首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A box model based on salinity distributions and freshwater inflow measurements was developed and used to estimate net non-tidal physical circulation and hydraulic residence times for Patuxent River estuary, Maryland, a tributary estuary of Chesapeake Bay. The box model relaxes the usual assumption that salinity is at steady-state, an important improvement over previous box model studies, yet it remains simple enough to have broad appeal. Average monthly 2-dimensional net non-tidal circulation and residence times for 1986–1995 are estimated and related to river flow and salt water inflow as estimated by the box model. An important result is that advective exchange at the estuary mouth was not correlated with Patuxent River flow, most likely due to effects of offshore salinity changes in Chesapeake Bay. The median residence time for freshwater entering at the head of the estuary was 68 d and decreased hyperbolically with increasing river flow to 30 d during high flow. Estimates of residence times for down-estuary points of origin showed that, from the head of the estuary to its mouth, control of flushing changed from primarily river flow to other factors regulating the intensity of gravitational circulation.  相似文献   

2.
In September 1984, the freshwater input to the Eastmain River (James Bay, Canada) was increased by a factor of 50 over a 6-d period during a controlled reservoir discharge. Changes to the current, salinity and turbidity regimes were monitored during the peak runoff. Estuarine salinity values fell rapidly with increasing mean flow, as did the amplitude of the semi-diurnal tidal currents. A large increase in bottom shear stress dispersed the settled suspension layer into the water column, raising concentrations of suspended matter in the estuary by a factor of 4 in 3 d. The peak values exceeded 150 mg I?1. This led to erosion of the river silt deposits, with the export of an estimated 6 × 104 metric tons of sediments. After the reduction of discharge, current values returned to their normal range within a day, whereas upstream salinity intrusion occurred at a slower rate. Horizontal diffusivities of about 100 m2 s?1 were required to match the observed lag.  相似文献   

3.
钱塘江河口为强涌潮、高含沙量、河床冲淤剧烈的河口,其盐度输移时空变化受河床冲淤的反馈影响十分显著。建立了考虑河床冲淤变化的一维盐度动床数学模型,耦合求解水沙运动、河床冲淤及盐度输移过程,数值计算方法采用守恒性较好的有限体积法。验证结果表明:河床冲淤对氯度的影响非常显著,动床模型的结果与实测基本吻合,在长历时盐度预报中采用动床模型是必要的。应用该模型分析了钱塘江河口咸水入侵对上游建库、治江缩窄工程等人类活动的响应,探讨了杭州城市供水水源保证率。结果表明,新安江水库、河口治理缩窄工程对改善河口淡水资源利用、保障杭州市供水安全显著;供水保证率要达95%以上,需采取上游水库泄水调度和新建备用水库等措施。  相似文献   

4.
The aquatic macrofauna of the Guadalquivir estuary were sampled (1 mm mesh persiana net) at 5 sampling sites located along the entire (except the tidal freshwater region) estuarine gradient of salinity (outer 50 km). A total of 134 fish and macroinvertebrate species was collected but only 62 were considered common or regularly present in the estuary. Univariate measures of the community structure showed statistically significant differences among sampling sites: species richness, abundance, and biomass decreased in the upstream direction, being positively correlated with the salinity. Temporal differences of these three variables were also statistically significant. While a clear seasonal pattern (minimum densities in winter and maximum in spring-summer) was observed for abundance and biomass, no such pattern existed for the number of species. Mysids was the most dominant group throughout the estuary (96% to 99% of abundance; 49% to 85% of biomass), although fish biomass was also important at the outer estuary (36% to 38%). Multivariate analyses indicated highly significant spatial variation in the macrofaunal communities observed along the salinity gradient. These analyses suggest that the underlying structure was a continuum with more or less overlapping distributions of the species dependent on their ability to tolerate different physicochemical conditions. There were also significant temporal (intermonthly + interannual) variation of the estuarine community; the relative multivariate dispersion indicated that monthly variation was more considerable (relative multivariate dispersion >1) at the outer part of the estuary during the wet year (last 20 km) and was higher in the inner stations during the dry year (32 to 50 km from the river mouth). Since a clear negative exponential relationship was observed between the freshwater input (from a dam located 110 km upstream) and water salinity at all sampling stations, it is concluded that the human freshwater management is probably affecting the studied estuarine communities. While the higher seasonal (long-term) stability of the salinity gradient, due to the human control of the freshwater input, may facilitate the recruitment of marine species juveniles during the meteorologically unstable early-spring, the additional (short-term) salinity fluctuations during the warm period may negatively affect species that complete their lifecycle within the estuary.  相似文献   

