首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces   总被引:4,自引:0,他引:4  
The adsorption of gold by pyrite, pyrrhotite, and mackinawite from solutions containing up to 40 mg/kg (8 μm) gold as hydrosulphidogold(I) complexes has been measured over the pH range from 2 to 10 at 25°C and at 0.10 m ionic strength (NaCl, NaClO4). The pH of point of zero charge, pHpzc, has been determined potentiometrically for all three iron sulphides and shown to be 2.4, 2.7, and 2.9 for pyrite, pyrrhotite, and mackinawite, respectively. In solutions containing hydrogen sulphide, the pHpzc is reduced to values below 2. The surface charge for each sulphide is therefore negative over the pH range studied in the adsorption experiments. Adsorption was from 100% in acid solutions having pH < 5.5 (pyrite) and pH < 4 (mackinawite and pyrrhotite). At alkaline pH’s (e.g., pH = 9), the pyrite surface adsorbed 30% of the gold from solution, whereas the pyrrhotite and mackinawite surfaces did not adsorb.The main gold complex adsorbed is AuHS°, as may be deduced from the gold speciation in solution in combination with the surface charge. The adsorption of the negatively charged Au(HS)2 onto the negatively charged sulphide surfaces is not favoured. The X-ray photoelectron spectroscopic data revealed different surface reactions for pyrite and mackinawite surfaces. While no change in redox state of adsorbent and adsorbate was observed on pyrite, a chemisorption reaction has been determined on mackinawite leading to the reduction of the gold(I) solution complex to gold(0) and to the formation of surface polysulphides. The data indicate that the adsorption of gold complexes onto iron sulphide surfaces such as that of pyrite is an important process in the “deposition” of gold from aqueous solutions over a wide range of temperatures and pressures.  相似文献   

2.
In order to elucidate the formation mechanism of low‐sulfidation epithermal gold deposit, the adsorption of [Au(S2O3)2]3? (a model compound for gold(I) complex ion) on alumina gel (a model compound for the aluminum‐bearing minerals) and change in chemical state of [Au(S2O3)2]3? after adsorption on the surface of alumina gel were investigated as a basic model experiment. In the pH range from 4 to 6, the amount of [Au(S2O3)2]3? adsorbed on alumina gel decreased with increasing pH and decreased drastically between pH 6 and 7, and then approached zero above pH 8 at 30°C. At 60°C, the amount of gold adsorbed above pH 7 was enhanced compared with that at 30°C. This adsorption tendency indicates that [Au(S2O3)2]3? is mainly adsorbed by electrostatic interaction between negative charges of [Au(S2O3)2]3? and positive charges of alumina gel because of its isoelectric point around pH 9. The chemical state of gold after adsorption of [Au(S2O3)2]3? on alumina gel was examined using X‐ray absorption near edge structure (XANES). The result showed that [Au(S2O3)2]3? was spontaneously reduced to elemental gold even in the absence of specific reducing agents after adsorption on alumina gel. This reduction reaction might occur by two steps: (i) disproportionation of the adsorbed [Au(S2O3)2]3? at the surface of alumina gel, and (ii) spontaneous reduction of the resulting gold(III) complex ions on the surface of alumina gel. The experimental results suggest that aluminum plays an important role in the concentration of gold(I) complex ions and subsequent reduction of gold during the formation of low‐sulfidation epithermal gold deposits.  相似文献   

