首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combining textural, petrological, chemical and isotopic (Sr, H and O) data for amphiboles and whole rocks from the Zabargad peridotite diapir allows three different events to be distinguished. During each event, which can be related to a specific tectonic process of the rifting of the Red Sea, hydrous fluids produced amphiboles.

The first and the second generations of amphiboles have characteristics consistent with the involvement of mantle-derived hydrous fluids. The first generation consists of scarce Ti-pargasites which crystallized from small amounts of fluid at temperatures of around 900–1000°C. Their growth was linked to magma percolation in the peridotites before their deformation during diapiric uplift. The second generation consists of Cr-pargasites which crystallized locally (and abundantly) during reaction between the peridotites and a sodium/potassium-bearing hydrous fluid at temperatures of around 700–800°C. These amphiboles grew synchronously with the diapiric uplift. The hydrous fluids probably originated in the sub-continental mantle and were released during the diapiric uplift of the peridotites.

The third generation consists of amphiboles (pargasitic hornblende, hornblende sensu lato and tremolite) which are localized in shear zones and veins. They crystallized at temperatures estimated between 700°C and 450°C, again from a sodium/potassium-bearing hydrous fluid. However, this fluid is extraneous to the peridotites, as shown by the Sr, H and O isotope compositions which suggest seawater penetration either during or after the final emplacement of the peridotite diapir.

Although the peridotite diapir was emplaced in granulitic gneisses of the pan-African deep continental crust, no evidence was found for a contribution of hydrous continental fluids in the production of the amphiboles present in the peridotite bodies of Zabargad Island.  相似文献   


2.
The Moshirabad pluton is located southwest of the Sanandaj–Sirjan Metamorphic Belt, Qorveh, western Iran. The pluton is composed of diorite, monzodiorite, quartz diorite, quartz monzodiorite, tonalite, granodiorite, granite, aplite, and pegmatite. In this study 31 samples from various rocks were chosen for whole‐rock analyses and 15 samples from different lithologies were chosen for mineral chemical studies. The compositions of minerals are used to describe the nature of magma and estimate the pressure and temperature at which the Moshirabad pluton was emplaced. Feldspar compositions are near the binary systems in which plagioclase compositions range from An5 to An53 and alkali‐feldspar compositions range from Or91 to Or97. Mafic minerals in the plutonic rocks are biotite and hornblende. Based on the composition of biotites and whole‐rock chemistry, the Moshirabad pluton formed from a calc‐alkaline magma. Amphiboles are calcic amphiboles (magnesio‐hornblende or edenite). Temperatures of crystallization, calculated with the hornblende–plagioclase thermometer, range 550–750°C. These temperatures indicate that plutonic rocks have undergone some retrogressive changes in their mineral compositions. Aluminum‐in‐hornblende geobarometry indicates that the Moshirabad pluton was emplaced at pressures of 2.3–6.0 kbar, equal to depths of 7–20 km, but with consideration of regional geology, lower pressures than the above pressure range are more probable. Alteration of amphiboles can be the reason for some overestimation of pressures.  相似文献   

3.
Megacrysts in the Cenozoic basalt of the Tuoyun Basin,Southwest Tianshan   总被引:2,自引:1,他引:2  
Abundant megacrysts of clinopyroxene, amphibole, anorthoclase, and phlogopite are found together with deep-seated xenoliths in the Cenozoic basalt of the Tuoyun Basin, Southwest Tianshan. The megacrysts are mainly in the cone sheet formed at the early stage of the volcanic activity. Clinopyrox-ene megacrysts are located in the lower part of the profile, with amphibole and phlogopite megacrysts in the middle part and anorthoclase megacrysts in the upper part. The crystal integrity, absence of de-formation fabric and their relation to the host basalt suggest that they were crystallized from the host magma and quickly transported to the surface. The mineralogical studies imply that the clinopyroxene megacrysts are of Al-augite with higher Al2O3 (>9%). Amphibole megacrysts are kaersutite rich in TiO2 (>4.5%). Sulfide inclusions such as pyrrhotite occur in some clinopyroxene and amphibole megacrysts. Thermodynamic calculations reveal that pyroxene megacrysts formed under the temperature of 1185.85―1199.85℃ and the pressure between 1.53 and 1.64 GPa comparable to the crust-mantle boundary and amphibole megacrysts crystallized under the pressure of around 0.85 GPa, temperature about 1000℃ comparable to the depth of 30 km. Anorthoclase megacrysts crystallized under the pressure between 0.8―1 GPa,temperature about 900℃.The absence of Ti-rich inclusions such as rutile can be considered as an evidence of quick magma ascending. The P-T conditions estimated via py-roxene megacrysts and phenocrysts compose a P-T path with a steep slope. It can be considered as another evidence of quick magma ascending. However, the estimated temperatures for amphibole megacrysts are markedly lower than those for pyroxene megacrysts given the same pressure. It probably shows that the amphiboles have crystallized at the vanguard of magma and under the vola-tile-rich condition. Thus, we can conclude that the Cenozoic basalts are produced in an extensional tectonic setting and the processes governing crystallization and ascending of the megacrysts are very complex.  相似文献   

