneously mixed dust. Of the trace elements analyzed, Zn and Ga show depletions relative to CI chondrite values, but in comparison with bulk CO chondrites all the elements are enriched by approximately 1.5 to 3.5 x CO. The abundance patterns for moderately volatile elements in ALH A77307 chondrule rims closely mimic those observed in the bulk chondrite, indicating that matrix is the major reservoir for these elements. The close matching of the patterns for the volatile depleted bulk chondrite and enriched matrix is especially striking for Na, which is anomalously depleted in ALH A77307 in comparison with average CO chondrite abundances. The depletion in Na is probably attributable to the effects of leaching in Antarctica. With the exception of Na, the volatile elements show a relatively smooth decrease in abundance as a function of condensation temperature, indicating that their behavior is largely controlled by their volatility.  相似文献   

8.
Sequential non-destructive neutron activation analysis was used to determine the bulk abundance of Fe, Al, Na, Mn, Or, Sc, Co and Ir in approximately 300 individual chondrules from 16 chondrites representing the H (3–5), L4 and LL(3–6) compositional and petrologic classes. For some of the chondrules, Si, Ni, Ca and V were also determined. The histograms indicate that the most probable abundances for lithophilic elements, except Cr, are enriched in the chondrules, while the siderophilic elements are depleted in the chondrules compared to the whole chondrite. Some of the abundance populations, such as Al and Fe, appear to be multimodal. Systematic variations in the composition of the chondrules with increasing petrologic type were observed; most consistent are an increasing Na-Al and Cr-Al correlation, a decreasing Na-Mn correlation, increasing Na abundance and decreasing Na and Mn dispersions among chondrules. The systematic compositional variations with increasing petrologic type are consistent with an increasing approach to equilibrium between chondrules and matrix.Observed elemental correlations are generally consistent with mineralogical controls expected on the basis of geochemical affinities suggested by the mineral assemblages present in the chondrules. However, a prevalent Al-Ir correlation was observed, and is most pronounced for a group of chondrules belonging to a population high in Al. A Sc-Ir correlation was observed. Also, an anti-correlation between chondrule masses and Al (and Ir for some chondrules) content of the chondrules was observed. These correlations are attributed to a fractionation during condensation or chondrule formation and cannot be attributed to classical geochemical similarities i.e. these correlations result from a cosmochemical fractionation. From the compositional evidence, it is suggested that there may be two mechanisms for chondrule production. Some high Al chondrules which exhibit the Al-Ir correlation are believed to be remelted primitive high-temperature aggregates. The elemental composition of the chondrules from the lower Al abundance population is consistent with a preferential remelting of pre-existing silicates.  相似文献   

9.
In the Piancaldoli LL3 chondrite, we found a mm-sized clast containing ~100 chondrules 0.2–64 μm in apparent diameter (much smaller than any previously reported) that are all of the same textural type (radial pyroxene; FS1–17). This clast, like other type 3 chondrites, has a fine-grained Ferich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si- and Cr-bearing metallic Fe,Ni. However, the very high modal matrix abundance (63 ± 8 vol. %), unique characteristics of the chondrules, and absence of microscopically-observable olivine indicate that the clast is a new kind of type 3 chondrite. Most chondrules have FeO-rich edges, and chondrule size is inversely correlated with chondrule-core FeO concentration (the first reported correlation of chondrule size and composition). Chondrules acquired Fe by diffusion from Fe-rich matrix material during mild metamorphism, possibly before final consolidation of the rock. Microchondrules (those chondrules ? 100 μm in diameter) are also abundant in another new kind of type 3 chondrite clast in the Rio Negro L chondrite regolith breccia. In other type 3 chondrite groups, microchondrule abundance appears to be anticorrelated with mean chondrule size, viz. 0.02–0.04 vol. % in H and CO chondrites and ?0.006 vol. % in L, LL, and CV chondrites.Microchondrules probably formed by the same process that formed normal-sized droplet chondrules: melting of pre-existing dustballs. Because most compound chondrules in the clast and other type 3 chondrites formed by collisions between chondrules of the same textural type, we suggest that dust grains were mineralogically sorted in the nebula before aggregating into dustballs. The sizes of compound chondrules and chondrule craters, which resulted from collisions of similarly-sized chondrules while they were plastic, indicate that size-sorting (of dustballs) occurred before chondrule formation, probably by aerodynamic processes in the nebula. We predict that other kinds of type 3 chondrites exist which contain chondrule abundances, size-ranges and proportions of textural types different from known chondrite groups.  相似文献   

