首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In an attempt to derive more information on the parameters driving compaction, this paper explores the feasibility of a method utilizing data on compaction-induced subsidence. We commence by using a Bayesian inversion scheme to infer the reservoir compaction from subsidence observations. The method’s strength is that it incorporates all the spatial and temporal correlations imposed by the geology and reservoir data. Subsequently, the contributions of the driving parameters are unravelled. We apply the approach to a synthetic model of an upscaled gas field in the northern Netherlands. We find that the inversion procedure leads to coupling between the driving parameters, as it does not discriminate between the individual contributions to the compaction. The provisional assessment of the parameter values shows that, in order to identify adequate estimate ranges for the driving parameters, a proper parameter estimation procedure (Markov Chain Monte Carlo, data assimilation) is necessary.  相似文献   

2.
Recent research has provided a high-resolution map that depicts the effect of land subsidence on the Venice coastal plain of Italy. The map, which covers the decade of 1992 to 2002, was obtained by an innovative “Subsidence Integrated Monitoring System” (SIMS), which efficiently merges the different displacement measurements obtained by high precision-leveling, differential and continuous Global Positing System data (GPS), and Synthetic Aperture Radar (SAR)-based interferometry. The displacement rates exhibit significant spatial variability, ranging from a slight 1 to 2 mm/yr uplift, to a serious subsidence of more than 10 mm/yr. This paper aims to describe the many natural and anthropogenic mechanisms that drive the pattern of the ground displacement. The movement sources are presented based on their depth of occurrence. Deep causes act at depths generally greater than 400 m below m.s.l. (mean sea level), and are recognizable in the movement of the pre-Quaternary basement. Medium causes act at depths between 400 and 50 m below m.s.l., and include geological features, such as a major presence of compressible clay layers in the southern and northern portions of the study area and groundwater withdrawals, mainly in the north-eastern coastland and western mainland. Shallow causes, i.e. those occurring from a depth of 50 m up to the ground surface, are related to the architecture and geomechanical properties of the Pleistocene and Holocene deposits, which are more thick and compressible approaching the littoral belt; geochemical compaction, due to the increasing salt concentration in the clayey sediments; and oxidation of the outcropping organic soils drained by land reclamation. These two latter factors primarily involve the southern portion of the Venice coast. The building loads in newly developed areas also cause local compaction of shallow deposits. We conclude that the consolidation of Holocene deposits and anthropogenic activities (groundwater withdrawal, land reclamation, and urban land use) are the major factors that contribute to the present land subsidence in the Venice coastland.  相似文献   

3.
During 1992–2007, excessive pumping of groundwater caused large-scale aquifer-system compaction and land subsidence in the Choshui River Alluvial Fan, especially in the area of Yunlin county. The subsidence impedes surface-water runoff and endangers the operation of Taiwan High Speed Rail. Leveling, Global Positioning System (GPS), multi-level compaction monitoring well, and Differential Interferometric Synthetic Aperture Radar (DInSAR) are used to study the extent of subsidence in Yunlin and its mechanism. These sensors complement each other in spatial and temporal resolutions. A leveling network totaling 434 km in length was deployed to derive subsidence at every 1.5 km along the routes, and the result is accurate to few mm and shows a basin-like subsidence pattern centering at Tuku Township. Four multi-level compaction monitoring wells, co-located with GPS pillars, detect compactions at different depths, showing that the aquifer-system compaction (the cause of subsidence) occurs mostly below depths >200 m, where reduction of groundwater pumping is most needed. The vertical displacements from GPS and leveling agree to within 1 cm, and are larger than the cumulative compaction detected by the compaction-monitoring wells, suggesting that compaction also occurs below 300 m (the depth of the wells). The vertical displacements derived using DInSAR and 8 ENVISAT SAR images agree with the leveling result to 1–2 cm.  相似文献   

