首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文根据已得到的无作用力磁场的通解,求出了双极黑子磁场的表达式,并求出双极黑子的扭转场磁能M,势场磁能M_p,可释放的自由磁能△M,磁通量Φ,总电流Ι,无力因子α和磁场衰减因子k等重要参量。这些量可表为场强B、半影纤维的扭转角δ和两黑子中心距离l的函数,后3个量可测出。△M的公式可供太阳预报工作参考使用。将上述公式应用于1978年7月太阳活动区,算出各参量,其中△M的量级为10~(32)尔格,足够供该活动区耀斑等活动现象的能量。  相似文献   

2.
本文综述作者及其合作者近年来在太阳活动区无力场数值计算及其应用方面的研究概况。文中简要评价了现有几种太阳活动区常α无力场数值计算表达式,并且叙述了把常α无力场数值计算应用于耀斑研究的结果。得到的主要结论为:(1)现有几种活动区常α无力场数值计算表达式中,Chiu的公式比较好;(2)用Chiu公式外推得到的活动区磁场结构,能够较好地解释观测到的许多现象,表明常α无力场近似仍不失为一种可以接受的活动区磁场模型;(3)活动区无力场的某些参数,如无力因子α和自由磁场能ΔE(定义为无力场能与势场能之差),与耀斑发生率密切相关,可以作为耀斑预报的判据。  相似文献   

3.
本文在综合分析质子耀斑活动区观测特点的基础上,指出在密集的多极黑子构成的局部区域中,同极黑子分裂,互相排斥,异极黑子相互靠近,向异极区中场强较弱部分的挤压和渗入,是一大批质子耀斑活动区的共同特点.这种黑子间的相对运动,使中性线严重扭曲,呈现出质子耀斑活动区特有的“S”型。根据这些观测特点,寻找到了一种定量估计无力因子的方法。对三个典型的质子耀斑活动区估计了无力因子的变化,并在常无力因子的假定下进行了无力场结构和势场磁能的计算。计算表明质子耀斑发生前无力因子逐渐增加,而势场磁能逐渐减小,减少的势场能量可能正是无力场得到发展的能源,足够质子耀斑的需要。  相似文献   

4.
李醒  胡友秋 《天文学报》1995,36(4):350-358
本文采用二维三分量耗散MHD模型,对带高电流层的局地非对称的四极无力场的磁能释放过程进行数值模拟,结果表明,磁能释放过程大体可以分为两个阶段:高电流层引起的异常电阻耗散使该层等离子体加热至3×106K的高温,形成一高温环;在高电流层耗散的触发下,磁分隔面的电流急剧增长并爆发异常电阻耗散和磁场重联,导致耀斑发生,主要的能量释放发生在磁分隔线和高剪切无力场中的磁分隔面上,等离子体温度可以达到1.9×107K。上述无力场的触发释能过程可能是太阳耀斑的一种重要的释能机制。  相似文献   

5.
1980年11月2日到11日(9日除外),我们拍摄到No.431活动区(紫台编号)太阳黑子的精细结构照片。以此为基础,我们分析了该活动区的形态演变特性。同时,从精细结构照片放大图上测量出半影纤维扭转角等基本参量,由此计算出黑子的磁能和所释放的扭转自由能。比较在此期间产生的耀斑和磁能的变化,表明耀斑的爆发很可能是由扭转自由能供给的。  相似文献   

6.
本文对1967—1972年期间的资料较完整的18个质子耀斑活动区,作α因子统计。根据大耀斑区中性线扭曲成“S”形的程度来确定无力场因子α。发现1级以上质子耀斑区,耀斑当天α≥0.34,2级以上,α≥0.50,且耀斑发生前1—2天内α因子均有所增长。因此建议用该α因子预报质子耀斑事件。文中还提出挤压无力场大耀斑模式的设想,以更好地解释一些观测事实。  相似文献   

7.
我们利用北京天文台太阳磁场望远镜在1983年投入试观测期间取得的资料,对该年6月份的一群黑子的磁场以及耀斑作了综合分析,得到一些结论。以光球纵场为边界条件,计算了常α无力场。根据挤压无力场耀斑模式,我们认为耀斑爆发的能量,来自异极性黑子的相互靠近。磁中性线的扭曲程度,反映了无力场的状态。  相似文献   

8.
在太阳活动区AR5395中连续几天内存在着旋转运动,后来演化为磁场被强剪切。根据AR5395演化的分析研究,本文对该活动区产生的耀斑提出两个模型。首先,该活动区的耀斑位形是一个扭转的共生磁流管:许多磁流管的N极一端被旋转运动扭到一起,处于亚稳状态,一旦受到触发就释放出被储存的能量。随着耀斑不断产  相似文献   