3.
Gold adsorption products on powdered ferrihydrite, goethite, and boehmite samples, prepared by reacting Au(III)-Cl solutions ([Au] = 4.2 × 10−5-9.0 × 10−3 M; [Cl] = 0.017-0.6 M) with these adsorbents at pH values of 4 to 9 and Au adsorption densities ranging from 0.046 to 1.53 μmol/m2 were characterized using Au-LIII XAFS spectroscopy. The solutions (before and after uptake) were investigated by Raman scattering to determine speciation and by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) to determine solution composition. We present an analysis of several effects that are observed in the Au LIII-edge XAFS spectra, including X-ray beam-induced photo-reduction, multi-electronic excitations, disorder effects, and multiple scattering, that would complicate interpretation of the spectra if not accounted for. A combination of methods (spectral deconvolution, principal component analysis, spectral inversion, and wavelet analysis) was used to identify and quantify these effects, to characterize the nature of mixed ligands around gold, and to distinguish between multiple-scattering features and features due to next-nearest neighbors in the XAFS spectra.Analysis of the Au-LIII XAFS spectra showed that Au(III) is present as square-planar Au(III)(O,Cl)4 complexes in the aqueous solutions and on the surfaces of the Al/Fe-(oxy)hydroxide adsorption samples with dominantly O ligands at pH > 6 and mixed O/Cl ligands at lower pH values. The EXAFS-derived Au-O and Au-Cl distances are 2.00(2) and 2.28(2) Å, respectively, and the magnitudes of the Debye-Waller factors and third cumulants from anharmonic analyses indicate very little thermal or positional disorder around Au(III) in the adsorption samples. Iron second neighbors are present around Au in the Au(III)/ferrihydrite and Au(III)/goethite adsorption samples, with Au-Fe distances of 3.1(1) and 3.3(1) Å. In boehmite, two sets of Au-Al distances were detected at 3.0(1) and 3.2(1) Å. A reverse Monte Carlo study of the XAFS spectroscopic data suggests the presence of a continuum of edge-shared AuO4-FeO6 distances, which cannot be described correctly by a classical model of these data in which only a mean distance (although severely under-estimated) is derived.  相似文献   

4.
Calculations based on the available thermodynamic data of AuCl 2 and Au (HS) 2 indicate that AuCl 2 is responsible for the transport and enrichment of gold during the stage of pre-concentration in the source bed while Au (HS) 2 is the main gold species involved in the formation of gold deposits in response to hydrothermal reworking. Acid chloride solutions witha Cl > 10° and sulfur-rich solutions with aΣs in excess of 10−2 are held as important criteria for gold enrichment in the source bed and for the formation of gold deposits by subsequent hydrothermal event, respectively.  相似文献   

5.
Abstract: The adsorption of gold on iron(III) and aluminum hydroxides from solutions containing Au(III) complexes has been studied as a function of pH and chloride concentration at 30C. Iron(III) hydroxide was more effective in adsorbing gold from solution than aluminum hydroxide. However, both hydroxides controlled the behavior of Au(III) complex with very similar manner. The most effective gold adsorption occurred in aqueous solution with near neutral pH and low Cl concentration. In this solution condition, Au(III) complexes were mainly dissolved as AuCl2(OH)2- and AuCl(OH)3-, and the surface charge for both hydroxides was positive. In addition, the adsorbed Au(III) complexes were spontaneously reduced to elemental gold in spite of the absence of a specific reducing agent.
The results of this study suggest that adsorption and spontaneous reduction of gold complexes on the surface of hydrous metal oxides with positive charge play an important role in gold precipitation in subsurface environment.  相似文献   