4.
We introduce a novel, time-dependent inversion scheme for resolving temporal reservoir pressure drop from surface subsidence observations (from leveling or GPS data, InSAR, tiltmeter monitoring) in a single procedure. The theory is able to accommodate both the absence of surface subsidence estimates at sites at one or more epochs as well as the introduction of new sites at any arbitrary epoch. Thus, all observation sites with measurements from at least two epochs are utilized. The method uses both the prior model covariance matrix and the data covariance matrix, which incorporates the spatial and temporal correlations between model parameters and data, respectively. The incorporation of the model covariance implicitly guarantees smoothness of the model estimate, while maintaining specific geological features like sharp boundaries. Taking these relations into account through the model covariance matrix enhances the influence of the data on the inverted model estimate. This leads to a better defined and interpretable model estimate. The time-dependent aspect of the method yields a better constrained model estimate and makes it possible to identify non-linear acceleration or delay in reservoir compaction. The method is validated by a synthetic case study based on an existing gas reservoir with a highly variable transmissibility at the free water level. The prior model covariance matrix is based on a Monte Carlo simulation of the geological uncertainty in the transmissibility.  相似文献   

5.
在对深部开采进行界定的基础上,运用数值模拟手段,基于关键层理论建立三维深部开采模型,对走向长壁式开采地表移动进行分析,数值计算所得三维地表移动图形能够定量、直观描述地表移动,结果与概率积分法预测符合良好,实现对采煤-上覆岩土层破坏-地表沉陷全过程分析,是对煤矿开采沉陷可视化工作的重要补充。通过数值计算,总结了深部开采地表移动特点,并对比深部开采与浅部开采,分析地表影响半径及相关变形指标。分别对充分采动和非充分采动条件下概率积分法下沉系数进行计算,并与传统计算方法进行比较,结果显示:两种开采条件下,下沉系数均小于传统计算结果,基于浅部开采的经验下沉系数不再适合深部采动情况,得出下沉系数随深度增大而变小的结论,并分析这种变化产生的原因。  相似文献   

6.
We compared microstructures of Late Pre-Cambrian to Early Cambrian Ara Salt diapirs from the deep subsurface (3.5–5 km) of the South Oman Salt Basin and from surface-piercing salt domes of the Ghaba Salt Basin. Laterally, these basins are approximately 500 km apart but belong to the same tectono-sedimentary system. The excellent data situation from both wells and outcrops allows a unique quantification of formation and deformation mechanisms, spanning from sedimentation to deep burial, and via re-activated diapir rise to surface piercement. Microstructures of gamma-irradiated and etched thin sections indicate dislocation creep and fluid-assisted grain boundary migration as the main deformation mechanisms operating in the deep subsurface. Microstructures from the surface are characterised by large ‘old’ subgrain-rich crystals. These ‘old’ grains are partly replaced by ‘new’ subgrain-free and subgrain-poor crystals, which show gamma irradiation-decorated growth bands and fibrous microstructures, indicative of pressure solution creep and static recrystallisation, most likely due to surface piercement and exposure. Using subgrain size piezometry, the maximum differential stresses for the subsurface salt is 1.7 MPa and those for the surface-piercing salt is 3.4 MPa, the latter value displaying the high stress conditions in the diapir ‘stem’ as the salt rises on its way to the surface.  相似文献   

7.
Examination of loose saturated sands impacted by a heavy tamper   总被引:1,自引:1,他引:0  
This article examines the densification effects on the loose saturated sands impacted by a heavy steel tamper dropped from a great height (i.e., deep dynamic compaction, DDC). This examination was achieved by carrying out a series of piezocone penetration test (CPTu) soundings before and after the DDC impact. The depths at which densification took place ranged from 6.5 to 9.5 m below the ground surface (BGS) after one pass of DDC, and from 7.5 to 11.0 m BGS after two passes. The propagation of the surface waves generated in DDC disturbed the top 0.3–1.3 m soils. Directly below this disturbed layer, it was the most densified soil layer at the depths of 1.7–4.5 m BGS. The existence of the residual soft peat pockets reduced the densification effects substantially. Both the strength and the stiffness of the loose saturated sands were significantly improved after the DDC treatment. After two passes of impact, the liquefiable soils were densified to the level of unliquefiable along with dramatic reduction in liquefaction probabilities when subjected to earthquake motions.  相似文献   

8.
通过对德州市地面沉降现状及成因综合分析,得出德州市地面沉降的主要原因是长期超采深层地下水,造成承压水位降低,含水层本身及其上、下相对隔水层中孔隙水压力减小,地层压缩导致地面发生沉降;构造因素、工程地质因素是地面沉降的次要原因。德州市已经制定规划,控制深层地下水的开采,还应利用封停的深水井进行深层地下水人工回灌工作,才能控制地面沉降的进一步发展。  相似文献   