4.
To constrain the timing of the tectonothermal events and formation process of a plutonic suite, U–Pb dating was carried out by laser ablation inductively coupled plasma mass spectrometry combined with cathodoluminescence imaging on zircon grains extracted from the Bato pluton, northern Yamizo Mountains, Japan. The Bato pluton consists of gabbro and diorite. Zircon grains separated from a gabbro sample had a unimodal 238U–206Pb age (105.7 ±1.0 Ma). It was interpreted as the solidification age of the gabbro. Cathodoluminescence observation showed that the zircon grains from a diorite sample were characterized by anhedral cores, oscillatory zoned mantles, and dark rims. The 238U–206Pb age of the anhedral cores ranged from 2 165 Ma to 161 Ma, indicating the assimilation of surrounding sedimentary rocks. The 238U–206Pb ages of the oscillatory zoned mantles and dark rims are 109.0 ±1.3 Ma and 107.7 ±1.3 Ma, respectively. Observation under polarizing microscopy suggests that the anhedral cores occurred before plagioclase and hornblende, and the oscillatory zones around the anhedral cores had crystallized at the same time as the crystallization of biotite. Moreover, the dark rims formed at the same time as the crystallization of quartz and K‐feldspar. The formation process of the gabbro‐diorite complex in the Bato pluton was inferred as follows. (i) A mafic initial magma intruded into Mesozoic sedimentary rocks, and the assimilation of these sedimentary rocks led to geochemical variation yielding a dioritic composition. Subsequently, plagioclase and hornblende of the diorite were crystallized before 109.0 ±1.3 Ma. (ii) Biotite crystallized in the middle stage around 109.0 ±1.3 Ma. (iii) Quartz and K‐feldspar of the diorite were crystallized at 107.7 ±1.3 Ma. The gabbroic magma solidified (105.7 ±1.0 Ma) after solidification of the diorite.  相似文献   

5.
Shirouma-Oike volcano, a Quaternary composite volcano in central Japan, consists mostly of calc-alkaline andesitic lavas and pyroclastic rocks. Products of the earlier stage of the volcano (older group) are augite-hypersthene andesite. Hornblende crystallized during the later stage of this older group, whereas biotite and quartz crystallized in the younger group.Assemblages of phenocrysts in disequilibrium, such as magnesian olivine(Fo30)/quartz, iron-rich hypersthene(En55)/iron-poor augite(Wo43.5, En42.5, Fs14.0), and two different types of zoning on the rim of clinopyroxene are found in a number of rocks. Detailed microprobe analyses of coexisting minerals reveal that phenocrysts belong to two distinctly different groups; one group includes magnesian olivine + augite which crystallized from a relatively high-temperature (above 1000°C) basaltic magma; the second group, which crystallized from relatively low temperature (about 800°C) dacitic to andesitic magma, includes hypersthene + hornblende + biotite + quartz + plagioclase + titanomagnetite ± ilmenite (in the younger group) and hypersthene + augite + plagioclase + titanomagnetite ± hornblende (in the older group). The temperature difference between the two magmas is clarified by Mg/Fe partition between clinopyroxene and olivine, and Fe-Ti oxides geothermometer. The compositional zoning of minerals, such as normal zoning of olivine and magnesian clinopyroxene, and reverse zoning of orthopyroxene, indicate that the basaltic and dacitic-andesitic magmas were probably mixed in a magma reservoir immediately before eruption. It is suggested that the basaltic magma was supplied intermittently from a deeper part to the shallower magma reservoir, in in which dacitic-andesitic magma had been fractionating.  相似文献   