10.
Sulfur is a potential light element in the liquid outer core of the Earth. Its presence in segregating metal may have had an influence in distribution of metal-loving (siderophile) elements during early accretion and core formation events in the Earth. The observed “excess” abundance of siderophile elements in the terrestrial mantle, relative to an abundance expected from simple core-mantle equilibrium at low temperature and pressure, may indicate a reduction in the iron-loving tendency of siderophile elements in the presence of sulfur in the metallic phase. The present experimental partitioning study between iron-carbon-sulfur-siderophile element bearing liquid metal and liquid silicate shows that for some siderophile elements this sulfur effect may be significant enough to even change their character to lithophile. Large and intricate variations in metal-silicate partition coefficients (Dmet/sil) have been observed for many elements, e.g., Ni, Co, Ge, W, P, Au, and Re as a function of sulfur content. Moderately siderophile elements Ge, P, and W show the most significant response (sulfur-avoidance) by an enhanced segregation into the associated sulfur-deficient phases. Highly siderophile elements Ir, Pt, and Re show a different style of sulfur-avoidance (alloy-preference) by segregating as sulfur-poor, siderophile element-rich alloys. Both groups are chalcophobic. Dmet/sil for Ni, Co, and Au moderately decreases with increasing sulfur-content in the liquid metal. Dmet/sil for chalcophile element, Cr, in contrast, increases with sulfur. Irrespective of the sulfur-content, in the presence of a carbon-saturated liquid metal, P is always lithophile. The general nonmetal-avoidance tendency of siderophile elements (and acceptance of chalcophile elements) in the liquid metal, postulated by Jones and Malvin (1990) in the FeNiS(sulfur)M (siderophile) system is found to be present in the metal-silicate system as well. A sulfur-bearning liquid metal segregation can potentially reduce the metal-loving nature of many elements to explain the excess paradox. Sulfur-bearing core segregation, however, might require an efficient draining of exsolved immiscible sulfide liquids from the molten silicate, or an increasing siderophility of sulfur at high pressure to reduce the mantle sulfur content to the observed (<300 ppm) value. Moreover, the chondritic relative abundance pattern of many moderately or highly siderophile elements in the upper mantle is not explained by the presence of sulfur in the segregating metals. Core formation is more complex and intricate than equilibrium segregation.  相似文献   

11.
The properties of ordinary chondrites (OC) reflect both nebular and asteroidal processes. OC are modeled here as having acquired nebular water, probably contained within phyllosilicates, during agglomeration. This component had high Δ17O and acted like an oxidizing agent during thermal metamorphism. The nebular origin of this component is consistent with negative correlations in H, L, and LL chondrites between oxidation state (represented by olivine Fa) and bulk concentration ratios of elements involved in the metal-silicate fractionation (e.g., Ni/Si, Ir/Si, Ir/Mn, Ir/Cr, Ir/Mg, Ni/Mg, As/Mg, Ga/Mg). LL chondrites acquired the greatest abundance of phyllosilicates with high Δ17O among OC (and thus became the most oxidized group and the one with the heaviest O isotopes); H chondrites acquired the lowest abundance, becoming the most reduced OC group with the lightest O isotopes.Chondrule precursors may have grown larger and more ferroan with time in each OC agglomeration zone. Nebular turbulence may have controlled the sizes of chondrule precursors. H-chondrite chondrules (which are the smallest among OC) formed from the smallest precursors. In each OC region, low-FeO chondrules formed before high-FeO chondrules during repeated episodes of chondrule formation.During thermal metamorphism, phyllosilicates were dehydrated; the liberated water oxidized metallic Fe-Ni. This caused correlated changes with petrologic type including decreases in the modal abundance of metal, increases in olivine Fa and low-Ca pyroxene Fs, increases in the olivine/pyroxene ratio, and increases in the kamacite Co and Ni contents. As water (with its heavy O isotopes) was lost during metamorphism, inverse correlations between bulk δ18O and bulk δ17O with petrologic type were produced.The H5 chondrites that were ejected from their parent body ∼7.5 Ma ago during a major impact event probably had been within a few kilometers of each other since they accreted ∼4.5 Ga ago. There are significant differences in the olivine compositional distributions among these rocks; these reflect stochastic nebular sampling of the oxidant (i.e., phyllosilicates with high Δ17O) on a 0.1-1 km scale during agglomeration.  相似文献   

