首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex active region NOAA 9672 is studied when it was near the central meridian, from October 21–26, 2001. At that time, there was an emergence of new magnetic flux, with the ongoing formation of a filament. The dynamics of the magnetic field are studied in order to search for their possible manifestations in the filament structure, using SOHO MDI magnetograms, SOHO EIT and TRACE filtergrams in the 171 Å line, and Hα filtergrams available via the Internet. Our earlier conclusion that filaments form at the boundaries of supergranules near polarity-inversion lines is confirmed. The conclusion of Chae that sinistral filaments have positive magnetic helicity is also confirmed. New information about magnetic-field decay processes is obtained. The direction of motion of the magnetic poles and their relative positions suggest that the axial field of a filament forms as a result of either reconnection of cancelling magnetic poles, or emergence of horizontal magnetic-flux tubes.  相似文献   

2.
Structural magnetic elements observed in sunspot penumbrae are employed as indicators of motions occurring in and around penumbrae. The analysis presented here is base on SDO/HMI continuum images and magnetograms of the line-of-sight field obtained for the active region NOAA 11117. In a first approximation, the penumbral magnetic fields can be considered alternating spines and interspine filaments. In the plane of the sky, spines are thin radial elements with higher field strengths and lower magnetic-field inclinations compared with those in surrounding areas. It is confirmed that spines first appear as protrusions of the umbra magnetic fields visible in magnetograms, and then develop simultaneously with the growth of the penumbra. The departure of magnetic elements from penumbrae as a result of the detachment of the ends of spines begin 1–1.5 h after the spine formation. Inmature penumbrae, magnetic elements emerge fairly often, and the departure of groups of field elements sometimes generates structures resembling moving ribbons. The velocities of magnetic elements that have separated from spines are a factor of two to three lower than those of elements that have separated from inter-spine filaments. The results obtained agree well with an “uncombed” model for the penumbral magnetic fields.  相似文献   

3.
Solar filtergrams obtained at the Crimean Astrophysical Observatory at the center and wings of the H?? line are used to study variations in filaments, in particular, in arch filament systems (AFSs). These are considered as an indicator of emerging new magnetic flux, providing information about the spatial locations of magnetic-field elements. Magnetic-field maps for the active region NOAA 10030 are analyzed as an example. A method developed earlier for detecting elements of emerging flux using SOHO/MDI magnetograms indicates a close link between the increase in flare activity in theNOAA 10030 group during July 14?C18, 2002 and variations in the topological disconnectedness of the magnetograms. Moreover, variations in the flare activity one day before a flare event are correlated with variations in the topological complexity of the field (the Euler characteristic) in regions with high field strengths (more than 700 G). Analysis of multi-wavelength polarization observations on the RATAN-600 radio telescope during July 13?C17, 2002 indicate dominance of the radio emission above the central spot associated with the increase in flare activity. In addition to the flare site near the large spot in the group, numerous weak flares developed along an extended local neutral line, far from the central line of the large-scale field. The statistical characteristics of the magnetic-field maps analyzed were determined, and show flare activity of both types, i.e., localized in spot penumbras and above the neutral line of the field.  相似文献   

4.
A Green’s function solution of Laplace’s equation for the potential magnetic field in an external spherical region is found using the derivative of the potential along a selected direction as a boundary condition. A set of programs applying this solution to construct the potential magnetic-field lines in solar active regions based on the photospheric line-of-sight field component has been developed. The method is tested using some model fields, and the optimal step size is found for realistic conditions. The developed software is applied to four real solar active regions, adopting HMI/SDO magnetograms as the boundary conditions. The potential magnetic field in the chromosphere and corona have been reconstructed for the selected regions. The calculated field lines are compared with flux tubes observed by AIA/SDO in the EUV. This comparison is used as a basis to discuss the applicability of a potential field approximation to the magnetic fields in solar active regions.  相似文献   