6.
Physical and chemical analyses of distal tephra from the 1912 eruption of Novarupta, Alaska, show considerable variations in glass and mineral compositions. A combination of a 150°C range in temperature deduced from iron-titanium oxide geothermometry, and curved patterns in bivariant element plots of glass compositions indicate that a chamber of compositionally zoned magma existed prior to the eruption. Magma-mixing cannot explain these features. The magma chamber may have resembled the model recently proposed by McBirney (1980). A highly silicic, quartz-phyric magma with mean phenocryst compositions of An25 plagioclase, Fs42 orthopyroxene, at a temperature of 880°C and a water pressure of 1.4 kbar, was located above a more mafic, hotter magma, bearing phenocrysts of An45 plagioclase and Fs35, orthopyroxene.Our results on distal tephras compare favorably with those from a recently completed study at source by Hildreth (1983), suggesting that useful petrologic information about distant volcanoes can be obtained from both types of deposits. Compositionally heterogeneous abyssal tephra layers are common in the Gulf of Alaska. Eruptions from chambers of zoned magma may account for many of these layers.  相似文献   

7.
 Analysis of the petrochemical characters of the 1669 Etnean lavas shows that they can be grouped into two sets: SET1 lavas were erupted from 11 to 20 March and are more primitive in composition than SET2, erupted later until the end of activity. Both sets may be interpreted as the result of crystallization under different conditions of two primary magmas which are compositionally slightly distinct and which fractionate different volumetric proportions of minerals. To explain why more mafic lavas (SET1) were erupted earlier than more acid ones (SET2), we argue that new deeper magma rose up into a reservoir where residing magma was fractionating. Density calculations demonstrate that new magma is less dense and may originate a plume, rapidly rising through the residing magma which is cooler and more volatile-depleted than the new magma. Calculations of uprise velocity assuming laminar flow are consistent with this hypothesis. Received: 20 November 1995 / Accepted: 2 August 1996  相似文献   

8.
Sr-isotopic data from the Main and Upper Zones of the Bushveld Complex show that the evolution of the Upper Zone started with a large influx of magma close to the level of the “Pyroxenite Marker”, a distinctive orthopyroxenite layer in otherwise relatively uniform gabbronorites. Whole rock samples, which span the complete stratigraphic succession (ca. 2100 m) above this layer, fall on a single RbSr isochron (2066 ± 58Ma) and hence have a common initial ratio of 0.7073 ± 1. This ratio is significantly lower than those of the Main Zone (ca. 0.7085), below the level of the Pyroxenite Marker.The entire Upper Zone crystallized from a mixed magma which was thoroughly blended before crystallization. This magma had an isotopic ratio intermediate between that of the Main Zone and the added magma which had an initial ratio of ca. 0.7067. Further significant magma additions during crystallization are precluded unless they were of the same isotopic composition as the blended magma, which is considered improbable. Hence the layering and mineralogical diversity of the Upper Zone was produced by internal processes and not produced by magma influxes during crystallization.The lithological, compositional and isotopic changes at the Pyroxenite Marker and the petrological coherence of all rocks above this horizon support the placing of the Upper Zone boundary at this point in the stratigraphy.  相似文献   

9.
Examination of glass and crystal chemistry in the Rotoiti Pyroclastics (>100 km3 of magma) demonstrates that compositional diversity was produced by mingling of the main rhyolite magma body with small volumes of other magmas that had been crystallizing in separate stagnant magma chambers. Most (>90%) of the Rotoiti deposits were derived from a low-K2O, cummingtonite-bearing, rhyolitic magma (T1) discharged throughout the eruption sequence. T1 magma is homogeneous in composition (melt SiO2=77.80±0.28 wt.%), temperature (766±13 °C) and oxygen fugacity (NNO+0.92±0.09). Most T1 phenocrysts formed in a shallow (∼200 MPa), near water-saturated (awater=0.8) storage chamber shortly before eruption. Basaltic scoria erupted immediately before the rhyolites, and glass-bearing microdiorite inclusions within the rhyolite deposits, suggest that basalt emplaced on the floor of the chamber drove vigorous convection to produce the well-mixed T1 magma. Lithic lag breccias contain melt-bearing biotite granitoid inclusions that are compositionally distinct from T1 magma. The breccias which overlie the voluminous T1 pyroclastic flow deposits resulted from collapse of the syn-Rotoiti caldera. Post-collapse Rotoiti pumices contain T1 magma mingled with another magma (T2) that is characterized by high-K glass and biotite, and was cooler and less oxidised (712±16 °C; NNO−0.16±0.16). The mingled clasts contain bimodal disequilibrium populations of all crystal phases. The granitoid inclusions and the T2 magma are interpreted as derived from high-K magma bodies of varying ages and states of crystallization, which were adjacent to but not part of the large T1 magma body. We demonstrate that these high-K magmas contaminated the erupting T1 magma on a single pumice clast scale. This contamination could explain the reported wide range of zircon U–Th ages in Rotoiti pumices, rather than slow crystallization of a single large magma body.  相似文献   