5.
In Florida, issues related to alterations of estuarine salinity caused by freshwater withdrawal have recently gained increasing attention. We examined nekton community structure in the Suwannee River estuary (1997–2000) and investigated the relationship between environmental factors and the abundance of fisheries resources. We compared nekton community structure and environmental factors seasonally and annually using multidimensional scaling (MDS) ordination and cluster analysis and observed a strong seasonal pattern. This pattern was consistent among years and closely paralleled those for temperature and river discharge. Representative species for cold seasons includedLeiostomus xanthurus andLagodon rhomboides, and those for warm seasons includedMembras martinica andAnchoa hepsetus. Species that contributed most to the dissimilarity in community structures between wet and dry seasons were abundant and generally preferred lower salinity (e.g.,L. xanthurus, Eucinostomus spp., andMenidia spp.). A period of low freshwater inflow during the latter portion of our study coincided with both decreases and increases in the abundances of some dominant and some economically important species. We have established a baseline which will assist in measuring the effects of long-term changes in freshwater input on the nekton communities of the Suwannee River estuary, but our ability to predict these effects is still limited.  相似文献   

6.
Palaemon longirostris was sampled monthly at 12 sites in the Mira River estuary (southwest Portugal) from October 1990 to September 1991. Animals were counted, measured, and sexed. The estuarine distribution of prawns appeared to follow the salinity displacement, the animals being found at river stations during summer and autumn when saline encroachment up the estuary was greater. During winter and spring when freshwater input from the river was greatest, and thus moving the salinity gradient toward the mouth, the prawns migrated downstream to brackish areas. Ovigerous females were collected only from estuarine areas (January to August), suggesting that reproduction does not take place in freshwater habitats. Higher percentages of females than males were generally observed. Females, particularly ovigerous ones, were larger than males.  相似文献   

7.
A three-dimensional, time-dependent hydrodynamic and suspended sediment transport model was performed and applied to the Danshuei River estuarine system and adjacent coastal sea in northern Taiwan. The model was validated with observed time-series salinity in 2001, and with salinity and suspended sediment distributions in 2002. The predicted results quantitatively agreed with the measured data. A local turbidity maximum was found in the bottom water of the Kuan-Du station. The validated model then was conducted with no salinity gradient, no sediment supply from the sediment bed, wind stress, and different freshwater discharges from upstream boundaries to comprehend the influences on suspended sediment dynamics in the Danshuei River estuarine system. The results reveal that concentrations of the turbidity maximum simulated without salinity gradient are higher than those of the turbidity maximum simulated with salinity gradient at the Kuan-Du station. Without bottom resuspension process, the estuarine turbidity maximum zone at the Kuan-Du station vanishes. This suggests that bottom sediment resuspension is a very important sediment source to the formation of estuarine turbidity maximum. The wind stress with northeast and southwest directions may contribute to decrease the suspended sediment concentration. When the freshwater discharges increase at the upstream boundaries, the limits of salt intrusion pushes downriver toward river mouth. Suspended sediment concentrations increase at the upriver reaches in the Danshuei River to Tahan Stream, while decrease at Kuan-Du station.  相似文献   

8.
Salt intrusion has some negative impact on the estuarine eco-environment as well as the water resource potential. The paper proposes an analytical model to describe salt intrusion in the estuaries with multiple freshwater sources. The impact of river discharge on the salinity distribution changes along the multiple-fresh-source estuaries, which is different from estuaries with single source of freshwater. Our analytical model is derived from the advection–dispersion equation for salinity while taking into account the hydrodynamic variation along the estuary. In this paper, we take the Humen Estuary, a strongly tide-dominated estuary with two major source of freshwater, as an example to illustrate the model. By testing against eight surveys over a complete spring-neap tidal cycle, the analytical model’s capacity to describe salt intrusion in the Humen Estuary is calibrated and validated. The results show that the analytical method can be used to compute the salinity distribution in the multiple-freshwater-source estuaries. In comparison with the field data in the Humen Estuary, the calculated results indicate that the salt intrusion process exhibits remarkable segmentation in the multiple-freshwater-source estuary, although the estuary’s inherent characteristic remains the same throughout the estuary. Moreover, by analyzing the multi-segmental features of the Humen Estuary, an efficient and effective model to predict the salt intrusion length of the Humen Estuary is presented and satisfactory results are obtained to illustrate its practical application.  相似文献   

