首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Geologic evidence of the prior existence of liquid water on Mars suggests surface temperatures Ts were once considerably warmer than at present; and that such a condition may have arisen from a larger atmospheric greenhouse. Here we develop a simple climate model for a CO2/H2O Mars atmosphere including water vapor-longwave opacity feedback in the atmosphere and temperature-albedo feedback at surface icecaps, under the assumption that once the Martian surface pressure was ps ≥ 1 atm CO2. Longwave flux to space is computed as a function of Ts and ps using band-absorption models for the effect of the 15-μm fundamental, and the 10- and 15-μm hot bands, of the CO2 molecule; as well as the pure rotation bands and e continuum of H2O. The derived global radiative balance predicts a global mean surface temperature of 283°K at 1 atm CO2. When the emission model is coupled to a latitudinally resolved energy balance climate model, including the effect of poleward heat transfer by atmospheric baroclinic eddies, the solutions vary, depending on ps. We considered two cases: (1) the present Mars (ps ? 0.007 atm) with pressure-buffering by solid CO2 icecaps, and limited poleward heat flux by the atmosphere; and (2) a hypothetical “hot Mars” (ps ? 1.0 atm), whose much higher CO2 amount augmented by H2O evaporative feedback yields a theoretical Ts distribution with latitude admitting liquid water over 95% of the surface, water icecaps at the poles, and a diminished equator-to-pole temperature gradient relative to the present.  相似文献   

2.
Current evidence indicates that the Martian surface is abundant with water presently in the form of ice, while the atmosphere was at one time more massive with a past surface pressure of as much as 1 atm of CO2. In an attempt to understand the Martian paleoclimate, we have modeled a past CO2H2O greenhouse and find global temperatures which are consistent with an earlier presence of liquid surface water, a finding which agrees with the extensive evidence for past fluvial erosion. An important aspect of the CO2H2O greenhouse model is the detailed inclusion of CO2 hot bands. For a surface pressure of 1 atm of CO2, the present greenhouse model predicts a global mean surface temperature of 294°K, but if the hot bands are excluded, a surface temperature of only 250°K is achieved.  相似文献   

3.
The vertical thermal structure of a primitive terrestrial atmosphere is investigated with a radiative-convective-photochemical model. The radiative code includes the short wave contribution from water vapor and ozone, and long wave contribution from methane, carbon dioxide, water vapor and ozone. Calculations for an oxygen level of 10?3 PAL and different CO2 levels shows that the water vapor content, and consequently the odd hydrogen concentration, in the stratosphere is controlled by the temperature which is strongly reduced from present values due to the lower ozone content. As a result, depending on the assumed mechanism for controlling the H2O mixing ratio, a considerable feedback is introduced on the ozone columnar density.The same model is used to parameterize the infrared outgoing flux as a function of surface temperature to be used in a two-mode energy balance climate model. This computation is addressed to the question of whether a large amount of carbon dioxide in the primitive atmosphere could be effective in producing a greenhouse effect able to compensate for the Sun's lower luminosity. It is found that with 25 times the present carbon dioxide mixing ratio, due to the ice-albedo feedback mechanism, a decrease of 9% in the solar constant could be enough to produce an ice-covered Earth.  相似文献   

4.
The available solar flux at a given altitude in the atmospheres of Mars and Venus is attenuated mainly by CO2 (molecular absorption and Rayleigh scattering) with an extra contribution due to SO2 on Venus. The dissociation cross section of CO2 depends on temperature. At temperatures appropriate for these atmospheres (~250°K), the cross sections are about 15% lower than those at room conditions (Y.L. Yung and W.B. De More, 1982, Icarus, 51, 199). It is shown that this temperature effect cannot be neglected in the evaluation of photolysis rates. Calculations of the photodissociation coefficients of CO2, SO2, HCl, and H2O are presented. For example, at the surface of Mars, the coefficient of H2O is nearly multiplied by a factor of 10!  相似文献   