10.
Gabbroic rocks occur only in the west, and are the oldest intrusions in the Peninsular Ranges Cordilleran batholith. They comprise an olivine-pyroxene gabbronorite series and an amphibole gabbro series both of which contain abundant plagioclase and amphibole. They formed by crystal accumulation and in situ differentiation, in multiple intrusive complexes, and are not considered to be related by fractionation to the granitoid rocks of the batholith.Pure mineral separates of plagioclase, olivine, clinopyroxene, orthopyroxene, and amphibole were obtained by magnetic and heavy-liquid methods from a representative suite of gabbroic rocks. Their major- and trace-element contents were determined by X-ray fluorescence, and the data used to test hypotheses on the genesis and fractionation of the gabbros.The plagioclases range from An98 to An65 in composition, olivines, Fo79 to Fo70, occur in rocks where An>36. All clinopyroxenes are augite with Mg #'s varying from 81.1 to 64.7. Orthopyroxene occurs where An<92, and is generally inverted pigeonite or bronzite, and has Mg #'s ranging from 77.9 to 52.1. The amphiboles include tschermakite, tschermakitic hornblende, pargasite, pargasitic hornblende, ferroan pargasite, magnesio-hornblende, and magnesio-taramite, Mg #'s range from 80.4 to 62.5. Systematic chemical and mineralogical changes confirm that differentiation, controlled by mineral assemblages of plagioclase, olivine, spinel, and clinopyroxene initially, and orthopyroxene, amphibole, and magnetite later, took place between intrusive episodes and in situ.The highly clacic plagioclase coexisting with olivine and amphibole suggests that the gabbros were formed from hydrous mafic magmas. The modal mineralogy of the gabbros, and the chemistry of the minerals is very similar to that of the cumulate blocks of the Lesser Antillean volcanoes. These features confirm that the gabbros were derived from a hydrous mafic magma, with high Al2O3 and low TiO2 contents, typical of orogenic environments.Cumulate minerals from the gabbros show little or no zoning and are considered to have formed in equilibrium with the evolving melts. Selected trace-element contents and distribution coefficients are used to calculate the compositions of the melts. The calculations show that the melts in equilibrium with the olivine-pyroxene gabbronorite series contain approximately 100–200 ppm Ba, 200–400 ppm Sr, 30-10 ppm Ni, 20-10 ppm Co, and 300-100 ppm V. K/Rb ratios of the melts, derived from post-cumulus and prismatic amphiboles, are generally in the range 550-250. These values are typical of calc-alkalic basalts and andesites, and it is suggested that they may have erupted at the surface to form a coeval calc-alkalic volcanic sequence.  相似文献   

11.
Abstract   Small-volume plutons of Early to Late Cretaceous ages are widely distributed in the Yamizo Mountains, central Japan. These plutons consist predominantly of granitoids, classified into hornblende gabbro, quartz diorite, hornblende–biotite granodiorite and coarse-grained biotite granite. The quartz diorite (52–64 wt% of SiO2) is characterized by a high Sr content (606–769 p.p.m.) associated with a low Y (13–27 p.p.m.) and heavy rare earth element content (Yb content of 1.19–2.13 p.p.m.). On the Sr/Y versus Y diagram, this rock type mainly plots in the adakite and Archean high-Al tonalite, trondhjemite and granodiorite (TTG) field. Together with its initial Sr isotopic ratios, which range from 0.7038 to 0.7046, these data suggest that quartz diorite originated as slab melts. However, geochemical calculations assuming either eclogite or garnet amphibolite as the source material do not support this suggestion. Instead, the chemical compositions of quartz diorite are better explained by the fractional crystallization of hornblende, plagioclase and biotite from a primitive, basaltic melt in a magma chamber. In this case, the formation of the associated hornblende gabbro can also be explained by the accumulation of hornblende and plagioclase. Adakitic rocks of Early Cretaceous ages have also been reported in the Tamba Belt of the inner zone of southwest Japan, located ca 500 km west of the Yamizo Mountains. These rocks can be correlated to the adakitic rocks in the Yamizo Mountains based on the geology, petrography, geochemistry and radiometric ages. Therefore, we propose the possibility that the Early Cretaceous adakitic rocks in the inner zone of southwest Japan were produced by fractional crystallization from basaltic arc magmas generated by a partial melting of metasomatized wedge mantle peridotite.  相似文献   