6.
《Applied Geochemistry》2000,15(5):629-646
Stream waters and sediments draining a gossan tailings pile at the Murray Brook massive sulphide deposit were collected to investigate Au mobility. Weathering of the massive sulphides at Murray Brook during the Late Tertiary period resulted in the concentration of Au in the gossan cap overlying the supergene Cu and unoxidized massive sulphide zones of the deposit. The gossan was mined between 1989 and 1992, and Au and Ag were extracted using a cyanide vat leach process. Although stream sediments prior to mining had Au<5 ppb (the detection limit), sediments collected in 1997 had Au contents ranging up to 256 ppm with values up to 6 ppm more than 3 km downstream from the deposit. Dissolved Au contents were similarly anomalous, up to 19 μg/L and in excess of 3 μg/L 3 km downstream. The elevated Au contents in the waters and sediments are interpreted to reflect complexation of Au (as Au(CN)2) by cyanide hosted within the gossan tailings pile. Precipitation recharges through the tailings pile with groundwater flow exiting to Gossan Creek. Degradation of cyanide along the flow path and within Gossan Creek allows colloidal Au to form via reduction of Au(I) by Fe2+, consistent with SEM observations of Au as <1 μm subrounded particles. In the surface waters, the majority of the Au must be in a form <0.45 μm in size to account for the similarity in Au contents between the <0.45 μm and unfiltered samples. The very elevated stream sediment Au values close to the headwaters of Gossan Creek near the tailings indicate that upon exiting to the surface environment, Au(CN)2 complexes are rapidly destroyed and Au removed from solution. However, the high Au<0.004 μm/Autotal in the headwaters and the extended Au dispersion in Gossan Creek waters and sediments suggest that Au(CN)2 complexes persist for the full length of Gossan Creek. The decrease in aqueous Au which is less than 0.004 μm indicates that Au is converted from a complexed form to a colloidal form with increasing distance downstream, consistent with dissolved NO3 contents which decrease from 5210 μg/L near the headwaters to 1350 μg/L at the lower end of the stream.  相似文献   

7.
Geology and mineralogy of the Ulakhan Au-Ag epithermal deposit (northeastern Russia, Magadan Region) are considered. A four-stage scheme of mineral formation sequence is proposed. Concentrations of Au and Ag in minerals of early and late parageneses were determined. It has been established that uytenbogaardtite is associated with native gold and hypergenesis stage minerals — goethite, hydrogoethite, or limonite replacing pyrite. The compositions of uytenbogaardtite (Ag3AuS2), acanthite (Ag2S), and native gold were studied. The composition of the Ulakhan uytenbogaardtite is compared with those of Au and Ag sulfides from other deposits. Thermodynamic calculations in the system H2O–Fe–Au–Ag–S–C–Na–Cl were carried out, which simulate the interaction of native gold and silver with O2- and CO2-saturated surface waters (carbonaceous, sulfide-carbonaceous, and chloride-sodium-carbonaceous) in the presence and absence of acanthite and pyrite at 25 °C and 1 bar. In closed pyrite-including systems, native silver and kustelite are replaced by acanthite; electrum, by uytenbogaardtite, acanthite, and pure gold; and native gold with a fineness of 700–900‰, by pure gold and uytenbogaardtite. Under the interaction with surface waters in the presence of Ag2S and pyrite, Au-Ag alloys form equilibrium assemblages with petrovskaite or uytenbogaardtite and pure gold. The calculation results confirmed that Au and Ag sulfides can form after native gold in systems involving sulfide-carbon dioxide solutions (H2Saq > 10–4 m). The modeling results support the possible formation of uytenbogaardtite and petrovskaite with the participation of native gold in the hypergenesis zone of epithermal Au-Ag deposits during the oxidation of Au(Ag)-containing pyrite, acanthite, or other sulfides.  相似文献   