9.
本文在限制条件下,对固定空间磁能进行变分,发现无力因子a为常数表征无力场的最小磁能状态,代表稳定的无力场。其物理意义为气体漂移速度场是定常的,磁场形态不变,磁场强度受电阻衰变的影响,也因为流体运动而受到波因亭能流的影响。有效电场垂直于磁场。在另一限制件: 下,对给定空间内欧姆损失进行变分,发现a为常数也表征无力场的最小欧姆损失状态,它的物理量是最小磁能状态无力因子a为零,或的特殊情况。  相似文献   

10.
一般看法是,太阳耀斑的能量源于对流层和光球层,然后逐步堆积到外层的色球和日冕活动区中。所以,分析太阳大气中能量是如何从低层转移到上层的过程,以及分析太阳活动区中无力场能量是怎样堆积起来的机制,显然是讨论耀斑储能过程的中心问题之一。本文从冻结型无力场的基本方程组出发,不仅仅考虑旋转的环形流场,更考虑子午流场之间的相互作用,并具体推算了非定常的时间演化过程。  相似文献   

11.
磁准分界面(Quasi-Separatrix Layer,简称QSL)是3维磁结构中磁力线连接性发生显著改变的区域,观测表明它多数时候和耀斑带所在的位置符合得较好.有关这一结构和3维磁重联及耀斑关系的研究在近年来受到越来越多的关注.从QSL的理论出发,研究了2011年12月26日在活动区AR11384发生的一个C5.7级典型双带耀斑(事件1)和2015年6月22日发生在活动区AR12371处的一个M6.5级耀斑(事件2).结合SDO/AIA(Solar Dynamics Observatory/Atmospheric Imaging Assembly)观测到的多波段数据和SDO/HMI(Helioseismic and Magnetic Imager)观测到的矢量磁场数据,首先分别利用势场和非线性无力场对日冕的3维磁场结构进行了外推,并计算了活动区磁自由能的演化;然后基于势场和非线性无力场的外推结果计算了不同高度处磁压缩因子(magnetic squashing factor)Q的对数分布,并研究了不同高度磁准分界面与相应高度处观测到的耀斑带的演化关系.最后分析了2个耀斑事件的多波段演化特征,并计算得到事件2中磁力线的平均滑动速度在304?A波段和335?A波段分别为4.6 km·s~(-1)和6.3 km·s~(-1).研究发现:计算得到的磁准分界面在色球和日冕中的位置和相应高度观测到的耀斑带的位置符合得较好,而且各层次的磁准分界面与相应层次的耀斑亮带在时间上也有近乎一致的演化行为,这突显出了磁准分界面理论在3维磁重联和耀斑研究中的作用,并证实事件2耀斑能量的释放可能是通过发生在QSL处的磁重联进行的,同时说明,研究QSL对于理解2维磁重联和3维磁重联本质联系是至关重要的.  相似文献   

12.
本文采用一个表征高能耀斑强度的综合指数,分析了太阳活动21周以来(1976.7—1991.2)级别≥M1.0的X射线耀斑和能量≥10Mev的质子耀斑综合指数的时空分布,提出在研究时段内太阳上的13个高能耀斑“热点”。这些热点活动区反复回转,爆发了占总指数58.1%的高能耀斑。本文还讨论了高能耀斑热点的特征及其与大尺度磁场演化的关系。结果表明,高能耀斑热点与大尺度磁场的演化关系密切,前者受后者的调制。  相似文献   

13.
本文分析了分别由Nakagawa等、Seehafer以及Chiu等给出的常α无力磁场的几种不同的外推方法,并把它们应用于同一个太阳活动区——M11976区——加以检验和比较.对于需要活动区的三维磁场的场合,本文提出了关于这些不同方法的选择和使用方面的建议.  相似文献   