9.
We used a combined field and modeling approach to estimate the potential for submergence for one rapidly deteriorating (Bayou Chitigue Marsh) and one apparently stable (Old Oyster Bayou Marsh) saltmarsh wetland in coastal Louisiana, given two eustatic sea level rise scenarios: the current rate (0.15 cm year−1); and the central value predicted by the Intergovernmental Panel on Climate Change (48 cm by the year 2100). We also used the model to determine what processes were most critical for maintaining and influencing salt marsh elevation including, mineral matter deposition, organic matter production, shallow subsidence (organic matter decomposition + primary sediment compaction), deep subsidence, and sediment pulsing events (e.g., hurricanes). Eight years of field measurements from feldspar marker horizons and surface elevation tables revealed that the rates of vertical accretion at the Bayou Chitigue Marsh were high (2.26 (0.09) cm yr−1 (mean ± SE)) because the marsh exists at the lower end of the tidal range. The rate of shallow subsidence was also high (2.04 (0.1) cm yr−1), resulting in little net elevation gain (0.22 (0.06) cm yr−1). In contrast, vertical accretion at the Old Oyster Bayou Marsh, which is 10 cm higher in elevation, was 0.48 (0.09) cm yr−1. However, there was a net elevation gain of 0.36 (0.08) cm yr−1 because there was no significant shallow subsidence. When these rates of elevation gain were compared to rates of relative sea level rise (deep subsidence plus eustatic sea level rise), both sites showed a net elevation deficit although the Bayou Chitigue site was subsiding at approximately twice the rate of the Old Oyster Bayou site (1.1 cm yr−1 versus 0.49 cm yr−1 respectively). These field data were used to modify, initialize, and calibrate a previously published wetland soil development model that simulates primary production and mineral matter deposition as, feedback functions of elevation. Sensitivity analyses revealed that wetland elevation was most sensitive to changes in the rates of deep subsidence, a model forcing function that is difficult to measure in the field and for which estimates in the literature vary widely. The model also revealed that, given both the current rate of sea level rise and the central value estimate, surface elevation at both sites would fall below mean sea level over the next 100 years. Although these results were in agreement with the field study, they contradicted long term observations that the Old Oyster Bayou site has been in equilibrium with sea level for at least the past 50 years. Further simulations showed that the elevation at the Old Oyster Bayou site could keep pace with current rates of sea level rise if either a lower rate for deep subsidence was used as a forcing function, or if a periodic sediment pulsing function (e.g., from hurricanes) was programmed into the model.  相似文献   

10.
天津滨海地区晚新生代地层自然固结与地面沉降研究   总被引:1,自引:0,他引:1  
天津滨海地区地处渤海湾西岸,晚新生代沉积了巨厚的松散沉积物。地下水位下降、地层自然固结、地表载荷的加速增长等复合因素造成了严重的地面沉降。利用在天津滨海新区塘沽地区施工的一眼1 226 m全取芯钻孔,通过原状样品测试分析,系统研究了晚新生代土层的物理力学性质、黏性土固结特征,并结合欠固结黏性土层沉降量计算等方法阐述了土层固结状态空间特征,探讨了土层固结特征与地面沉降的相关关系。结果表明:该地区0~100 m深度土层具有低天然密度、高孔隙比、高含水率、高压缩性等特点,表现出软土的性质,在地表荷载增大的情况下,易发生地面沉降;100~550 m的黏性土大都处于超固结和微超固结状态,主要是由于过去地下水的大量开采造成的;550 m以下的黏性土多为正常固结,局部存在欠固结黏性土夹层。钻孔中存在合计约218 m的欠固结黏性土夹层,这些欠固结黏性土夹层在自重应力下的最终沉降量为1 985 mm,沉降量最大的土层对应于第1、6含水组,分别达614 mm和665 mm,这一沉降过程完成所需时间为数十年甚至上百年。  相似文献   