8.
Detailed mineralogical and geochemical studies of the volcanogenic sulphide mineralization in the Spanish part of the Iberian Pyrite Belt (IPB) define two geochemical, mineralogical and spatial gold associations: (1) the Tharsis-Sotiel-Migollas type in which the gold is enriched with (Co?±?Bi) in the stockworks and interaction zones at the base of the massive sulphide mound; and (2) the Rio Tinto-Aznalcóllar-La Zarza type in which the gold is enriched in facies with a polymetallic (Zn?+?Ag?±?As?±?Tl?±?Hg) signature in a distal position or blocked beneath the massive sulphides. The first type is localized within a domain covering the southern half of the belt which is characterized by an abundance of sedimentary facies. The paragenesis shows that the gold association formed at high temperature (>300?°C) during the initial phases of massive sulphide genesis; the gold, which occurs in patches of very auriferous electrum (Au?>?75?wt.%), was transported by chloride complexes. The second type is found in the northern domain of the belt where volcanic facies are predominant. The paragenesis shows that the gold association formed at lower temperature (<280?°C) late in the massive sulphide genesis. This gold was transported by bisulphide complexes [Au(HS)2 ?] and is contained in Ag- and Hg-rich electrum (up to 61.0 and 30.5?wt.% respectively) and/or auriferous arsenopyrite (mean of 280?ppm Au), two mineral expressions that are able to coexist. It would appear that sulphur activity and oxygen fugacity were important factors in controlling the distribution of gold between the two host minerals and also in determining the Ag content of the electrum. This antithetic behaviour of the gold in the IPB reflects differences in the gold mineralizing fluids that may be due to the geologic environment; i.e. either dominantly sedimentary and acting as a mechanical barrier for gold bearing fluids, or dominantly volcanic and more open to seawater circulation. The fact that possible complications can occur during massive sulphide genesis, in response to the source and evolution of the fluids, raises the question of whether one or two gold influxes are involved. For example, the two gold associations could derive from a single gold influx, with remobilization and redistribution of the gold from the early (Co?±?Bi) facies giving rise to the later gold paragenesis of the (Zn?+?Ag?±?As?±?Tl?±?Hg) facies; this would not have occurred or would have been limited at the Tharsis-Sotiel-Migollas type orebodies. Alternatively, the two gold associations could reflect two separate evolutionary processes distinguished by the gold appearing either early or late in the hydrothermal fluids. Knowing the gold association of a massive sulphide deposit is an advantage when exploring for potential host facies.  相似文献   

9.
Arsenian pyrite in the Shuiyindong Carlin-type gold deposit in Guizhou, China, is the major host for gold with 300 to 4,000 ppm Au and 0.65 to 14.1 wt.% As. Electron miroprobe data show a negative correlation of As and S in arsenian pyrite, which is consistent with the substitution of As for S in the pyrite structure. The relatively homogeneous distribution of gold in arsenian pyrite and a positive correlation of As and Au, with Au/As ratios below the solubility limit of gold in arsenian pyrite, suggest that invisible gold is likely present as Au1+ in a structurally bound Au complex in arsenian pyrite. Geochemical modeling using the laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of fluid inclusions for the major ore forming stage shows that the dominant Au species were Au(HS)2 (77%) and AuHS(aq)0 (23%). Gold-hydroxyl and Gold-chloride complexes were negligible. The ore fluid was undersaturated with respect to native Au, with a saturation index of −3.8. The predominant As species was H3AsO30 (aq). Pyrite in the Shuiyindong deposit shows chemical zonation with rims richer in As and Au than cores, reflecting the chemical evolution of the ore-bearing fluids. The early ore fluids had relatively high activities of As and Au, to deposit unzoned and zoned arsenian pyrite that host most gold in the deposit. The ore fluids then became depleted in Au and As and formed As-poor pyrite overgrowth rims on gold-bearing arsenian pyrite. Arsenopyrite overgrowth aggregates on arsenian pyrite indicate a late fluid with relatively high activity of As. The lack of evidence of boiling and the low iron content of fluid inclusions in quartz, suggest that iron in arsenian pyrite was most likely derived from dissolution of ferroan minerals in the host rocks, with sulfidation of the dissolved iron by H2S-rich ore fluids being the most important mechanism of gold deposition in the Shuiyindong Carlin-type deposit.  相似文献   