5.
The propagation of a fast magnetoacoustic shock wave the magnetosphere of a solar active region is considered the nonlinear geometrical acoustics approximation. The magnetic field is modeled as a subphotospheric magnetic dipole embedded in the radial field of the quiet corona. The initial parameters of the wave are specified at a spherical surface in the depths of the active region. The wave propagates asymmetrically and is reflected from regions of the strong magnetic field, which results in the radiation of the wave energy predominantly upwards. Substantial gradients in the Alfvén speed facilitate appreciable growth in the wave intensity. Non-linear damping of the wave and divergence of the wave front lead to the opposite effect. Analysis of the joint action of these factors shows that a fast magnetoacoustic perturbation outgoing from an active region can correspond to a shock wave of moderate intensity. This supports the scenario in which the primary source of the coronal wave is an eruptive filament that impulsively expands in the magnetosphere of an active region.  相似文献   

6.
The fundamental possibility of reliably removing the π ambiguity from the transverse magnetic field detected in solar vector magnetographic measurements, independent of the location of the vector magnetograms on the solar disk is demonstrated. The corrected magnetograms are then used as boundary conditions for the reconstruction of the three-dimensional magnetic field. The calculated field lines agree well with observed non-potential magnetic loops. The π ambiguity is removed using a modified Metropolis algorithm adapted to a spherical geometry. The spatial configuration of the magnetic field is calculated in a nonlinear force-free approximation using an optimization method. Tests of the new algorithm for resolving the π ambiguity are demonstrated for various model cases and comparisons with results of the NPFC method.  相似文献   

7.
银河旋臂、地核环流与地球大冰期   总被引:3,自引:0,他引:3  
地球在其约46亿年的生命史中,多次出现大冰期,关于其形成原因是地球科学家研究的热门课题。促使地球系统演化的力源主要来自哪一圈层?气体具有最大的激活能,但大气圈仅占地球总质量的10-6,它不可能是主要圈层。固态的激活能最低,下地幔和地内核亦不大可能在地球系统演化中扮演主要角色。地球外核是液态,具有较高的激活能,它约占现代地球系统总质量的30%,故可认为它是地球系统演化的主要活动圈层。作为旋转地球上的流体,外核环流存在着两种极端流型:一是“地转流型”,其速度场是二维场,垂直运动很弱(以下简称为G型);二是“强对流型”,当Elssaser数≥1时,流场的二维几乎完全被Lorenz力所破坏,对流充满整个地核(以下简称C型)。文章在事实分析的基础上提出了地球大冰期形成的如下假说:当地球背景磁场与银河旋臂磁场极性符号相同时,外磁场将激发地球外核环流转为C型,引起地壳和地幔强烈的垂直运动(强造山运动),致使大气热机效率亦大为提高,高纬地区强降温,这是大冰期形成的根本原因。这一假说的逆表述,即当地球背景磁场与银河旋臂磁场极性相反时,地核环流将转向G型,地壳表面将主要是“夷平作用”,致使大气热机效率亦降低,行星风系减弱,高纬?  相似文献   

8.
Fractal dynamics of geomagnetic storms   总被引:1,自引:1,他引:0  
We explore fluctuations of the horizontal component of the Earth’s magnetic field to identify scaling behaviour of the temporal variability in geomagnetic data recorded by the Intermagnet observatories during the solar cycle 23 (years 1996 to 2005). In this work, we use the remarkable ability of scaling wavelet exponents to highlight the singularities associated with discontinuities present in the magnetograms obtained at two magnetic observatories for six intense magnetic storms, including the sudden storm commencements of 14 July 2000, 29–31 October and 20–21 November 2003. In the active intervals that occurred during geomagnetic storms, we observe a rapid and unidirectional change in the spectral scaling exponent at the time of storm onset. The corresponding fractal features suggest that the dynamics of the whole time series is similar to that of a fractional Brownian motion. Our findings point to an evident relatively sudden change related to the emergence of persistency of the fractal power exponent fluctuations precedes an intense magnetic storm. These first results could be useful in the framework of extreme events prediction studies.  相似文献   