12.
Transitions in eruptive style—explosive to effusive, sustained to pulsatory—are a common aspect of volcanic activity and present a major challenge to volcano monitoring efforts. A classic example of such transitions is provided by the activity of Mount St. Helens, WA, during 1980, where a climactic Plinian event on May 18 was followed by subplinian and vulcanian eruptions that became increasing pulsatory with time throughout the summer, finally progressing to episodic growth of a lava dome. Here we use variations in the textures, glass compositions and volatile contents of melt inclusions preserved in pyroclasts produced by the summer 1980 eruptions to determine conditions of magma ascent and storage that may have led to observed changes in eruptive activity. Five different pyroclast types identified in pyroclastic flow and fall deposits produced by eruptions in June 12, July 22 and August 7, 1980, provide evidence for multiple levels of magma storage prior to each event. Highly vesicular clasts have H2O-rich (4.5–5.5 wt%) melt inclusions and lack groundmass microlites or hornblende reaction rims, characteristics that require magma storage at P≥160 MPa until shortly prior to eruption. All other clast types have groundmass microlites; PH20 estimated from both H2O-bearing melt inclusions and textural constraints provided by decompression experiments suggest pre-eruptive storage pressures of ∼75, 40, and 10 MPa. The distribution of pyroclast types within and between eruptive deposits can be used to place important constraints on eruption mechanisms. Fall and flow deposits from June 12, 1980, lack highly vesicular, microlite-free pyroclasts. This eruption was also preceded by a shallow intrusion on June 3, as evidenced by a seismic crisis and enhanced SO2 emissions. Our constraints suggest that magma intruded to a depth of ≤4 km beneath the crater floor fed the June eruption. In contrast, eruptions of July and August, although shorter in duration and smaller in volume, erupted deep volatile-rich magma. If modeled as a simple cylinder, these data require a step-wise decrease in effective conduit diameter from 40–50 m in May and June to 8–12 m in July and August. The abundance of vesicular (intermediate to deep) clast types in July and August further suggests that this change was effected by narrowing the shallower part of the conduit, perhaps in response to solidification of intruded magma remaining in the shallow system after the June eruption. Eruptions from July to October were distinctly pulsatory, transitioning between subplinian and vulcanian in character. As originally suggested by Scandone and Malone (1985), a growing mismatch between the rate of magma ascent and magma disruption explains the increasingly pulsatory nature of the eruptions through time. Recent fragmentation experiments Spieler et al. (2004) suggest this mismatch may have been aided by the multiple levels at which magma was stored (and degassed) prior to these events.Editorial responsibility: J Stix  相似文献   

13.
Chemical and petrographic analyses of 51 sequential lava flows from the central vent of Mayon volcano show cyclical variation. In the two most recent cycles, from 1800 to 1876 and from 1881 to the present, one to three basaltic flows are followed by six to ten andesitic flows. Modal and whole-rock chemical parameters show the most regular cyclical variation; calculated groundmass chemical parameters vary less regularly. There is also a long-term trend, over approximately 1700 years of exposed section, toward more basic compositions.The cyclical variation in modes and the chemical composition of the lavas apparently results from periodic influxes of basaltic magma from depth into a shallow magma system. Fractional crystallization of olivine, augite, hypersthene, calcic plagioclase, magnetite and pargasitic hornblende produces successively more andesitic lavas until the next influx of basaltic magma. Differentiation in a deep zone of magma generation is not excluded by the data, but is more likely responsible for the overall change toward more basic compositions than for the cyclical variation.Three points in a cycle — the beginning of basaltic lavas, the beginning of andesitic lavas and a leveling-off of SiO2, K2 O and K2O/Na2O values — correspond roughly to the beginning of frequent effusive eruptions (with or without an early Plinian eruption), frequent weak to moderately explosive (Strombolian) eruptions, and less frequent explosive (Vulcanian) eruptions, respectively. Recognition of the current stage in a cycle can give a qualitative indication of the nature of forthcoming eruptions. Changes in several specific parameters may precede basaltic lavas and allow early detection of basaltic influxes. These include minima in the glass inclusion/plagioclase phenocryst and phenocryst/groundmass ratios, vesicularity and groundmass TiO2, a decrease in hypersthene phenocrysts, and constant values for the whole-rock K2O/Na2O ratio. The Mayon area is densely populated, making prediction of eruption type important for safety and land-use planning.  相似文献   