5.
We jointly analyze data from the High-Energy Neutron Detector (HEND) onboard the NASA Mars Odyssey spacecraft and data from the Mars Orbiter Laser Altimeter (MOLA) onboard the Mars Global Surveyor spacecraft. The former instrument measures the content of hydrogen (in the form of H2O or OH) in the subsurface layer of soil and the latter instrument measures the surface albedo with respect to the flux of solar energy. We have checked the presence of a correlation between these two data sets in various Martian latitude bands. A significant correlation has been found between these data at latitudes poleward of 40° in the northern hemisphere and at latitudes 40°–60° in the southern hemisphere. This correlation is interpreted as evidence for the presence of stable water ice in these regions under a dry layer of soil whose thickness is determined by the condition for equilibrium between the condensation of water from the atmosphere and its sublimation when heated by solar radiation. For these regions, we have derived an empirical relation between the flux of absorbed solar radiation and the thickness of the top dry layer. It allows the burial depth of the water ice table to be predicted with a sub-kilometer resolution based on near-infrared albedo measurements. We have found no correlation in the southern hemisphere at latitudes >60°, although neutron data also suggest that water ice is present in this region under a layer of dry soil. We conclude that the thickness of the dry layer in this region does not correspond to the equilibrium condition between the water ice table and the atmosphere.  相似文献   

6.
Time variations in the solar flux between 1000 and 4000 Å induce changes in the concentrations of minor constituents in the upper stratosphere and mesosphere. The response of mesospheric ozone to variations in the Lyman α line over the course of several solar rotations may be of measurable magnitude. Large Lyman α fluxes lead to small O3 densities above 65 km due to the enhanced dissociation of H2O and resultant destruction of odd oxygen by odd hydrogen. An increase in continuum and Lyman α fluxes causes a slight enhancement in both the odd oxygen and hydrogen concentrations in the upper stratosphere.  相似文献   

7.
《Icarus》1986,67(3):484-514
Most of the solar energy absorbed by Venus is deposited in the atmosphere, at levels more than 60 km above the surface. This unusual flux distribution should have important consequences for the thermal structure and dynamical state of that atmosphere. Because there are few measurements of the solar flux at levels above 60 km, a radiative transfer model was used to derive the structure and amplitude of the solar fluxes and heating rates in the Venus mesosphere (60–100 km). This model accounts for all sources of extinction known to be important there, including absorption and scattering by CO2, H2O, SO2, H2SO4 aerosols and an unidentified UV absorber. The distributions of these substances in our model atmosphere were constrained by a broad range of spacecraft and ground-based observations. Above the cloud tops, (71 km), near-infrared CO2 bands absorb enough sunlight to produce globally averaged heating rates ranging from 4° K/day (24-hr period) at 71 km to more than 50° K/day at 100 km. The sulfuric acid aerosols that compose the Venus clouds are primarily scattering agents at solar wavelengths. These aerosols reflect about 75% of the incident solar flux before it can be absorbed by the atmosphere or surface. The unknown substance that causes the observed cloud-top ultraviolet contrasts is responsible for most of the absorption of sunlight within the upper cloud deck (57.5−71 km). This substance absorbs almost half of the sunlight deposited on Venus and contributes to solar heating rates as large as 6° K/day at levels near 65 km. With the exception of CO2, all of the important sources of solar extinction have concentrations that vary with position, and, in general, these concentrations are not well known. To determine the sensitivity of the model results to these uncertainties, the concentrations of these opacity sources were varied in the model atmosphere and solar fluxes were computed for each case. These tests indicate that CO2 dominates the solar absorption at levels above the cloud tops and that heating rates are relatively insensitive to the distribution of other sources of extinction there. Within the upper cloud deck, uncertainties in the distribution of the UV absorber and the H2SO4 aerosols can produce heating rate errors as large as 50% at some levels. Diurnally averaged solar heating rates for the nominal opacity distribution were computed as a function of latitude at altitudes between 55 and 100 km, where most of the solar flux is deposited. The zonal wavenumber 1 (diurnal) and zonal wavenumber 2 (semidiurnal) components of the diurnally varying solar heating rates were also computed in this domain. These results should be sufficiently reliable for use in numerical dynamical models of the Venus atmosphere.  相似文献   