9.
The new approach to the modeling of quiescent solar prominences is proposed. We solve the inverse magnetohydrostatic problem, when the pressure, density and temperature of plasma in the filament are calculated from the equilibrium equations using the given magnetic structure (magnetic flux function is proposed to be known). The new exact nonlinear solutions for dense (n ≈ (2?3) × 1011 cm?3) and cold (T ≈ (5?10) × 103 K) filaments, embedded in the plan, vertically stratified atmosphere (hot solar corona) free of magnetic field, are derived. The filaments are stretched along the horizontal axisy(the translational symmetry is assumed: ?/?y = 0) and located parallel to and above a photospheric, magnetic polarity reversal line. The magnetic field lines have a structure of magnetic flux rope with helical field lines in three-dimensional space; the strength of magnetic field falls rapidly with distance from a rope axis. No external longitudinal magnetic field is needed to equilibrate the prominence. The net electric current along the filament is equal to zero. The model of magnetic arcade with the deflection (sag) on the top, proposed by Pikelner (1971) as a basic form of normal prominence, is calculated also using the method proposed. It is shown that such magnetic arcade, having the magnetic field strength of few gauss only, can effectively maintain the equilibrium of cool dense filament at the heights about 50–60 Mm.  相似文献   

10.
The evolution of photospheric velocities from the first minutes after the emergence of fresh magnetic flux and the formation of the first pores in active region NOAA 10488 is studied with a time resolution of 1 min and spatial resolution of 4″. The emerging magnetic flux of a major active region is initially a bundle of magnetic-flux loops. Some of these loops erupt through the system of supergranular cells with speeds of up to 1 km/s within 15–25 min and form pores and small spots. It is suggested that the development of a pore represents the emergence of a horizontal magnetic field, which is converted into elements with a strong vertical magnetic field. The region of ascending plasma initially coincides with the zero line of a bipolar magnetic pair. Downflow and upflow regions are related to and appear with the development of pores. During the first hours of their evolution, the trailing-polarity pores exhibit downflows with mean speeds of ∼500 m/s, while upflows with speeds of ∼250 m/s dominate near the leading-polarity pores. It is concluded that a matter flow from the leading to the trailing end is present in the rising loop of a magnetic flux tube, in agreement with well-known numerical-simulation results. The flow that develops in the magnetic-flux tube erupting through the convection zone persists when pores and small spots emerge in the photosphere, at least during the first hours of their evolution.  相似文献   

11.
The emergence of photospheric magnetic fields and the dynamics of the associated pattern of vertical motions in a developing active region are studied based on SOHO/MDI data. Objects were selected for which complete time series of data were available, so as to make it possible to determine the onset time of the magnetic-field emergence at the surface and tracing the formation of the first pores. The active regions studied originated near the central meridian. The total area of sunspots in these regions exceeded 100 millionths of the hemisphere at the maximum of active region evolution. A generalized evolutionary scenario is constructed for the magnetic field and vertical motions in the emerging active region. An asymmetry in the Doppler velocities is noted at an early stage of the active-region development, which corresponds to a matter flow from the leading to the trailing end of the emerging Ω-shaped tube. A direct relationship is found between the matter-downflow velocity in the area of the pore development and the growth in the strength of the longitudinal magnetic field.  相似文献   

12.
The emergence of new magnetic flux in the powerful active region NOAA 10488 on the Sun and the formation of a leading spot is studied using SOHO/MDI data. Magnetograms of the longitudinal magnetic field and radial-velocity data obtained with a temporal resolution of 1 min are analyzed. The analysis begins several hours before the appearance of the top of a rising buoyant loop-like tube of magnetic field in the photosphere and finishes two days later, when the leading spot has formed. The emerging arches of magnetic field had a complex, multi-layered structure. Their apparent concentration can be explained by the emergence of the leading base of an ascending ?? tube. The new magnetic flux emerged in the inner parts of the active region throughout the formation of the leading sunspot, and was accompanied by the development of a penumbra and the appearance of the Evershed effect in the southwest sector of the sunspot. Simultaneous with the development of Evershed flows, the outer parts of the longitudinal magnetic field were gradually separated from the sunspot in the radial direction. As a result, a moat and a quasi-annular structure were formed in the magnetic field. The formation of a ??moat?? cell is part of the unified large-scale formation of the sunspot and the entire active region. The formation of an active region and of its structures is a manifestation of large-scale processes taking place in subphotospheric layers.  相似文献   