9.
Influences of tides, freshwater discharge, and winds on water properties in the St. Jones River estuary (USA), a Delaware National Estuarine Research Reserve, were investigated using multiyear records of sea level, salinity, and turbidity, supplemented by a current profiler time series in 2007. Results demonstrate that instantaneous properties fluctuate with semidiurnal tides and resonant overtides, whereas tidal mean variations are forced by seasonal freshwater inflow and offshore winds. Mean sea level and salinity are highest in summer and vary with seasonal water temperature and rainfall, whereas sea level variability and turbidity are highest in winter on account of storm effects. Salinity and discharge modeling suggest that much (43–65%) of the freshwater resident in the estuary is derived from non-point sources below the head of tide. This diffuse freshwater inflow produces a seaward surface slope and weak mean current, which temporarily reverses under the influence of storm–wind setup within Delaware Bay.  相似文献   

10.
The availability of methods for establishing freshwater inflow requirements for estuaries lags behind those for establishing flow requirements in riverine ecosystems. Some of the basic principles and approaches for establishing riverine flow requirements may be applicable to estuaries. An emerging approach for establishing freshwater inflow needs for the Suwannee River estuary involves maintaining a natural inflow regime (in terms of magnitude, frequency, duration, and timing of freshwater flows) and identifying important habitat targets to be protected. The salinity-river flow conditions needed to sustain the habitat targets in their existing condition are then identified. A variety of tools are employed, such as salinity metrics, biological metrics, limits of distribution of communities or habitats, and landscape-scale characteristics to define the salinity and corresponding flow ranges needed to protect and maintain the resource targets. With this information, combined with use of models to evaluate flow-salinity relationships and various withdrawal scenarios, river flow criteria can be set which address the freshwater inflow requirements to maintain these ranges. Subsequentmonitoring and research is undertaken to evaluate the effectiveness of the river flow criteria in protecting the estuarine resource targets. This information can be used to subsequently confirm, refine, or modity the flow criteria.  相似文献   

11.
A detailed hydrodynamic model of the Lower Rideau River system has been constructed using the Mike11 modeling system of the Danish Hydraulic Institute. This river system is complex, comprising of channels, local drainage areas, lateral inflows, and a number of water control structures. The model was calibrated using measured streamflow data for 5 years and then validated for another 5 years. A wide range of methods, both qualitative and quantitative, were used to evaluate the model performance. It was found that the model can simulate the time-varying hydrodynamics of the river with a high degree of accuracy. This model is now being used for various watershed management purposes, including flood forecasting, dam safety assessment, quantification of wetland functions, and optimization of water control structures.  相似文献   

12.
The Swan River estuary, Western Australia, has undergone substantial hydrological modifications since pre-European settlement. Land clearing has increased discharge from some major tributaries roughly 5-fold, while weirs and reservoirs for water supply have mitigated this increase and reduced the duration of discharge to the estuary. Nutrient loads have increased disproportionately with flow and are now approximately 20-times higher than pre-European levels. We explore the individual and collective impacts of these hydrological changes on the Swan River estuary using a coupled hydrodynamic-ecological numerical model. The simulation results indicate that despite increased hydraulic flushing and reduced residence times, increases in nutrient loads are the dominant perturbation producing increases in the incidence and peak biomass of blooms of both estuarine and freshwater phytoplankton. Changes in salinity associated with altered seasonal freshwater discharge have a limited impact on phytoplankton dynamics.  相似文献   

13.
Ross River flows through the Townsville/Thuringowa urban area in north Queensland, Australia, which has a dry tropical climate characterized by high inter-annual rainfall variation. Unregulated rivers in the Ross catchment basin deliver freshwater flows to their estuaries during both strong and weak wet seasons. The construction of a series of dams and weirs on Ross River means the wet-dry cycle is accentuated, leading to constant marine salinities throughout the estuary becoming the norm, with a lack of freshwater flow for five or more years at a time. The fish fauna of Ross River estuary was sampled in the post wet and dry seasons during an extremely dry climatic period (1994) and extremely wet climatic period (2000) using a small mesh (6 mm) pocket seine net. The fish fauna seemed to reflect seasonal differences. Catches from 1994 (dry period) were comprised entirely of 88 marine and euryhaline species, while the 69 species captured in 2000 (wet period) included 13 freshwater species. However, the freshwater species in the upper estuary were individuals washed over the weir, rather than part of a functional faunal gradient. During 1994 faunal composition was related more to site identity than to the position of the site along an upstream gradient. In contrast, during 2000 there were clear upstream faunal gradients with compositions in upstream sites heavily influenced by freshwater species, and marine and euryhaline species dominating downstream sites. Patterns of species dominance also varied between years. In contrast, trophic composition showed consistent shifts in both years, from high proportions of herbivores, carnivores and benthoplanktivores in May towards high proportions of benthivores in August. Not only do faunal composition, seasonal faunal change and ecological connectivity seem to be impaired, but ecological processes in the estuary that rely on seasonal freshwater flows are likely to be unable to operate normally in most years. The extreme seasonality in Ross River may serve as a model for many of the changes that will be experienced in dry tropics estuaries under global climate change scenarios of more extreme seasonality.  相似文献   