11.
Taiwan High Speed Rail (THSR), which began operations in January 2007, passes through an area in Yunlin County where the largest cumulative subsidence measured during 1992–2006 exceeds 100 cm. Leveling benchmarks, GPS pillars and multi-level monitoring wells were deployed in this area to collect detailed subsidence data from October 2003 to 2006. Leveling is carried out on both ground benchmarks and survey bolts attached to THSR columns. Minimum constraint solutions of leveling networks produce estimated heights accurate to a few mm. Special attention is paid to code smoothing, ionospheric, tropospheric and ocean tidal loading (OTL) effects, so that height estimates from GPS are optimal. Leveling and GPS-derived height changes are consistent to 1 cm, and show that from Stations 210 to 240K of TSHR, the subsidence is bowl shaped. Measurements of sediment compaction in specific depth intervals at three monitoring wells indicate that most of the subsidence is caused by sediment compaction at depths from 50 to 300 m. The major compaction occurs in the interval 220–300 m and is attributed to ground water withdrawal. Large angular deflections as determined from subsidence measurements are detected at some columns, but are below the upper bound (1/1,000) of tolerance specified in the safety code. With the current subsidence and sediment compaction, no significantly reduced loading capacity of the columns is expected to occur. For a safe THSR operation, subsidence and sediment-compaction monitoring should be continued, and current ground water withdrawal in Yunlin must be reduced or stopped.  相似文献   

12.
上海市曾遭受了严重的地面沉降灾害,主要由于浅部含水层开采引发浅部土层固结所致。之后采取了回灌浅部含水层并转向开采深部含水层的措施,地面沉降得到了有效控制。但21世纪初,通过水位及分层沉降监测,发现随着开采量增加,深部含水层也会成为主要压密土层。其变形呈现出显著的非线性压密特征,即使水位普遍抬升,压密仍然持续,开展其固结压密机理模型研究对地面沉降防治十分必要。传统太沙基理论认为砂土骨架是瞬时变形的,忽略了流变性本质,因此无法解释该现象。基于国内外学者的研究,考虑了前期固结压力前后流变性的差异,建立了深部含水层黏弹塑固结压密模型。通过试验获取了相关参数,结合塘桥F16分层标监测结果,对第四含水层长期压密变形进行了模拟。模拟结果很好地反映了含水层长期非线性压密行为,研究结果对指导防治地面沉降有实际意义。  相似文献   

13.
Peat is most compressible of all natural soils. Compaction of peat layers potentially leads to substantial amounts of land subsidence. Peat is common in many distal parts of Holocene deltas, which are often densely populated. It is known that land subsidence due to peat compaction may have serious societal implications in such areas, as it may cause damage to construction works and lead to land inundation. Effects of peat compaction on the natural evolution of deltas are however poorly understood, whereas this might be an important control on delta evolution at both local and regional scales.The main objective of this paper is to review current knowledge concerning the peat compaction process and its effect on delta evolution in Holocene settings, and to identify gaps in this knowledge. An overview is given regarding: 1) the compaction process, 2) presumed and potential effects of peat compaction on delta evolution, 3) field methods to quantify peat compaction and 4) numerical models to calculate the amount and rate of peat compaction.Peat compaction and formation influence channel belt elevation, channel belt geometry and channel belt configuration. Last-mentioned aspect mostly concerns the influence of peat compaction on avulsion, which is one of the most important processes controlling delta evolution. Interactions between peat compaction, peat formation and avulsion have seldom been studied and remain unclear, partly because factors such as peat type, organic matter content, sediment sequence composition and groundwater table fluctuation are so far not taken into account. Peat compaction and formation potentially influence avulsion as 1) a decrease in accommodation space created by peat compaction underneath a channel causes superelevation and/or an increase in lateral migration, 2) the high cohesiveness of peat banks inhibits lateral migration, which increases bed aggradation, decreases sediment transport capacity and hence increases crevassing frequencies, which possibly evolve into an avulsion, although the low regional gradient in peatlands will hinder this, and 3) peat compaction and oxidation in flood basins following groundwater table lowering leads to relief amplification of channel belts. At delta scale, variations in compaction rates might stimulate the occurrence of nodal avulsions.To quantify effects of peat compaction on delta evolution, and to determine the relative importance of different factors involved, field research should be combined with numerical models describing peat compaction and formation. The model should be validated and calibrated with field data.  相似文献   