10.
Element geochemistry of gold arsenic and mineralogical features of their sulfides in the Carlin-type gold depostis of the Qinling region are discussed in this paper.The initial contents of ore-forming elements such as glod and arsenic are high the ore-bearing rock series in the Qinling region.Furthermore,both the metals are concentrated mainly in the diagenetic pyrite.Study on the mineralogy of arsenic-bearing sulfide minerals in the ores demonstrated that there is a poistive correlation between gold and arsenic in the sulfide minerals.Available evidence suggests that gold in the As-bearing sulfide minerals in likely to be presented as a charge species(Au ),and it is most possible for it to replace the exxcess arsenic at the site of iron and war probably deposited together with arsenic as solid in the sulfide minerals. Pyrite is composed of(Aux^3 ,Fe1-2^2 )([AsS]x^3-[S2]1-x^2-),and arenopyrite of (Aux^3 ,Fe1-x^3 )([AsS]x^3-[AsS2]1-x^3-).The occurrence of glod in the As-sulfied minerals from the Carlin-type gold depostis in the Qinling region has been confirmed by electron probe and transmission electron microscopic studies.The results show that gold was probably depostied together with arsenicas coupled solid solutions in sulfide minerals in the early stage of mineralization.Metallogenic chemical reactions concerning gold deposition in the Carlin-type As-rich gold deposits would involve oxidation of glod and concurrent reduction of arsenic.Later,the deposited gold as solid was remobilized and redistributed as exsolutions,as a result of increasing hydrothermal alteration and crystallization,and decreasing resistance to refractoriness of the host minerals.Gold occurs as sub-microscopic grains(ranging from 0.04tp 0.16μm in diameter)of native gold along micro factures in and crystalline grains of the sulfiedes.  相似文献   

11.
We have used ex situ atomic force microscopy (AFM), scanning tunneling microscopy and spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS) to study the surfaces of natural arsenopyrite samples that were electrochemically polarized in 1 M HCl, or leached in acidic solutions containing ferric iron salts, and then reacted with aqueous gold (III) chloride at ambient temperatures. For arsenopyrite oxidized on a positive-going potential sweep, progressively increasing amounts of surface Fe(III)-O and As-O species, and of S/Fe and S/As ratios in a non-stoichiometric sulfidic layer were found. The products formed in the sweep to a potential of 0.6 V (Ag/AgCl) of the passivity region are shaped in about 100 nm protrusions of two sorts, which are arranged in micrometer-size separate areas, while they are largely mixed at higher, “transpassive” potentials. The quantities of surface alteration substances notably decrease after leaching in ferric chloride and ferric sulfate acidic solutions. Passivation of arsenopyrite was suggested to associate with the disordered, metal-deficient surface layer having moderate excess of sulfur rather than with the products of arsenopyrite oxidation. Exposure of arsenopyrite to 10−5-10−3 M (pH 2) solutions results in the deposition of 8-50 nm gold particles; only a small fraction of the gold is present as Au(I)-S species. The electrochemical oxidation at 0.6 V or ageing of arsenopyrite in air promotes the subsequent gold deposition; in contrast, the amount of Au deposited on arsenopyrite that was treated by leaching in ferric chloride and sulfate solutions was about 10 times smaller than with polished arsenopyrite samples. It has been concluded that reducing agents formed as intermediates of arsenopyrite decomposition facilitate the Au0 cementation although other factors related to the surface state of the arsenopyrite play a role as well. A decrease in the tunneling current magnitudes with decreasing the Au0 particle size has been revealed using STS. This effect along with the increase by 0.2-0.5 eV in the XPS Au 4f binding energies were tentatively ascribed to retarding the electron transitions by emerging electrostatic charge on gold nanoparticles (Coulomb blockade). Possible mechanisms for the effects, and their potential role in the deposition and hydrometallurgy of “invisible” gold are discussed.  相似文献   

12.
Aqueous solutions with about 10 ppt195Au and [HCl] of 10–2.3 and 10–1.3 m were exposed to solid minerals for several months. The gold uptake with time was observed by time-stepped sampling and radiochemical Au analysis. Sorbants were polished thick sections of quartz, pyrite, pyrrhotite and elemental gold, as well as crushed grains and sawed mineral cubes of quartz and pyrite (all randomly oriented). The kinetics of gold sorption strongly varied with the surface area of the sorbents, the type of mineral and the pH of the solution. Mineral-specific differences in reaction rates were observed only at experimental pH values around 2.3, where sorption on pyrrhotite and elemental gold was much more rapid than by quartz and pyrite. At pH around 1.3 gold sorption was rapid on all minerals. This finding is thought to reflect the gold speciation, i.e. neutral hydroxo-gold complexes above pH 1.5, for which only chemisorption is possible, versus dominantly AuCl 4 below pH 1.5, where unspecific electrostatic interaction enhances reaction rates with all protonated mineral surfaces.  相似文献   