12.
A total of 33 elements (Ag, Al, Au, Bi, Br, Cd, Ce, Co, Cr, Cs. Eu, Fe, Ge, Hf, Ir, Lu, Na, Ni, Os, Pd, Rb, Re, Sb, Se, Se, Si, Sm, Tb, Te, Tl, U, Yb and Zn) were analyzed by radiochemical and instrumental neutron activation in four eucrites: Juvinas (brecciated), Ibitira (vesicular, unbrecciated) and Moore County and Serra de Magé (cumulate, un brecciated).When arranged in order of volatility. Cl—normalized abundance patterns allow nebular and planetary effects to be distinguished. The stepped lithophile pattern reveals the dominance of nebular processes; in Ibitira, refractory elements (Hf, Lu, Tb, Ce, Sm, Yb, U, Eu) are (13.1 ± 0.7) × Cl chondrites; volatile elements (Rb. Cs, Br, Bi) are (6.0 + 1.5) × 10?2 Cl. The depletion of Tl seems inherent to the eucrite parent body and is mirrored in the chalcophile elements by the marked deficit of Te relative to Se; apparently volatiles were accreted as a fractionated C3-like component. Consistent but subtle Cl-normalized abundance differences between eucrites (Serra de Magé < Moore County < Juvinas < Ibitira) result from crystal/liquid differentiation; Ibitira approximates the composition of an undifferentiated eucrite magma. The siderophile pattern retains little sign of nebular processes, but reflects planetary metal-silicate partition.The bulk composition of the eucrite parent body closely resembles that of H-chondrites, except for two features: moderately volatile elements (e.g. Na, K. Rb) are very much lower, apparently due to the accretion of more chondrule-like material; the metallic Fe-Ni content is only ~13%, even though total iron is very similar.  相似文献   

13.
Major and trace element analyses of over 180 individual chondrules from 12 carbonaceous chondrites are reported, including individual analyses of 60 chondrules from Pueblito de Allende. Siderophile elements in most chondrules are depleted, compared to the whole chondrite. Correlations of Al-Ir and Ir-Sc among chondrules high in Ca and Al were observed. A Cu-Mn correlation was also found for chondrules from some meteorites. No correlation was observed between Au and other siderophile elements (Fe, Ni, Co and Ir). It is suggested that these elemental associations were present in the material from which the chondrules formed. Compositionally, chondrules appear to be a multicomponent mixture of remelted dust. One component displaying an Al-Ir correlation is identified as Allende-type white aggregates. The other components are a material chemically similar to the present matrix and sulfides-plus-metal material. Abundances of the REE (rare earth elements) were measured in ‘ordinary’ Allende chondrules and were 50% higher than REE abundances in Mokoia chondrules; REE abundances in Ca-Al rich chondrules were similar to REE abundances in Ca-rich white aggregates.  相似文献   

14.
Osmium isotopic compositions, abundances of highly siderophile elements (HSE: platinum group elements, Re and Au), the chalcogen elements S, Se and Te and major and minor elements were analysed in physically separated size fractions and components of the ordinary chondrites WSG 95300 (H3.3, meteorite find) and Parnallee (LL3.6, meteorite fall). Fine grained magnetic fractions are 268-65 times enriched in HSE compared to the non-magnetic fractions. A significant deviation of some fractions of WSG 95300 from the 4.568 Ga 187Re-187Os isochron was caused by redistribution of Re due to weathering of metal. HSE abundance patterns show that at least four different types of HSE carriers are present in WSG 95300 and Parnallee. The HSE carriers display (i) CI chondritic HSE ratios, (ii) variable Re/Os ratios, (iii) lower than CI chondritic Pd/Ir and Au/Ir and (iv) higher Pt/Ir and Pt/Ru than in CI chondrites. These differences between components clearly indicate the loss of refractory HSE carrier phases before accretion of the components. Tellurium abundances correlate with Pd and are decoupled from S, suggesting that most Te partitioned into metal during the last high-temperature event. Tellurium is depleted in all fractions compared to CI chondrite normalized Se abundances. The depletion of Te is likely associated with the high temperature history of the metal precursors of H and LL chondrites and occurred independent of the metal loss event that depleted LL chondrites in siderophile elements. Most non-magnetic and slightly magnetic fractions have S/Se close to CI chondrites. In contrast, the decoupling of Te and Se from S in magnetic fractions suggests the influence of volatility and metal-silicate partitioning on the abundances of the chalcogen elements. The influence of terrestrial weathering on chalcogen element systematics of these meteorites appears to be negligible.  相似文献   