14.
1989年1月14日AR5312(怀柔编号89009)活动区,产生了一个2B级耀斑。该活动区经纬度为L306、S32,黑子群磁场分类为δ型。耀斑开始时间为0202UT,结束为0534UT,持续了3个多小时。北京天文台磁场望远镜,得到了一系列较完整的高分辨磁场及速度场资料,包括光球5324A的矢量磁场图和色球4861A的纵向磁场图(图1、2)。从耀斑前后的磁图得到以下结果: 1、耀斑初始亮点位于纵向磁场中性线附近高度剪切区域(见图1B区)、新浮磁流区(图2D区)以及双极磁结构对消区。前两种区域均能形成电流片,并且引起磁流体不稳定性,从而激发耀斑,但对消区和耀斑的关系不是很清楚,有待于理论工作者进一步探讨。 2、耀斑极大时间过后,光球和色球H_(11)=0线附近纵场梯度均有明显下降。 3、在强剪切区域(图1B区),5324A横向磁场和H_(11)=0线之间的夹角在耀斑极大时间过后有明显增大,该现象表明磁能释放后,磁场剪切缓解。 4、耀斑初始亮点产生后磁场高度剪切区、新浮磁流区和双极对消区,其触发耀斑的作用和周围的磁场环境有密切关系,特别是象具有磁海湾结构这样的活动区,似乎更容易产生耀斑。 5. 该活动区色球磁场位形,较光球磁场位形复杂,主要表现在:色球的纵场出现了一些磁弧岛结构,其原因可能是光球之上的磁力线高度剪切区及扭绞所致。0411  相似文献   

15.
AR5395及AR6659的贮能释能周期性   总被引:1,自引:0,他引:1  
本文分析了了AR5395和AR6659的X射线耀斑活动周期性,耀斑强度周期的存在表明活动区的能量积累和释放过程具有可重复性,包括贮存的能量大小也具可重复性,计算得出AR5395的耀风强度周期为24.49小时,而AR6659的周期为57.39小时,耀斑指数按周期的分布证明在一个贮能周期中活动区贮存的能量大致相同,周期内的平均耀斑指数代表能量积累效率,AR6659较之AR5395有较长的能量积累周期和较高的能量积累效率.此外,本文还讨论了耀斑事件出现的周期.这种周期的长短代表活动区磁结构对于耀斑出现的稳定程度,并且,当活动区处于较高能量状态(即相对势场状态的偏离较大)时,出现耀斑不稳定性的可能性增加。  相似文献   

16.
在太阳活动区AR5395中存在不断地旋转运动。产生了一系列大耀斑之后,活动区的磁场位形重新组建。活动区内的磁场被剪切。本文建立了一个剪切的开放的磁拱模型,利用2(1/2)维的理想磁流体动力学方程组,研究了磁拱底部的磁场剪切储存能量。通  相似文献   

17.
本文提出了描述太阳活动区磁场非势特征的一个新的参数——矢量磁场的剪切角ΔΨ。我们定义ΔΨ是观测的矢量磁场与其相应的无电流磁场的夹角.Hagyard等定义的角剪切(an-gular shear)ΔΨ是我们所定义的剪切角在光球上的投影.在高度倾斜的磁场位形中,ΔΨ与Δφ没有大的差别.对于活动区AR6233,它们与耀斑活动的对应关系,ΔΨ比Δφ更清楚,而且对磁场的非势性能给出更加明确的解释.  相似文献   

18.
对太阳大气磁场的可靠测量有助于人们更好地理解太阳活动区内外的许多活动现象,如耀斑的触发和能量释放过程、黑子的形态和黑子大气的平衡、日珥的形成等.由于原子在磁场中的一些能级会产生分裂(Zeeman效应),使对应这些能级的谱线分裂成若干个具有不同偏振特性的分量,因此目前对黑子磁场的测量主要是通过偏振光,即Stokes参量I、Q、U、V的观测来实现的.该文主要介绍近30年来太阳黑子光谱反演的方法以及所取得的成就;同时也对光谱反演和滤光器型的望远镜矢量磁场的测量进行了简单的比较.  相似文献   

19.
根据半年多用高时间分辨率和高空间分辨率的光球观测监视太阳活动区的结果,我们以三组和耀斑有关的光球变化照片来表明耀斑过程中有能量从光球下层快速出来,表现形式为从黑子本影“抛出”磁场和黑子群内白光辐射增强,它们足以供给10~(31)—10~(32)尔格大耀斑的能量。耀斑前后及耀斑过程活动区光球变化在空间、时间和现象本身的多样性是造成复杂的耀斑现象的根本原因。从光球下层快速出来的能流在水平方向有明显的动力学效应,它使在其通道上的小黑子变形、瓦解、甚至在几分钟至几小时内消失。  相似文献   

20.
本文介绍1993年10月2日发生的一个1N/C6.5级耀斑多波段观测的结果.综合比较了耀斑的单色象,Hα波段工维光谱,2840兆赫微波爆发和硬X射线爆发资料.得到Hα单色象上不同亮核的强度变化,与微波及硬X射线暴的时间轮廓比较,给出了色球耀斑区亮度场的演化,对照磁图确定了耀斑区的磁场位形,从而对该耀斑产生和加热提出了一种可能的解释.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号