14.
三峡水库初期蓄水对长江口淡水资源的影响   总被引:13,自引:2,他引:13       下载免费PDF全文
2003年6月1~15日和同年10月20~31日三峡水库进行了初期蓄水。6月份水库蓄水后使下游大通流量减少了37%,长江口的淡水资源的持续时数降低了40%,最大盐度增加了3倍,平均盐度增加了6倍;10月份水库蓄水使大通流量减少了1/2,淡水资源的持续时间呈现下降趋势,最大盐度增加了3倍左右,平均盐度也有类似的表现。再从流量的沿程变化、流量的变化程度、影响河口淡水的持续时间、河口淡水资源影响因子方面进行了讨论,认为三峡蓄水是这两次河口淡水资源减少的主要原因。  相似文献   

15.
We examined the effects of seasonal salinity changes on sediment ammonium (NH4 +) adsorption and exchange across the sediment–water interface in the Parker River Estuary, by means of seasonal field sampling, laboratory adsorption experiments, and modeling. The fraction of dissolved NH4 + relative to adsorbed NH4 + in oligohaline sediments rose significantly with increased pore water salinity over the season. Laboratory experiments demonstrated that small (∼3) increases in salinity from freshwater conditions had the greatest effect on NH4 + adsorption by reducing the exchangeable pool from 69% to 14% of the total NH4 + in the upper estuary sediments that experience large (0–20) seasonal salinity shifts. NH4 + dynamics did not appear to be significantly affected by salinity in sediments of the lower estuary where salinities under 10 were not measured. We further assessed the importance of salinity-mediated desorption by constructing a simple mechanistic numerical model for pore water chloride and NH4 + diffusion for sediments of the upper estuary. The model predicted pore water salinity and NH4 + profiles that fit measured profiles very well and described a seasonal pattern of NH4 + flux from the sediment that was significantly affected by salinity. The model demonstrated that changes in salinity on several timescales (tidally, seasonally, and annually) can significantly alter the magnitude and timing of NH4 + release from the sediments. Salinity-mediated desorption and fluxes of NH4 + from sediments in the upper estuary can be of similar magnitude to rates of organic nitrogen mineralization and may therefore be important in supporting estuarine productivity when watershed inputs of N are low.  相似文献   

16.
The flooding-drying process over the intertidal zone of the Satilla River estuary of Georgia was examined using a three-dimensional (3-D) primitive equations numerical model with Mellor and Yamada's (1982) level 2.5 turbulent closure scheme. The model was forced by the semi-diurnal M2, S2, and N2 tides and freshwater discharge at the upstream end of the estuary. The intertidal salt marsh was treated using a 3-D wet-dry point treatment technique that was developed for the σ-coordinate transformation estuary model. Good agreement was found between model-data comparison at anchor monitoring sites and also along the estuary that suggested that the model provided a reasonable simulation of the temporal and spatial distribution of the 3-D tidal current and salinity in the Satilla River estuary. Numerical experiments have shown that the flooding-drying process plays a key role in the simulation of tidal currents in the main river channel and in water transport over the estuarine-salt marsh complex. Ignoring this process could lead to a 50% under-estimation of the amplitude of tidal currents. The model results also revealed a complex spatial structure of the residual flow in the main channel of the river, with characteristics of multiple eddy-like cell circulations. These complicated residual currents are formed due to tidal rectification over variable topography with superimposition of inertial effects, asymmetry of tidal currents, and baroclinic pressure gradients. Water exchanges over the estuary-intertidal salt marsh complex are asymmetric across the estuary, and tend to vary periodically on the northern side while quickly washing out of the marsh zone on the southern side. Strong Stokes’ drifting velocity was predicted in the estuary, so that the Lagrangian trajectories of particles were characterized by strong nonlinear processes that differ significantly from those estimated by the Eulerian residual currents.  相似文献   