15.
We measured major, minor, and trace-element compositions for eleven Al-rich chondrules from unequilibrated ordinary chondrites to investigate the relationships between Al-rich chondrules, ferromagnesian chondrules, Ca-, Al-rich inclusions (CAIs), and amoeboid olivine aggregates (AOAs). Phase equilibrium considerations show that, for the most part, mineral assemblages in Al-rich chondrules are those expected from melts of the observed compositions. The diversity of mineral assemblages and Al-rich chondrule types arises mainly from the fact that the array of compositions spans both the spinel-saturated anorthite-forsterite reaction curve and a thermal divide defined by where the anorthite-forsterite join crosses the reaction curve. The reaction curve accounts for the two principal varieties of Al-rich chondrule, plagioclase-phyric and olivine-phyric, with or without aluminous spinel. The thermal divide influences the subsequent evolution of each variety. A third variety of Al-rich chondrule contains abundant sodium-rich glass; trace-element fractionation patterns suggest that these glassy Al-rich chondrules could have been derived from the other two by extensive alteration of plagioclase to nepheline followed by remelting. The bulk compositions of Al-rich chondrules (except sodium-rich ones) are intermediate in a volatility sense between ferromagnesian chondrules and type C CAIs. The combined trend of bulk compositions for CAIs, Al-rich chondrules, and ferromagnesian chondrules mirrors, but does not exactly match, the trend predicted from equilibrium condensation at PT ∼ 10-3 atm; the observed trend does not match the trend found for evaporation from a liquid of chondritic composition. We thus infer that the bulk compositions of the precursors to CAIs, Al-rich chondrules, were ferromagnesian chondrules were controlled primarily by vapor-solid reactions (condensation or sublimation) in the solar nebula. Some Al-rich chondrules are consistent with an origin by melting of a compound CAI-ferromagnesian chondrule hybrid; others cannot be so explained. Any hybrid model is restricted by the constraint that the CAI precursor consisted dominantly of pyroxene + plagioclase + spinel; melilite cannot have been a significant component. Amoeboid olivine aggregates also have the inferred mineralogical characteristics of Al-rich chondrule precursors—they are mixtures of olivine with plagioclase-spinel-pyroxene-rich CAIs—but the few measured bulk compositions are more olivine-rich than those of Al-rich chondrules.  相似文献   

16.
We found thirty compound chondrules in two CV3 carbonaceous chondrites. The abundance in each meteorite relative to single chondrules is 29/1846 (1.6%) in Allende and 1/230 (0.4%) in Axtell. We examined petrologic features, major element concentrations and oxygen isotopic compositions. Textural, compositional and isotopic evidence suggests that multiple, different mechanisms are responsible for the formation of compound chondrules.Seven compound chondrules are composed of two conjoined porphyritic chondrules with a blurred boundary. At the boundary region of this type of compounds, a poikilitic texture is commonly observed. This suggests that the two chondrules were melted when they came to be in contact. On the other hand, seventeen compound chondrules consist of two conjoined chondrules with a discrete boundary. The preservation of spherical boundary planes of an earlier-formed chondrule of this type implies that it already solidified before fusing with a later-formed chondrule that was still melted. Six samples out of 17 compound chondrules of this type are composed of two BO chondrules. The BO-BO compound chondrules have a unique textural feature in common: the directions of the barred olivines are mostly parallel between two chondrules. This cannot be explained by a simple collision process and forces another mechanism to be taken into consideration.The remaining six compound chondrules differ from the others; they consist of an earlier-formed chondrule enclosed by a later-formed chondrule. A large FeO enrichment was observed in the later-formed chondrules and the enrichment was much greater than that in the later-formed chondrules of other types of compounds. This is consistent with the relict chondrule model, which envisages that the later-formed chondrule was made by a flash melting of a porous FeO-rich dust clump on an earlier-formed chondrule. The textural evidence of this type of compound shows that the earlier-formed chondrule has melted again to varying degrees at the second heating event. This implies that FeO concentrations in bulk chondrules increases during the second heating event if an earlier-formed chondrule was totally melted together with the FeO-rich dust aggregates.Silicate minerals such as olivine and low-Ca pyroxene in compound chondrules have oxygen isotope compositions similar to those in single chondrules from CV3 chondrites. The oxygen isotope composition of each part of the compound chondrule is basically similar to their chondrule pair, but silicates in some chondrules show varying degrees of 16O-enrichment down to −15‰ in δ18O, while those in their partners have 16O-poor invariable compositions near 0 ‰ in δ18O. This implies that the two chondrules in individual compounds formed in the same environments before they became conjoined and the heterogeneous oxygen isotope compositions in some chondrules resulted from incomplete exchange of oxygen atoms between 16O-rich chondrule melts and 16O-poor nebular gas.  相似文献   