13.
To shed light on gold speciation in sulfur-containing ore-forming fluids, we perform first principles molecular dynamics (FPMD) simulations to investigate gold-hydrosulphide complexing under representative geological conditions. With this advanced technique, the electronic structures of solutes and solvents are calculated with density functional theory and the thermal motions are sampled with molecular dynamics. The molecular structures, solvated structures and stabilities of possible complexes are characterized in detail and the following insights have been gained. (1) The previously hypothesized species Au(HS)(H2S)3 and Au(HS) are found unstable under ore-forming conditions. Au(HS)(H2S)3 would dissociate to LAu(HS) (L = H2S or H2O) and free H2S molecules spontaneously. Au(HS) is highly reactive and tends to capture a second ligand to form a double-coordinated complex. (2) In the thin vapor-like phases of low pressures, the stable complexes include Au(HS)(H2O), Au(HS)(H2S) and Au(HS)2 and their relative stability is Au(HS)2 > Au(HS)(H2S) > Au(HS)(H2O). In dense aqueous phases of high pressures, Au(HS)(H2S) would spontaneously deprotonate to Au(HS)2 and thus Au(HS)(H2O) and Au(HS)2 are the stable forms. All of these complexes can retain to the upper-limit of ore-forming temperatures. (3) The gold ions in the complexes do not favor coordinating more molecules and therefore the solvations happen mainly through H-bonding interactions between the ligands and environmental waters. H-bonds are found in vapor, liquid, and dense supercritical phases, whereas in the thin supercritical phase the hydration is very weak. These results provide quantitative and microscopic basis for understanding the speciation of gold in hydrothermal fluids.  相似文献   

14.
The composition and conditions of the formation of gold sulfoarsenide complexes were studied by means of the solution of inverse problems of physicochemical modeling on the basis of the SELEKTOR software, with the computer analysis of the experimental data on Au dissolution in the presence of orpiment at 200–300°C and 1 kbar pressure. It was shown that sulfoarsenide complexes of gold formed in sulfurous-arsenious metalliferous hydrothermal solutions quantitatively prevailed in acidic and near-neutral solutions in the presence of As. The stability of the H2AuAsS 3 0 sulfoarsenide complex and of its AuAsS 2 0 deprotonated analogue depends on the concentration of arsenic in the system, just as the ratio of sulfoarsenide and hydrosulfide complexes of gold. The productive metalliferous generations of sulfides in pyrite-arsenopyrite parageneses are deposited involving gold sulfoarsenides.  相似文献   

15.
The solubility of gold in aqueous sulphide solutions has been determined from pH20°C ≈ 4 to pH20°C ≈ 9.5 in the presence of a pyrite-pyrrhotite redox buffer at temperatures from 160 to 300°C and 1000 bar pressure. Maximum solubilities were obtained in the neutral region of pH as, for example, with mNaHS = 0.15 m, pH20°C = 5.96, T = 309°C, P = 1000 bar where a gold solubility of 225 mg/kg was obtained. It was concluded that three thio gold complexes contributed to the solubility. The complex Au2(HS)2S2? predominated in alkaline solution, the Au(HS)2? complex occurred in the neutral pH region, and in the acid pH region, it was concluded with less certainty that the Au(HS)° complex was present. Formation constants calculated forAu2(HS)2S2? and Au (HS)2? emphasize their high stability. In the temperature range from 175 to 250°C, values of for Au2(HS)2S2? vary from ?53.0 to 47.9 (±1.6) and from ?23.1 to ?19.5 ( ± 1.5) for Au(HS)2?. Equilibrium constante for the dissolution reactions, Au° + H2S + HS? ? Au(HS)2? + 12H2 and 2Au° + H2S + 2H8? ? Au(HS)2? + H2 vary from pKm = +2.4 to +2.55 (±0.10) for Au2(HS)2S2? and from pKn = + 1.29 to + 1.19 (±0.10) for Au(HS)2? over the temperature range 175 to 250°C. Enthalpies of these dissolution reactions were calculated to be ΔHm° = ?5.2 ±2.0 kcal/mol and ΔHn° = +1.7 ±2.0 kcal/mol respectively. It was concluded that gold is probably transported in hydrothermal ore solutions as both thio and chloro complexes and may be deposited in response to changes in temperature, pressure, pH, oxidation potential of the system and total sulphur concentration.  相似文献   