13.
The well-known model that attributes the formation of a bipolar sunspot group to the emergence of a flux tube disagrees sharply with the usual observed pattern of phenomena. At the same time, the observed patterns can be accounted for quite convincingly in terms of local magnetic-field amplification due to cellular convective motions of the solar plasma. In this study, magnetoconvection in a plane horizontal fluid layer is simulated numerically in the framework of the fully nonlinear, three-dimensional problem. A weak horizontal magnetic field and weak cellular flow are assumed to be present initially. Convection is shown to be capable of producing bipolar magnetic configurations of the strongly amplified magnetic field. Indications of magnetic freezing of the flow in the cell are found. The action of the amplification mechanism under study may be controlled by the large-scale toroidal magnetic field of the Sun.  相似文献   

14.
SOHO/MDI magnetograms are used to analyze the time variations in the magnetic parameters of the active region (AR) NOAA 10486, which was part of a large activity complex that passed over the solar disk from October 26 to 31, 2003, during solar cycle 23. The results are compared with X-ray flares in the AR and the parameters of coronal mass ejections associated with the AR. The time variations in the distributions of themagnetic-field strengths associated with the total magnetic flux (Fa), the flux imbalance between the northern and southern polarities (Im), the complexity of the field, as a measure of the mutual overlapping of the opposite polarities (Co), and the tilt angle of the magnetic axis (An) are considered. The time variations in the free energy accumulated in current sheets of ARs were traced using a parameter introduced for this purpose (Sh). The following results were obtained. First, the parameters Fa, Im, Co, An, and Sh quantitatively describe the current state of the AR and can be used to trace and analyze the dynamical evolution of its magnetic field. Second, variations in the magnetic-field-strength distributions and the mean values of Fa, Im, Co, An, and Sh are associated with flares and coronal mass ejections, and the variations have considerable amplitudes. Third, the parameter Sh characterizing the degree to which the magnetic field is non-potential in regions adjacent to the main neutral line increases before eruptive events, and is thus particular interest for monitoring the states of ARs in real time. Fourth, the magnetic field of the AR manifests a sort of quasi-elasticity, so that the field structure is restored after active events, on average, within 1–3 h.  相似文献   

15.
Mashnich  G. P.  Kiselev  A. V. 《Astronomy Reports》2019,63(7):608-617

Results of studies of motions in a filament during its slow ascent and eruption based on spectral observations obtained at the Sayan Solar Observatory are presented. SDO/HMI data on the longitudinal magnetic field and SDO/AIA images in the EUV are also considered. Short-period (∼5 min) vertical oscillations of the filament as a whole were detected during its ascent. An acceleration of the rise of the filament was accompanied by the rupture of an orthogonal loop above the filament, which was observed in 193 A EUV images obtained with SDO/AIA over a long time preceding the event. Two hours before the partial eruption of the filament, SDO/HMI data indicate an increase in the magnetic flux by 2 × 1019 Mx at the footpoints of the loop. The emission from the loop rupture piont propagated toward the east and west along a neutral line, and brightenings were observed at the boundaries of the filament channel. Emission loops were visible in all SDO/AIA channels, testifying to strong heating of the filament plasma. During the rapid phase of the eruption, the filament moved with an acceleration ∼21 m/s2. Hα images show the filament splitting into fragments parallel to its axis during the eruption. The results of these studies of the eruption of the filament are in agreement with other results in the literature, and are supplemented by new observational facts. Vertical oscillations (∼5 min) of the filament as a whole are observed before the ascent phase. During the ascent phase, an interaction of the filament with a higher-lying coronal loop is observed.

  相似文献   

16.
A model for the nonradial motion of an eruptive prominence in the solar corona is proposed. Such motions, which can sometimes be inaccessible to observation, result in an apparent break in the causal link between eruptive prominences and coronal mass ejections. The global magnetic field of the Sun governs coronal plasma motions. The complex structure of this field can form prominence trajectories that differ considerably from a simple vertical rise (i.e., radial motion). A solar filament is modeled as a current-carrying ring or twisted toroidal magnetic rope in equilibrium with the coronal magnetic field. The global field is described using two spherical harmonics. A catastrophic violation of the filament equilibrium followed by its rapid acceleration—eruption—is possible in this nonlinear system. The numerical solution of the equations of motion corresponds well to the eruption pattern observed on December 14, 1997.  相似文献   