8.
D.J. Burke 《Icarus》2011,211(2):1082-1088
Remote infrared spectroscopic measurements have recently re-opened the possibility that water is present on the surface of the Moon. Analyses of infrared absorption spectra obtained by three independent space instruments have identified water and hydroxyl (-OH) absorption bands at ∼3 μm within the lunar surface. These reports are surprising since there are many mechanisms that can remove water but no clear mechanism for replenishment. One hypothesis, based on the spatial distribution of the -OH signal, is that water is formed by the interaction of the solar wind with silicates and other oxides in the lunar basalt. To test this hypothesis, we have performed a series of laboratory simulations that examine the effect of proton irradiation on two minerals: anorthite and ilmenite. Bi-directional infrared reflection absorption spectra do not show any discernable enhancement of infrared absorption in the 3 μm spectral region following 1 or 100 keV proton irradiation at fluences between 1016 and 1018 ions cm−2. In fact, the post-irradiation spectra are characterized by a decrease in the residual O-H band within both minerals. Similarly, secondary ion mass spectrometry shows a decrease rather than an increase of the water group ions following proton bombardment of ilmenite. The absence of significant formation of either -OH or H2O is ascribed to the preferential depletion of oxygen by sputtering during proton irradiation, which is confirmed by post-irradiation surface analysis using X-ray photoelectron spectroscopy measurements. Our results provide no evidence to support the formation of H2O in the lunar regolith via implantation of solar wind protons as a mechanism responsible for the significant O-H absorption in recent spacecraft data. We determine an upper limit for the production of surficial -OH on the lunar surface by solar wind irradiation to be 0.5% (absorption depth).  相似文献   

9.
Oleg Abramov  John R. Spencer 《Icarus》2009,199(1):189-196
Linear features dubbed “tiger stripes” in the south polar region of Enceladus have anomalously high heat fluxes and are the apparent source of the observed plume. Several explanations for the observed activity have been proposed, including venting from a subsurface reservoir of liquid water, sublimation of surface ice, dissociation of clathrates, and shear heating. Thermal modeling presented in this work, coupled with observations from the Cassini Composite Infrared Spectrometer (CIRS) instrument, seeks to elucidate the underlying physical mechanism by constraining vent temperatures and thermal emission sources, using a model in which the observed thermal signature results primarily from conductive heating of the surface by warm subsurface fractures. The fractures feed surface vents, which may themselves contribute to the observed thermal emission. Model variables include vent temperature, presence of a surface insulating layer, vent width, time-variable heat input, and heat sources other than the central vent. Results indicate that CIRS spectra are best fitted with a model in which the surface is heated by narrow vents at temperatures as high as 223 K. Although equally good fits can be obtained for vent temperatures in the range of 130 to 155 K if the vents are wider (180 m and 22 m respectively) and dominate the emission spectrum, these models are probably less realistic because vents with these temperatures and widths cannot supply the observed H2O vapor flux. The lack of emission angle dependence of the thermal emission when July 2005 and November 2006 CIRS observations are compared also argues against thermal emission being dominated by the vents themselves. Thus, results favor high-temperature models, possibly venting from a subsurface liquid water reservoir. However, a fracture filled with liquid water near the surface would produce significantly higher radiances than were detected unless masked by a thermally insulating surface layer. Models that best match the CIRS data are characterized by small fractions of the surface at high temperatures, which strengthens the case for the vents and/or their conductively-heated margins being the primary heat source. Models where the thermal emission is dominated by conductive heating of the surface from below by a laterally-extensive buried heat source cannot reproduce the observed spectrum. Models with a 10 cm thick upper insulating layer produce a poor match to the CIRS spectra, suggesting high thermal inertias near the tiger stripes. Finally, tiger stripe thermal emission measured by CIRS varied by less than 15% over the 16 month period from July 2005 to November 2006.  相似文献   

10.
William D. Smythe 《Icarus》1975,24(4):421-427
Reflectance spectra from 1 to 6 microns were taken of CH4 and CO2 gas hydrates and were found to be very similar to H2O frost spectra over the entire wavelength region. H2O clathrates have a gas to H2O ratio of about 16, hence a surface may contain 17% (by number) gas and appear spectroscopically similar to an H2O frost covered surface. This is important in the pressure-temperature regime of the outer solar system where hydrates, which often have vapor pressures 10?5 (or less) that of the pure gas component, are marginally stable as solids (e.g., the vapor pressure in Torr at 60 K for CH4·6H2O = 10?8 while for CH4 = 10?1). We may conclude that reflectance spectroscopy (especially Earth-based) is useful for positive identification of some components of the surface, but does not set stringent limits for spectroscopically active hydrate forming substances in the presence of water frost.  相似文献   