17.
In response to legislative directives beginning in 1975, the Texas Water Development Board (TWDB) and the Texas Parks and Wildlife Department (TPWD) jointly established and currently maintain a data collection and analytical study program focused on determining the effects of and needs for freshwater inflows into the state's 10 bay and estuary systems. Study elements include hydrographic surveys, hydrodynamic modeling of circulation and salinity patterns, sediment analyses, nutrient analyses, fisheries analyses, freshwater inflow optimization modeling, and verification of needs. For determining the needs, statistical regression models are developed among freshwater inflows, salinities, and coastal fisheries. Results from the models and analyses are placed into the Texas Estuarine Mathematical Programming (TxEMP) model, along with information on salinity viability limits, nutrient budgets, fishery biomass ratios, and inflow bounds. The numerical relationships are solved within the constraints and limits, and optimized to meet state management objectives for maintenance of biological productivity and overall ecological health. Solution curves from the TxEMP model are verified by TWDB’s hydrodynamic simulation of estuarine circulation and salinity structure, which is evaluated against TPWD’s analysis of species abundance and distribution patterns in each bay and estuary system. An adequate system-wide match initially verifies the inflow solution. Long-term monitoring is recommended in order to verify that implementation of future water management strategies maintain ecological health of the estuaries and to provide an early warning of needs for adaptive management strategies.  相似文献   

18.
The Mattaponi River is part of the York River estuary in Chesapeake Bay. Our objective was to identify the organic matter (OM) sources fueling the lower food web in the tidal freshwater and oligohaline portions of the Mattaponi using the stable isotopes of carbon (C) and nitrogen (N). Over 3 years (2002–2004), we measured zooplankton densities and C and N stable isotope ratios during the spring zooplankton bloom. The river was characterized by a May–June zooplankton bloom numerically dominated by the calanoid copepod Eurytemora affinis and cladocera Bosmina freyi. Cluster analysis of the stable isotope data identified four distinct signatures within the lower food web: freshwater riverine, brackish water, benthic, and terrestrial. The stable isotope signatures of pelagic zooplankton, including E. affinis and B. freyi, were consistent with reliance on a mix of autochthonous and allochthonous OM, including OM derived from vascular plants and humic-rich sediments, whereas macroinvertebrates consistently utilized allochthonous OM. Based on a dual-isotope mixing model, reliance on autochthonous OM by pelagic zooplankton ranged from 20% to 95% of production, declining exponentially with increasing river discharge. The results imply that discharge plays an important role in regulating the energy sources utilized by pelagic zooplankton in the upper estuary. We hypothesize that this is so because during high discharge, particulate organic C loading to the upper estuary increased and phytoplankton biomass decreased, thereby decreasing phytoplankton availability to the food web.  相似文献   

19.
小型水坝随着服役时间的增长,其面临的安全、经济和生态方面问题日益突出,针对一些修复价值较低的病险水坝,实施降等或报废拆除已成为一种综合最佳的管理措施。拆坝后,原库区大量淤沙无控释放将改变原有河道形态,对水生生物栖息地造成影响。为预测拆坝后河道在不同时间尺度上的变化特征,以长江流域乌江水系内的西河水坝为研究对象,建立二维水沙数学模型,分别研究了拆坝后水沙输运造成的短期和长期河床形态变化。结果表明:拆坝后短期内,坝址上游主河道发生了强烈的冲刷下切,且水库淤沙前缘部分出现了显著的淤积抬高,相比而言,坝址下游河床变化并不明显,只有坝下河段及河口附近出现较显著的泥沙淤积;在拆坝后长期的河床演变过程中,坝址上下游河道均发生了不同程度的冲刷下切,拆坝2年后下游河床逐渐趋于稳定,而上游主河道由冲刷下切转化为冲淤交替的演变趋势,河床形态不断调整变化。本研究可为病险坝和小水电报废拆坝后的河道治理、水生生物栖息地修复提供参考依据。  相似文献   

20.
径潮动力对长江河口滞流点的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究三峡蓄水后滞流点的时空变化规律,应用ECOMSED模型模拟长江河口在不同径流、潮流作用下的水流动态过程。结果表明:北支大洪水期下移幅度大,涨潮动力强劲,随潮流变化大;南侧变化幅度整体较北支小,随径流的变化幅度自大至小依次为北港、南槽、北槽;随潮流的变化幅度自大至小依次为南槽、北港、北槽。滞流点随径、潮条件变化时,受地形影响明显,三峡蓄水后,径流变化范围缩小,引起不同地貌单元滞流点范围不同程度的缩小,可据此认为,与滞流点位置一致的最大浑浊带范围呈现减小的趋势,由此可能引起最大浑浊带和地貌调整。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号