14.
Gabbro breccias were recovered from an anomalously shallow level of the ocean crust during DSDP Leg 82. The rocks display evidence of metamorphic crystallization related either to localized deformation or to hydrothermal circulation of a seawater-derived fluid under static conditions. Secondary phases consist of plagioclase, amphibole and minor clinopyroxene, ilmenite, sphene and chlorite. Petrological study indicates that deformation took place at high temperature, under anhydrous conditions, and was followed by hydrothermal circulation. The compositions of secondary minerals (i.e. strong zonations, presence of chlorine in amphiboles, varying compositions of secondary plagioclase) indicate that reactions of the gabbros with the fluids occurred at a low water/rock ratio. Relations between Cl, Na and K in amphiboles suggest penetration of at least two distinct fluids of different compositions. Metamorphic crystallization stopped when greenschist facies conditions were reached( 350°C), probably because hydrothermal circulation faded out.  相似文献   

15.
Late Cenozoic alkali basalts in the Ganseong area of South Korea contain abundant ultramafic xenoliths and clinopyroxene megacrysts. Anhydrous clinopyroxene‐rich wehrlite–clinopyroxenites make up the majority of the xenolith population and range from wehrlite through olivine clinopyroxenite to clinopyroxenite. This study investigates the petrogenesis of wehrlite–clinopyroxenite xenoliths and clinopyroxene megacrysts on the basis of petrography and mineral and whole‐rock chemistry. Observations such as an absence of carbonate or apatite, high Ti/Eu ratio, and clinopyroxene‐dominated mineralogy lead us to rule out peridotite–melt reactions as the origin of the Ganseong wehrlites– olivine clinopyroxenites. The whole‐rock compositions (e.g. high abundance of CaO at a given MgO content and low abundance of incompatible elements, such as U, K, P, and Ti compared with mafic melts) indicate that the pyroxenites do not represent crystallized magma itself, but are rather cumulates with a small amount of residual liquid. Anhydrous and orthopyroxene‐free mineral assemblages, crystallization sequence of olivine→clinopyroxene→plagioclase, and mineral chemistries (e.g. low Cr# and high TiO2 abundances in spinels and high TiO2 and Na2O abundances in clinopyroxenes at a given Mg#) suggest that relatively anhydrous intraplate alkaline basalt is the most likely candidate for the parent magma. Texture and compositions of the clinopyroxene megacrysts preclude a cognate origin via high‐pressure crystallization of the host magma. The clinopyroxene megacrysts occupy the Fe‐rich end of the compositional trends defined by wehrlite–pyroxenite clinopyroxenes. Progressive decreases in Mg# and an absence of significant compositional gaps between pyroxenite xenoliths and clinopyroxene megacrysts indicate fractionation and differentiation of a similar parental magma. We suggest that the clinopyroxene megacrysts represent fragments of pegmatitic clinopyroxenites crystallized from more advanced fractionation stages of the evolution of a series of magmatic liquids formed Ganseong wehrlite–clinopyroxenites.  相似文献   

16.
Heat source for Tongonan Geothermal Field   总被引:1,自引:0,他引:1  
Abstract The primary mineral and whole-rock chemistry of 46 core samples from the host rocks of the Tongonan Geothermal Field (the Philippines) have been used to infer the likely composition of the heat source for the system. The host rocks consist of andesite lavas (with intercalated fossiliferous early to mid–Miocene shales and limestone), and a plutonic rock basement ranging in composition from gabbro to granite. The whole rock TiO2, Fe2O3 (total iron), MgO, P2O5 and V data for volcanic and plutonic rocks are colinear on conventional Harker diagrams. This, along with similar hornblende chemistry, age and close spatial relationship suggests that the basement and cover rocks are cogenetic and evolved by low-pressure crystal fractionation. Crystal fractionation models indicate that separation of 60% plagioclase and 30% hornblende from original magma controlled the chemistry of the host rocks. The original Miocene magma chambers beneath the Tongonan field crystallized inwards from the walls at approximately 750°C and 1 kb pressure (3–4 km depth) thus forming a series of plutons or a batholith at drilled depths. A supercritical hydrothermal fluid trapped in the crystallizing, hornblende-granite-pegmatite core of a crystallized Miocene diorite batholith was gradually being released to shallower levels through antithetic cross fractures during creep and uplift along the main branches of the Philippine Fault from the Pliocene. This ascending fluid is now thought to be responsible for the present thermal activity of the field.  相似文献   