17.
The least equilibrated ordinary chrondrites contain chondrules which have experienced little change since the time of their formation in the early solar system. These chondrules are excellent indicators of the physical and chemical nature of the solar nebula. We separated 36 chondrules from the Chainpur (LL3.4) chondrite and analyzed each for 20 elements and petrographic properties. Sampling biases were minimized as far as possible.Chondrules seem to have formed through the melting of random mixtures of grains comprising a limited number of nebular components. The identity of these components can be deduced from chondrule compositions. The dominant components appear to be: 1) a mixture of metal and sulfide with composition similar to whole-rock metal and sulfide; 2) refractory (Ir-rich) metal; 3) refractory, olivine-rich silicates; 4) low-temperature, pyroxene-rich silicates, and, possibly, 5) a component containing the more volatile lithophiles.Most of the textural types of chondrules formed from the same set of precursor components. In some cases chondrules having different textures are almost identical in composition. A few, unusual chondrule types seem to mainly consist of uncommon nebular components, possibly indicating different modes of formation.Etching experiments confirm that chondrule rims are enriched in metal, troilite and moderately volatile elements relative to the bulk chondrules. However, a large fraction of the volatiles remains in the unetched interior.  相似文献   

18.
Chondrules from the Semarkona (LL3.0) chondrite show refractory and common lithophile fractionation trends similar to those observed among the chondrite groups. It appears that chondrules are mixtures of a small number of pre-existing solid components, and we infer that chondrule precursor materials were related to the nebular components involved in the lithophile element fractionations recognized in ordinary chondrites. Compositional trends among the chondrules can be used to deduce the compositions of these components.We use instrumental neutron activation analysis to measure many (~20) of the lithophile elements in 30 chondrules. The amounts of oxidized iron were calculated from other compositional parameters; concentrations of Si were estimated using mass-balance considerations. The data were corrected for the diluting effects of non-lithophile constituents. Plots of lithophile elements versus a reference refractory element such as Al show that there were two major chondrule silicate precursor components: a refractory, olivine-rich, FeO-free one, and a non-refractory, SiO2-, FeO-rich one.The refractory component probably forms from olivine-enriched condensates formed above the condensation temperature of enstatite. The non-refractory component must have formed from fine-grained materials that were able to equilibrate down to lower nebular temperatures. Chondrite matrix may have had an origin similar to that of the non-refractory material, and constitutes a third lithophile-bearing component that took part in chondrite fractionation processes. The low abundance of refractories and Mg in ordinary and enstatite chondrites was produced by the loss of materials having a higher refractory-element/Mg ratio than that in the refractory component of chondrules.  相似文献   

19.
20.
The paper reports result of comparative analysis of the distribution of siderophile (Au, Pt, Pd, Co, Ni, and Cr) and chalcophile (Ag, Cd, Sb, Pb, Zn, Cu, As, and S) elements in ultramafic rock samples of various types of abyssal peridotites. One of the objectives of this research was to obtain reference estimates for the concentrations of siderophile and chalcophile elements in the two end members defining the geochemical evolutionary trends of the material of the suboceanic mantle: a sample of insignificantly depleted mantle material (spinel lherzolite) and extensively carbonated serpentinite after harzburgite, which was formed at the “endpoint” of the ascent of mantle material to the seafloor surface. The distribution of siderophile and chalcophile elements is proved to record information on the whole compositional evolution of abyssal peridotites corresponding to the trajectory of their exhumation from mantle depth levels to seafloor outcrops. These data indicate that the bulk-rock compositional parameters of abyssal peridotites can be utilized to estimate the contribution of magmatic and hydrothermal process to the distribution of siderophile and chalcophile elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号