11.
C.B. Leovy 《Icarus》1973,18(1):120-125
A model for exchange of water from the atmosphere to condensing CO2 caps is developed. The rate of water condensation in the caps is assumed to be proportional to the meridional heat flux. It follows that the amount of water condensed in the caps varies inversely with the amount of CO2 condensed. The seasonal phase of the release of water from the caps is not consistent with observed variations in the abundance of atmospheric water. Seasonal variations of atmospheric water abundance are most consistent with vapor exchange between the atmosphere and permafrost in the subtropics. Although water condensation in semipermanent caps is normally very slow, it may take place at a much faster rate at unusually high atmospheric temperatures, such as those produced by absorption of solar radiation by airborne dust.  相似文献   

12.
W.M. GrundyM.W. Buie 《Icarus》2002,157(1):128-138
We present four new near-infrared spectra of Pluto, measured separately from its satellite Charon during four HST/NICMOS observations in 1998, timed to sample four evenly spaced longitudes on Pluto. Being free of contamination by telluric absorptions or by Charon light, the new data are particularly valuable for studies of Pluto's continuum absorption. Previous studies of the major volatile species indicate the existence of at least three distinct terrains on Pluto's surface: N2-rich, CH4-rich, and volatile-depleted. The new data provide evidence that each of these three terrains has distinct near-infrared continuum absorption features. CH4-rich regions appear to show reddish continuum absorption through the near-infrared spectral range. N2-rich regions have very little continuum absorption. Visually dark, volatile-depleted regions exhibit intermediate continuum albedos with a bluish continuum slope. By analogy with Triton, we expected that careful spectral modeling would reveal strong evidence for the existence of H2O ice on Pluto's surface, but we found only very weak evidence for its existence in the volatile-depleted regions. These data require H2O ice to play a much less prominent role on Pluto's surface than it does on Triton's.  相似文献   

13.
Jeremy Bailey 《Icarus》2009,201(2):444-453
The discovery of the near infrared windows into the Venus deep atmosphere has enabled the use of remote sensing techniques to study the composition of the Venus atmosphere below the clouds. In particular, water vapor absorption lines can be observed in a number of the near-infrared windows allowing measurement of the H2O abundance at several different levels in the lower atmosphere. Accurate determination of the abundance requires a good database of spectral line parameters for the H2O absorption lines at the high temperatures (up to ∼700 K) encountered in the Venus deep atmosphere. This paper presents a comparison of a number of H2O line lists that have been, or that could potentially be used, to analyze Venus deep atmosphere water abundances and shows that there are substantial discrepancies between them. For example, the early high-temperature list used by Meadows and Crisp [Meadows, V.S., Crisp, D., 1996. J. Geophys. Res. 101 (E2), 4595-4622] had large systematic errors in line intensities. When these are corrected for using the more recent high-temperature BT2 list of Barber et al. [Barber, R.J., Tennyson, J., Harris, G.J., Tolchenov, R.N., 2006. Mon. Not. R. Astron. Soc. 368, 1087-1094] their value of 45±10 ppm for the water vapor mixing ratio reduces to 27±6 ppm. The HITRAN and GEISA lists used for most other studies of Venus are deficient in “hot” lines that become important in the Venus deep atmosphere and also show evidence of systematic errors in line intensities, particularly for the 8000 to 9500 cm−1 region that includes the 1.18 μm window. Water vapor mixing ratios derived from these lists may also be somewhat overestimated. The BT2 line list is recommended as being the most complete and accurate current representation of the H2O spectrum at Venus temperatures.  相似文献   

14.
The evolution of the martian atmosphere with regard to its H2O inventory is influenced by thermal loss processes of H, H2, nonthermal atmospheric loss processes of H+, H2+, O, O+, CO2, and O2+ into space, as well as by chemical weathering of the surface soil. The evolution of thermal and nonthermal escape processes depend on the history of the intensity of the solar XUV radiation and the solar wind density. Thus, we use actual data from the observation of solar proxies with different ages from the Sun in Time program for reconstructing the Sun's radiation and particle environment from the present to 3.5 Gyr ago. The correlation between mass loss and X-ray surface flux of solar proxies follows a power law relationship, which indicates a solar wind density up to 1000 times higher at the beginning of the Sun's main sequence lifetime. For the study of various atmospheric escape processes we used a gas dynamic test particle model for the estimation of the pick up ion loss rates and considered pick up ion sputtering, as well as dissociative recombination. The loss of H2O from Mars over the last 3.5 Gyr was estimated to be equivalent to a global martian H2O ocean with a depth of about 12 m, which is smaller than the values reported by previous studies. If ion momentum transport, a process studied in detail by Mars Express is significant on Mars, the water loss may be enhanced by a factor of about 2. In our investigation we found that the sum of thermal and nonthermal atmospheric loss rates of H and all nonthermal escape processes of O to space are not compatible with a ratio of 2:1, and is currently close to about 20:1. Escape to space cannot therefore be the only sink for oxygen on Mars. Our results suggest that the missing oxygen (needed for the validation of the 2:1 ratio between H and O) can be explained by the incorporation into the martian surface by chemical weathering processes since the onset of intense oxidation about 2 Gyr ago. Based on the evolution of the atmosphere-surface-interaction on Mars, an overall global surface sink of about 2×1042 oxygen particles in the regolith can be expected. Because of the intense oxidation of inorganic matter, this process may have led to the formation of considerable amounts of sulfates and ferric oxides on Mars. To model this effect we consider several factors: (1) the amount of incorporated oxygen, (2) the inorganic composition of the martian soil and (3) meteoritic gardening. We show that the oxygen incorporation has also implications for the oxidant extinction depth, which is an important parameter to determine required sampling depths on Mars aimed at finding putative organic material. We found that the oxidant extinction depth is expected to lie in a range between 2 and 5 m for global mean values.  相似文献   