17.
We investigate the interaction of thermal convection and crystallization in large aspect-ratio magma chambers. Because nucleation requires a finite amount of undercooling, crystallization is not instantaneous. For typical values of the rates of nucleation and crystal growth, the characteristic time-scale of crystallization is about 103–104 s. Roof convection is characterized by the quasi-periodic formation and instability of a cold boundary layer. Its characteristic time-scale depends on viscosity and ranges from about 102 s for basaltic magmas to about 107 s for granitic magmas. Hence, depending on magma viscosity, convective instability occurs at different stages of crystallization. A single non-dimensional number is defined to characterize the different modes of interaction between convection and crystallization.Using realistic functions for the rates of nucleation and crystal growth, we integrate numerically the heat equation until the onset of convective instability. We determine both temperature and crystal content in the thermal boundary layer. Crystallization leads to a dramatic increase of viscosity which acts to stabilize part of the boundary layer against instability. We compute the effective temperature contrast driving thermal convection and show that it varies as a function of magma viscosity and hence composition.In magmas with viscosities higher than 105 poise, the temperature contrast driving convection is very small, hence thermal convection is weak. In low-viscosity magmas, convective breakdown occurs before the completion of crystallization, and involves partially crystallized magma. The convective regime is thus characterized by descending crystal-bearing plumes, and bottom crystallization proceeds both by in-situ nucleation and deposition from the plumes. We suggest that this is the origin of intermittent layering, a form of rhythmic layering described in the Skaergaard and other complexes. We show that this regime occurs in basic magmas only at temperatures close to the liquidus and never occurs in viscous magmas. This may explain why intermittent layering is observed only in a few specific cases.  相似文献   

18.
Phenocrysts in volcanic rocks are commonly used to deduce crystallization processes in magma chambers. A fundamental assumption is that the phenocrysts crystallized in the magma chambers at isobaric and nearly equilibrium conditions, on the basis of their large sizes. However, this assumption is not always true as demonstrated here for a porphyritic alkali basalt (Kutsugata lava) from Rishiri Volcano, northern Japan. All phenocryst phases in the Kutsugata lava, plagioclase, olivine, and augite, have macroscopically homogeneous distribution of textures showing features characteristic of rapid growth throughout the crystals. Rarely, a core region with distinct composition is present in all phenocryst phases. Phenocrysts, excluding this core, are occasionally in direct contact with each other, forming crystal aggregates. The equilibrium liquidus temperature of plagioclase, the dominant phase (35 vol%) in the Kutsugata lava, can never exceed the estimated magmatic temperature, unless the liquidus temperature increases significantly due to vesiculation of the magma during ascent. This suggests that most phenocrysts in the Kutsugata lava were formed by decompression of the magma during ascent in a conduit, rather than by cooling during residence in a magma reservoir. In the magma chamber before eruption, probably located at depth of more than 7 km, only cores of the phenocrysts were present and the magma was nearly aphyric (<5 vol% crystals), though the observed rock is highly porphyritic with up to 40 vol% crystals. The Kutsugata magma is inferred to have been rich in dissolved H2O (>4 wt.%) in the magma chamber, and liquidus temperatures of phenocryst phases were significantly suppressed. Large undercooling caused by decompression and degassing of the magma was the driving force for significant crystallization during ascent because of the increase in liquidus temperature due to vapor exsolution. Low ascent rate of the Kutsugata magma, which is suggested by pahoehoe lava morphology and no association of pyroclastics, gave sufficient time for crystallization. Furthermore, the large degree of superheating of plagioclase in the magma chamber caused plagioclase crystallization with low population density and large crystal size, which characterizes the porphyritic nature of the Kutsugata lava. Alkali basalt is likely to satisfy these conditions and similar phenomena are suggested to occur in other volcanic systems.  相似文献   