14.
Geospatial contour mapping of shear wave velocity for Mumbai city   总被引:5,自引:3,他引:2  
Shear wave velocity is one of the most important input parameter in the analysis of geotechnical earthquake engineering problems, particularly to estimate site-specific amplification factor and ground response study. Dynamic in situ tests such as spectral analysis of surface waves (SASW) or multichannel analysis of surface waves (MASW) are very expensive. Also due to lack of specialized personnel, these tests are generally avoided in many soil investigation programs. Worldwide, several researchers have developed correlations between the SPT ‘N’ value and shear wave velocity ‘V s’, which are useful for determining the dynamic soil properties. In the present study, more than 400 numbers of soil borehole data were collected from various geotechnical investigation agencies, government engineering institutes and geotechnical laboratories from different parts of Mumbai city, which is financial capital of India with highest population density. In this paper, an attempt has been made to develop the correlation between the SPT ‘N’ value and shear wave velocity ‘V s’ for various soil profile of Mumbai city and compared with other existing correlations for different cities in India. Using Geographical Information System (GIS), a geospatial contour map of shear wave velocity profile for Mumbai city is prepared with contour intervals of 25 and 50 m/s. The scarcity of database or maps of shear wave velocity profile for Mumbai city will make the present geospatial contour maps extremely useful and beneficial to the designer, practitioners for seismic hazard study involved in geotechnical earthquake engineering.  相似文献   

15.
Hydrogen sulfide occurs in high concentration (10–200 mg/l) in different parts of Kuwait City and its suburbs at relatively shallow depths (15–40 m from the surface). This was revealed by drilling through the aquifer system underlying the city and sampling and analyzing the ground water at the drilled locations. The near-absence of coliform bacteria in the sulfide-rich zones, the presence of sulfur-reducing bacteria in the deep (>80 m) Dammam Formation aquifer and a linear positive relation between the concentration of hydrogen sulfide and the total dissolved solids content suggested non-anthropogenic origin of the sulfide in the ground water of Kuwait. The upward movement of sulfide-rich water from depth and its differential flushing by surface recharge through outcrops of the aquifers appear to have given rise to the present distribution of hydrogen sulfide in the aquifers underlying the Kuwait City.  相似文献   

16.
Summary We review recently obtained results about the velocity structure of the Somma-Vesuvius (Southern Italy) volcanic complex and present an interpretation of structural features, both at local and regional scale, and of the local seismicity. The local structure of Somma-Vesuvius is reviewed, referring to three depth ranges; i.e. shallow (0–5 km), intermediate (5–15 km) and deep (from 15 km to the upper mantle). The shallow velocity structure is inferred by the joint inversion of shot and local earthquake arrival time data. The main feature pointed out by this inversion is a high-velocity anomaly at the crater axis extending down to a depth of about 5 km. This anomaly can be explained with the presence of residual magma crystallised in the shallow conduits, which accumulated during the last eruptive cycles. The local seismicity is strongly clustered around this anomaly, due to the focusing effect of the rigidity contrast. The space-time seismicity pattern at Somma-Vesuvius is the result of the superposition of background seismicity, mainly due to gravitational instability of the volcanic edifice and to small external stress perturbations, with intense episodic earthquake swarms possibly due to magmatic or hydrothermal activity into the shallow system. The velocity structure in the 10–15 km depth range is characterized by the presence of a low-velocity layer, which has been independently confirmed by multi-channel seismic reflection data and P-Sv conversions from teleseismic waveforms. The study of the deep structure was performed by regional tomography with teleseisms; it confirmed the presence of a low-velocity anomaly underneath the volcano, which appears to have roots at greater depths. The regional structure between the Thyrrenian and the Adriatic sea has been inferred by tomographic inversion of teleseismic arrival times. The main result from this study which is very important for geodynamic interpretations is the first evidence for a continuous subducting slab under the Apennines, in an area where previous models hypothesized a slab window. Received March 3, 2000 revised version accepted July 4, 2001  相似文献   