15.
Loss of water from Venus. I. Hydrodynamic escape of hydrogen   总被引:1,自引:0,他引:1  
A one-dimensional photochemical-dynamic model is used to study hydrodynamic loss of hydrogen from a primitive, water-rich atmosphere on Venus. The escape flux is calculated as a function of the H2O mixing ratio at the atmospheric cold trap. The cold-trap mixing ratio is then related in an approximate fashion to the H2O concentration in the lower atmosphere. Hydrodynamic escape should have been the dominant loss process for hydrogen when the H2O mass mixing ratio in the lower atmosphere exceeded ~0.1. The escape rate would have depended upon the magnitude of the solar ultraviolet flux and the atmospheric euv heating efficiency and, to a lesser extent, on the O2 content of the atmosphere. The time required for Venus to have lost the bulk of a terrestrial ocean of water is on the order of a billion years. Deutrium would have been swept away along with hydrogen if the escape rate was high enough, but some D/H enrichment should have occurred as the escape rate slowed down.  相似文献   

16.
A critical analysis has been made of solar irradiance in the spectral region covering wavelengths from 100 nm upwards; the absorption characteristics of molecules of oxygen and ozone have been taken into account with a view to the direct application of the results to atmospheric photochemistry. The absorption of radiation by these molecules results in the photodissociation of both of them in the homosphere, and it also makes possible the penetration of solar radiation from the thermosphere, through the mesosphere and the stratosphere, down to the troposphere.Special attention has been given to each of the following spectral regions: Lyman-alpha radiation at 121.6 nm, the O2 Schumann-Runge continuum at wavelengths less than 175 nm, the O2 Schumann-Runge band system from 200 to 175 nm, and the O2 Herzberg continuum at 242.4 nm. For absorption by ozone, the solar spectrum has been analysed in the following regions: the Hartley band at wavelengths less than 310 nm, the Huggins bands at wavelengths above 310 nm and the visible Chappuis bands. Finally, for the photodissociation of O3, particular attention has been given to the transition region (300–320 nm) in which there is a change-over from the production of the excited atom O(1D) to that of the atom in its ground state O(3p).  相似文献   

17.
New far-infrared observations of the NH3 rotation-inversion manifolds in the spectrum of Jupiter have been inverted with the use oftthe detailed ammonia line opacity. A temperature of 160°K at a 1-bar pressure level and a temperature of 105°K for the minimum temperature of the inversion level at 0.15 bars have been derived for gaseous absorption due to NH3, H2, and He. The overall fit to the brightness temperature as a function of frequency σ is within ±1°K for 100 ≤ σ ≤ 400 cm?1 except for the centers of the NH3 rotation-inversion manifolds where for J ≥ 7 the fit is about 5°K too high. In the continuum for 400 ≤ σ ≤ 630 cm?1 the fit is within 2.5°K. Consideration of an ammonia ice haze, photodissociation of NH3 by uv radiation, NH3 abundance variation, different He/H2 ratios, and uncertainties in the data effect the temperatures at 1 bar and the temperature at the inversion layer by <7°K. The presently derived temperature at 1 bar of 160°K is consistent with Jovian interior models which can match the gravitational moment, J2.  相似文献   