19.
The origin of Arenal basaltic andesite can be explained in terms of fractional crystallization of a parental high-alumina basalt (HAB), which assimilates crustal rocks during its storage, ascent and evolution. Contamination of this melt by Tertiary calc-alkalic intrusives (quartz–diorite and granite, with 87Sr/86Sr ratios ranging 0.70381–0.70397, nearly identical with those of the Arenal lavas) occurs at upper crustal levels, following the interaction of ascending basaltic magma masses with gabbroic–anorthositic layers. Fragments of these layers are found as inclusions within Arenal lavas and tephra and may show reaction rims (1–5 mm thick, consisting of augite, hypersthene, bytownitic–anorthitic plagioclase, and granular titanomagnetite) at the gabbro–lava interface. These reaction rims indicate that complete `assimilation' was prevented since the temperature of the host basaltic magma was not high enough to melt the gabbroic materials (whose mineral phases are nearly identical to the early formed liquidus phases in the differentiating HAB). Olivine gabbros crystallized at pressure of about 5–6 kbar and equilibrated with the parental HAB at pressures of 3–6 kbar (both under anhydrous and hydrous conditions), and temperatures ranging 1000–1100°C. In particular, `deeper' interactions between the mafic inclusions and the hydrous basaltic melt (i.e., with about 3.5 wt.% H2O) are likely to occur at 5.4 (±0.4) kbar and temperatures approaching 1100°C. The olivine gabbros are thus interpreted as cumulates which represent crystallized portions of earlier Arenal-type basalts. Some of the gabbros have been `mildly' tectonized and recrystallized to give mafic granulites that may exhibit a distinct foliation. Below Arenal volcano a zoned magma chamber evolved prior the last eruptive cycle: three distinct andesitic magma layers were produced by simple AFC of a high-alumina basalt (HAB) with assimilation of Tertiary quartz–dioritic and granitic rocks. Early erupted 1968 tephra and 1969 lavas (which represent the first two layers of the upper part of a zoned magma chamber) were produced by simple AFC, with fractionation of plagioclase, pyroxene and magnetite and concomitant assimilation of quartz–dioritic rocks. Assimilation rates were constant (r1=0.33) for a relative mass of magma remaining of 0.77–0.80, respectively. Lavas erupted around 1974 are less differentiated and represent the `primitive andesitic magma type' residing within the middle–lower part of the chamber. These lavas were also produced by simple AFC: assimilation rates and the relative mass of magma remaining increased of about 10%, respectively (r1=0.36, and F=0.89). Ba enrichment of the above lavas is related to selective assimilation of Ba from Tertiary granitic rocks. Lava eruption occurred as a dynamic response to the intrusion of a new magma into the old reservoir. This process caused the instability of the zoned magma column inducing syneruptive mixing between portions of two contiguous magma layers (both within the column itself and at lower levels where the new basalt was intruded into the reservoir). Syneruptive mixing (mingling) within the middle–upper part of the chamber involved fractions of earlier gabbroic cumulitic materials (lavas erupted around 1970). On the contrary, within the lower part of the chamber, mixing between the intruded HAB and the residing andesitic melt was followed by simple fractional crystallization (FC) of the hybrid magma layer (lavas erupted in 1978–1980). By that time the original magma chamber was completely evacuated. Lavas erupted in 1982/1984 were thus modelled by means of `open system' AFCRE (i.e., AFC with continuous recharge of a fractionating magma batch during eruption): in this case assimilation rates were r1=0.33 and F=0.86. Recharge rates are slightly higher than extrusion rates and may reflect differences in density (between extruded and injected magmas), together with dynamic fluctuations of these parameters during eruption. Ba and LREE (La, Ce) enrichments of these lavas can be related to selective assimilation of Tertiary granitic and quartz–dioritic rocks. Calculated contents for Zr, Y and other REE are in acceptable agreement with the observed values. It is concluded that simple AFC occurs between two distinct eruption cycles and is typical of a period of repose or mild and decreasing volcanic activity. On the contrary, magma mixing, eventually followed by fractional crystallization (FC) of the hybrid magma layer, occurs during an ongoing eruption. Open-system AFCRE is only operative when the original magma chamber has been totally replenished by the new basaltic magma, and seems a prelude to the progressive ceasing of a major eruptive cycle.  相似文献   

20.
The possible effect of pressure-induced breakdown of amphibole in triggering explosive eruptions is considered. Since amphibole is a hydrous mineral, when it breaks down to an anhydrous assemblage as pressure is reduced to less than 1.5–2 kbar, the water liberated might oversaturate the coexisting melt generating the necessary overpressure to trigger an explosive eruption. Resorbed amphiboles are commonly observed in evolved lavas and pyroclastic ejecta. The amount of a volatile component, such as water that will dissolve in a melt is a function of pressure, temperature and composition, and during crystallization it is also a function of the extent of crystallization and the nature of crystallizing minerals. The relation can be expressed by the simple equation: where Xr is the water content of the residual liquid, Xi is the initial water content, XmOH, is the water content of hydrous minerals, f is the total extent of crystallization and f′ is the extent of crystallization of hydrous minerals such that 0 ≤ f′ ≤ f ≤ 1. We suggest that storage of water in hydrous minerals, such as amphibole and biotite, plays an important role in the eruptive behavior of certain types of magmas; the breakdown of these minerals liberates water to the melt at a rate governed by the kinetics of the resorption reaction. If the release of water causes the liquid fraction to exceed the solubility limit and the overpressure resulting from expansion of the gas exceeds the strength of the overlying magma and rocks in the conduit, the result can be an explosive eruption. The amphibole effect can occur at different structural levels depending on the nature of the magma and physical conditions leading to instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号