17.
A geomechanical model can reveal the mechanical behavior of rocks and be used to manage the reservoir programs in a better mode. Fluid pressure will be reduced during hydrocarbon production from a reservoir. This reduction of pressure will increase the effective stress due to overburden sediments and will cause porous media compaction and surface subsidence. In some oil fields, the compacting reservoir can support oil and gas production. However, the phenomena can also cause the loss of wells and reduced production and also cause irreparable damage to the surface structures and affect the surrounding environment. For a detailed study of the geomechanical behavior of a hydrocarbon field, a 3D numerical model to describe the reservoir geomechanical characteristics is essential. During this study, using available data and information, a coupled fluid flow-geomechanic model of Fahlian reservoir formation in X-field in SW of Iran was constructed to estimate the amount of land subsidence. According to the prepared model, in this field, the maximum amount of the vertical stress is 110 MPa and the maximum amount of the horizontal stress is 94 MPa. At last, this model is used for the prediction of reservoir compaction and subsidence of the surface. The maximum value of estimated ground subsidence in the study equals to 29 mm. It is considered that according to the obtained values of horizontal and vertical movement in the wall of different wells, those movements are not problematic for casing and well production and also the surrounding environment.  相似文献   

18.
利用回剥原理,采用盆地模拟技术,选择东、西两条剖面对库车坳陷不同构造带典型井的沉降史进行了对比研究。结果表明,克拉苏构造带早期相对深埋、晚期持续深埋,秋里塔格构造带早期浅埋、晚期快速深埋,前缘隆起带早期缓慢浅埋、晚期相对浅埋。库车坳陷不同构造带的构造活动和沉降差异性导致其储层孔隙度差异明显。这种沉降差异性反映出由北向南从克拉苏构造带到前缘隆起带储层经历的深埋时间和最大埋深由大变小,储层在埋藏过程中所受的成岩压实作用由强变弱、孔隙度由小变大。时间深度指数定量地反映了这种沉降差异性及其对孔隙度的影响。  相似文献   

19.
This paper focuses on the aspects of fully coupled continuum modeling of multiphase poroelasticity applied to the three-dimensional numerical simulations of the Ekofisk oil reservoir in the North Sea (56°29′–34′N, 03°10′–14′E). A systematic presentation is chosen to present the methodology behind fully coupled, continuum modeling. First, a historical review of the subsidence phenomena above an oil and gas reservoir is given. This will serve as a background against which the relevance of the present approach to compaction and subsidence modeling will be demonstrated. Following this, the governing equations for a multiphase poroelasticity model are briefly presented. Particular attention is paid to the analysis of the pore-compressibility term usually used in an uncoupled approach for characterising the host-rock deformation. A comparative numerical analysis is carried out to contrast and highlight the difference between coupled and uncoupled reservoir simulators. Finally, a finite-element numerical model of the Ekofisk field is presented and a significant result is a contour map of seabed subsidence which is in general agreement with the shape of the subsidence contours based on past bathymetric surveys. Analysis of the simulation reveals that, due to the downward movement of the overburden, oil migration occurs from the crest of the anticline in which the field is situated, towards the flank. The pore-pressure depletion in the reservoir is significantly delayed due to the replenishment of the reservoir energy via the formational compaction. Horizontal movement in the reservoir, which is neglected in traditional modeling, can be significant and comparable in magnitude to the vertical subsidence. Electronic Publication  相似文献   

20.
Groundwater has played an important role in economic development in Southeast Asian countries, but some problems caused by nature or human actions such as contamination, over pumping, and land subsidence bring the necessity of more systematic groundwater monitoring wells. The analytical hierarchy process with pairwise comparison was used to allocate and organize the regional groundwater monitoring wells in five regions, Thailand, Cambodia, East/West Malaysia, and South Korea. Five different multi criteria decision models, which were composed of three primary criteria and eight secondary criteria, were developed based on the answers of the questionnaire from 76 groundwater experts in Thailand, 100 in Cambodia, 101 in East Malaysia, 87 in West Malaysia, and 93 in South Korea. It was revealed that the weights of model criteria for each country, which also represent relative importance on groundwater monitoring, were different according to the diverse groundwater situation. The most important factor to determine the number of monitoring well was ‘number of households using only groundwater as a water source’ for Thailand and South Korea, ‘number of contamination sources’ for Cambodia, ‘amount of groundwater use for drinking-water supply’ for East Malaysia, and ‘number of wells with contaminated water’ for West Malaysia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号