18.
The penetration in the terrestrial atmosphere of solar radiation corresponding to the spectral range of the Schumann-Runge bands of molecular oxygen is analyzed between 1750 and 2050 Å. The variation of the absorption cross section with temperature is taken into account and it is shown that average O2 absorption cross sections cannot lead to correct photodissociation coefficients. Reduction factors are defined in order to simplify the computation of the molecular oxygen photodissociation and to permit a simple determination of the photodissociation coefficients of any minor constituent with smoothly varying absorption cross section. Examples are given for O2, H2O, CO2, N2O, HNO3 and H2O2. Numerical approximations are developed for three types of spectral subdivisions: Schumann-Runge band intervals, 500 cm?1 and 10 Å intervals. The approximations are valid from the lower thermosphere down to the stratosphere and they can be applied for a wide range of atmospheric models and solar zenith distances.  相似文献   

19.
Edwin S. Barker 《Icarus》1976,28(2):247-268
The patrol of Martian water vapor carried out with the echelle-coudé scanner at McDonald Observatory during the 1972–1974 apparition has produced 469 individual photoelectric scans of Doppler-shifted Martian H2O lines. Almost an entire Martian year was covered during the 1972–1974 period (Ls = 118?269° and 301?80°). Three types of coverage have been obtained: (1) regular—the slit placed pole to pole on the central meridian; (2) latitudinal—the slit placed parallel to the Martian equator at various latitudes; (3) diurnal—the slit placed parallel to the terminator at several times during a Martian day measured from local noon.Both the seasonal and diurnal effects seem to be controlled by the insolation and not the local topography with respect to the 6.1 mb surface. A slight negative correlation with elevation was noted which improved during the seasons of greater H2O content. The previous seasonal behavior has been confirmed and amplified. The following are the primary conclusions: (1) The planetwide abundance is low (5?15 μm of ppt H2O) during both equinoctical periods. (2) The maximum abundance of about 40 μm occurs in each hemisphere after solstice at about 40° latitude in that hemisphere. (3) The latitude of the maximum amount in the N-S distribution precedes the latitude of maximum insolation by 10–20° of latitude. (4) During the “drier” seasons (5–20 μm) near the equinoxes on Mars, the atmospheric water vapor changes by a factor of 2–3x over a diurnal cycle with the maximum near local noon. (5) The effects of the 1973 dust storm during the southern summer reduced the amount of water vapor over the southern hemisphere regions to 3–8 μm.  相似文献   

20.
Detection and measurement of atmospheric water vapor in the deep jovian atmosphere using microwave radiometry has been discussed extensively by Janssen et al. (Janssen, M.A., Hofstadter, M.D., Gulkis, S., Ingersoll, A.P., Allison, M., Bolton, S.J., Levin, S.M., Kamp, L.W. [2005]. Icarus 173 (2), 447-453.) and de Pater et al. (de Pater, I., Deboer, D., Marley, M., Freedman, R., Young, R. [2005]. Icarus 173 (2), 425-447). The NASA Juno mission will include a six-channel microwave radiometer system (MWR) operating in the 1.3-50 cm wavelength range in order to retrieve water vapor abundances from the microwave signature of Jupiter (see, e.g., Matousek, S. [2005]. The Juno new frontiers mission. Tech. Rep. IAC-05-A3.2.A.04, California Institute of Technology). In order to accurately interpret data from such observations, nearly 2000 laboratory measurements of the microwave opacity of H2O vapor in a H2/He atmosphere have been conducted in the 5-21 cm wavelength range (1.4-6 GHz) at pressures from 30 mbars to 101 bars and at temperatures from 330 to 525 K. The mole fraction of H2O (at maximum pressure) ranged from 0.19% to 3.6% with some additional measurements of pure H2O. These results have enabled development of the first model for the opacity of gaseous H2O in a H2/He atmosphere under jovian conditions developed from actual laboratory data. The new model is based on a terrestrial model of Rosenkranz et al. (Rosenkranz, P.W. [1998]. Radio Science 33, 919-928), with substantial modifications to reflect the effects of jovian conditions. The new model for water vapor opacity dramatically outperforms previous models and will provide reliable results for temperatures from 300 to 525 K, at pressures up to 100 bars and at frequencies up to 6 GHz. These results will significantly reduce the uncertainties in the retrieval of jovian atmospheric water vapor abundances from the microwave radiometric measurements from the upcoming NASA Juno mission, as well as provide a clearer understanding of the role deep atmospheric water vapor may play in the decimeter-wavelength spectrum of Saturn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号