16.
The Xiaoqinling district, the second largest gold producing district in China, is located on the southern margin of the North China Craton. It consists of three ore belts, namely, the northern ore belt, the middle ore belt and the southern ore belt. Pyrite from the Dahu gold deposit in the northern ore belt and Wenyu and Yinxin gold deposits in the southern ore belt were investigated using a combination of ore microscopy and in-situ laser-ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS). A range of trace elements was analyzed, including Au, Te, Ag, Pb, Bi, Cu, Co, Ni, Zn, Mo, Hg, As and Si. The results show that there are no systematic differences between the trace element compositions of pyrite in the three deposits from different ore belts. In general, Au concentrations in pyrite are low (from < 0.01 ppm to 2.2 ppm) but Ni concentrations are rather high (up to 8425 ppm). A four-stage mineralization process is indicated by microscopic and field observations and this can be related to the systematic trace element differences between distinct generations of pyrite. Stage I precedes the main gold mineralization stage; pyrite of this stage has the lowest Au concentrations. Stages II and III contributed most of the gold to the ore-forming system. The corresponding pyrite yielded the highest concentrations of Au and Ni. Our microscopic observations suggest that pyrite in the main gold mineralization stage precipitated simultaneously with molybdenite that has been previously dated as Indosinian (~ 218 Ma by Re–Os molybdenite dating), indicating the Indosinian as the main gold mineralization stage. The Indosinian mineralization age and the geological and geochemical features of these gold deposits (e.g., low salinity, CO2-rich ore fluids; spatial association with large-scale compressional structures of the Qinling orogen; δ18O and δD data suggestive of mixing between metamorphic and meteoric waters; δ34S and Pb-isotopic data that point to a mixed crustal-mantle source) all point to typical orogenic-type gold deposits. High Ni concentrations (up to 8425 ppm) of pyrite possibly linked to deep-seated mafic/ultramafic metamorphic rocks provide further evidence on the orogenic gold deposit affinity, but against the model of a granitic derivation of the mineralizing fluid as previously suggested by some workers. Generally low Au concentration in pyrite is also consistent with those from worldwide orogenic gold deposits. Therefore, the gold mineralization in the Xiaoqinling district is described as orogenic type, and is probably related to Indosinian collision between the North China Craton and the Yangtze Craton.  相似文献   

17.
Using the methods of electron spectroscopy of the surface and SEM–EDS, it is shown that native gold of the deposit related to the epithermal Au–Ag ore formation contains oxidized gold with an oxidation degree of Au (I) or higher on the surface. A thin layer (~15 nm) with high concentrations of Ag and S and an underlying SiO2-bearing layer with a thickness of ~30–60 nm play a protective role providing preservation of Ag and Au sulfides in the surface parts of the Au–Ag grains under the oxidizing conditions. S-rich marginal parts of native gold particles may be represented by solid solutions Ag2–xAu x S or (with a lack of S) by agglomerates of Ag n Au m S clusters. The formation of surface zoning in the nanoscale on the surface of native Au is abundant in nature and may be applied in prospecting.  相似文献   