17.
Results of a study of the corona above a large sunspot in the active region NOAA 10105 with a penumbra size of ~70″ observed in September 2002 are reported. Maps of the active region and emission spectra were constructed using observational data from the NoRH, SSRT, and RATAN-600 telescopes. The sizes and brightness temperatures of the microwave emission above the sunspot are determined. SOHO/MDI and Kitt Peak magnetograms, as well as CaII K line images obtained at the Meudon Observatory, are compared. The derived characteristics are interpreted as cyclotron emission of thermal plasma, assuming a dipole structure for themagnetic field. A stable darkening at the sunspot center observed at short wavelengths and only in the ordinary emission mode was detected. A jump-like change was observed in the structure of the sunspot source in the ordinary emission mode, due to an increase in the size and spectral flux density. These results demand a fundamental correction of model concepts about cyclotron emission sources above sunspots, since they are at variance with the initial assumptions. It is suggested that, at the top of the transition region, the cyclotron emission source may be represented only by the third gyrolevel, but is observed in the extraordinary and ordinary emission modes (in contrast to the generally accepted model, which has a combination of the second and third gyrolevels). Taking into account the new observational data may allow us to refine model distributions of the main parameters of the coronal plasma above sunspots (the electron temperature and density) and information about the character of the magnetic field.  相似文献   

18.
柬埔寨王国位于低纬度地区,地质勘查程度较低,地面高精度磁测技术能够快速获取磁异常信息,进行找矿评价。在低纬度地区磁化方向主要以水平磁化为主,磁性体产生的磁异常以负磁异常为主。本文通过对柬埔寨王国Mesam金矿磁测数据进行倒相180°、化赤和低纬度化极处理对比,认为三种处理方法得到的结果都能够完整地反映磁场分布特点,在不能忽略剩磁影响的低纬度地区对实测数据进行低纬度化极后再进行解释更加贴近真实且细节更加丰富。通过对低纬度化极后的磁异常进行水平总梯度模和小波多尺度分解计算等位场异常处理,认为磁异常水平总梯度模计算能够较好地反映深部地质体的边界范围,小波多尺度分解计算能够提取特定深度地质体的空间信息,在该区选取的磁异常处理技术是有效的,为进一步扩大该金矿区远景储量提供了新的思路。  相似文献   

19.
Data on small active regions on the Sun collected over three years (2007–2009) are analyzed. Under very quiescent conditions (a low X-ray background level), the shapes of the coronal loops of some active regions correspond fairly well to the shapes of magnetic-field lines calculated in a potential approximation. This is true of several active regions (e.g., the group AR 10999 in June 2008) in which no flares more powerful than B3 were observed. The radio emission of this active region detected by the RATAN-600 telescope was very weak and virtually no polarization was detected. Subflares were observed in most groups. It is demonstrated using AR 10933 (January 2007) as an example that a growth in the soft X-ray emission by up to factors of ten simultaneous with an increase in the radio flux is characteristic for such active regions. A source with the opposite polarization developed to the Northwest of the main spot in AR 10933. A series of SOHO/MDI (and also Hinode) magnetograms shows the emergence of new magnetic flux before the development of this polarized source, which continued for several hours on January 8, 2007. The current density at surfaces located at various heights is estimated based on observations of the total vector magnetic field (Hinode data) and a non-linear, force-free magnetic-field extrapolation. The height-integrated current becomes appreciably stronger at two nodes above a field neutral line, near the location of the main emerging flux. This supports the idea that the emergence of new magnetic flux is a key factor in the evolution of active regions at all stages of their existence. The development of this picture could help in elucidating the inter-relationship between current enhancements, plasma heating, and particle acceleration, in both weak active regions and strong activity complexes.  相似文献   

20.
A topological method for detecting the new emergence of magnetic flux using SOHO/MDI magnetograms of the full solar disk is proposed. This method uses the number of pixels in the image that can be distinguished from a specified value to within a predetermined threshold (the number of disconnected components). We study more than ten very powerful active regions (ARs) with very high flare activity and show that the number of disconnected components increases directly before the development of a series of M and X flares, or accompanies this process. This behaviour is evident not only when there is an explicit emergence of a new flux and a series of fast flares, such as in AR 9236 (November 2000), but also in groups with many non-stationary processes developing along a neutral line of the large-scale magnetic field. We also discuss the possibility of using the obtained results for flare prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号