18.
The enrichment of gold in arsenian pyrite is usually associated closely with the enrichment of arsenic in the mineral, generally known as As1−-pyrite [Fe(As, S)2]. Direct analyses of the valence state of Au in pyrite are, however, difficult due to generally low (∼ppm level) Au concentrations. By means of X-ray photoelectron spectroscopy (XPS), this study obtained reliable valence states of As in pyrite from the Yang-shan gold deposit, a giant “Carlin-type” Au deposit in the western Qinling orogen, central China. The arsenian pyrite specimens were sputtered with Ar+ beam in the vacuum chamber of an XPS to obtain pristine surfaces and to avoid As oxidation during sample preparation. Analyses before and after sputtering show that the As3+ peak are only present on surface that was once exposed to the air. In contrast, the peak of As−1 was essentially unchanged during continuous sputtering. The results indicated that As is the predominant state on the pristine surface of arsenian pyrite; the peak of As3+ previously reported for Au-bearing arsenian pyrite was probably due to oxidation when exposed to air during sample preparation. It is unlikely that the coupled substitution of (Au+ + As3+) for 2Fe2+ takes place in the pyrite lattice. The so-called As3+-pyrite proposed by previous studies may occur in some special (oxidizing) geologic settings, but it is not observed in the Yang-shan gold deposit, and is unlikely to be important in typical orogenic or Carlin-type gold deposits, in which arsenian pyrite is a dominant Au carrier. Combining previous studies on Carlin-type Au deposits with our XPS experimental results, we suggest that the most likely state of Au in the Yang-shan Au deposit is lattice-bounded Au with or without nanoparticles (Au0).  相似文献   

19.
Gold mass transfer with chloride and carbonate-chloride solutions was examined at the 300 and 400°C isotherms and P tot = 1 kbar by means of experimental modeling and theoretical simulations. CO2 was confirmed to suppress Au solubility in fluids. The low Au solubility (mAu < 10?8) determined in the experiments explains the mechanism of its precipitation when serpentinites and listwanites interact with acidic mineralized solutions. Listwanitization, which was genetically related with the emplacement of orogenic granitoids, was determined to have overprinted serpentinites and rodingites and strongly affected Au transport in the oregeochemical system. The characteristics of the metasomatic processes in the Ust’-Dep ophiolites and the gold concentration in the rocks produced by these processes confirm this conclusion.  相似文献   

20.
Groundwater arsenic(As)contamination is a hot issue,which is severe health concern worldwide.Recently,many Fe-based adsorbents have been used for As removal from solutions.Modified granular natural siderite(MGNS),a special hybrid Fe(II)/Fe(III)system,had higher adsorption capacity for As(III)than As(V),but the feasibility of its application in treating high-As groundwater is still unclear.In combination with transport modeling,laboratory column studies and field pilot tests were performed to reveal both mechanisms and factors controlling As removal by MGNS-filled filters.Results show that weakly acid pH and discontinuous treatment enhanced As(Ⅲ)removal,with a throughput of 8700 bed volumes(BV)of 1.0 mg/L As(Ⅲ)water at breakthrough of 10 μg/L As at pH 6.Influent HCO_3~-inhibited As removal by the filters.Iron mineral species,SEM and XRD patterns of As-loading MGNS show that the important process contributing to high As(Ⅲ)removal was the mineral transformation from siderite to goethite in the filter.The homogeneous surface diffusion modeling(HSDM)shows that competition between As(III)and HCO_3~-with adsorption sites on MGNS was negligible.The inhibition of HCO_3~-on As(Ⅲ)removal was connected to inhibition of siderite dissolution and mineral transformation.Arsenic loadings were lower in field pilot tests than those in the laboratory experiments,showing that high concentrations of coexisting anions(especially HCO_3~-and SiO_4~(4-)),high pH,low EBCT,and low groundwater temperature decreased As removal.It was suggested that acidification and aeration of highAs groundwater and discontinuous treatment would improve the MGNS filter performance of As removal from real high-As groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号