首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Joseph A. Burns 《Icarus》1975,25(4):545-554
The angular momentum H is plotted versus mass M for the planets and for all asteroids with known rotation rates and shapes, primarily taken from D. C. McAdoo and J. A. Burns [Icarus18, 285–293 (1973)]. An asteroid's angular momentum is derived from its rotation rate as determined by the period of its lightcurve, its shape as indicated by the lightcurve amplitude, and where possible its size as given by polarimetry or radiometry. The asteroid is assumed to be rotating about its axis of maximum moment of inertia. As previously found by F. F. Fish [Icarus7, 251–256 (1967]) and W. K. Hartmann and S. M. Larson [Icarus7, 257–260 (1967)], H is approximately proportional to M53, which shows that the asteroids and most planets spin with nearly the same rate. The very smallest asteroids on the plot deviate from the above reaction, usually containing excess angular momentum. This suggests that collisions have transferred substantial angular momentum to the smallest asteroids, perhaps causing their internal stress states to be substantially modified by centrifugal effects.The forces produced by gravitation are then compared to centrifugal effects for a rotating, triaxial ellipsoid of density 3 g cm?3. For all asteroids with known properties the gravitational attraction is shown to be larger than the centrifugal acceleration of a particle on the surface: thus the observed asteroid regoliths are gravitationally bound. Poisson's equation for the gravitational potential is investigated and it is shown by mathematical and physical arguments that any arbitrarily shaped ellipsoid with the attractive surface force boundary condition found above will have only attractive internal forces. Thus the internal stress states in asteroids are always compressive so that asteroids could be internally fractured without losing their integrity.  相似文献   

2.
The analysis of radar observations of the asteroid 4179 Toutatis by Hudson and Ostro (1995, Science270, 84-86) yielded a complex spin state. We revisit the visible lightcurve data on Toutatis (Spencer et al. 1995, Icarus117, 71-89) to explore the feasibility of using a rotational lightcurve to recover the signature of an excited spin state. For this, we apply Fourier transform and CLEAN algorithm (WindowCLEAN). WindowCLEAN yields clear and precise frequency signatures associated with the precession of the long axis about the total angular momentum vector and a combination of this precession and rotation about the long axis. For a long-axis mode state, our periodicities for Toutatis yield a mean long-axis precession period, Pφ, of 7.38 days and a rotation period around the long axis, Pψ, of 5.38 days, which compare well with the respective periods of 7.42 and 5.37 days derived by Ostro et al. (1999, Icarus137, 122-139) and represent an independent confirmation of these values. We explain why the dramatic change in the Earth-Toutatis-Sun geometry during the time that the lightcurve was obtained has little effect on the final results obtained. Using the Toutatis example as a guide, we discuss the capabilities as well as the limitations on deriving information about complex spin states from asteroidal lightcurves.  相似文献   

3.
Akira Fujiwara 《Icarus》1980,41(3):356-364
For the study of the collisional breakup of minor planets, semiquantitative interpretations of the catastrophic destruction of cubic rock targets by high-velocity impact reported by A. Fujiwara, G. Kamimoto, and A. Tsukamoto (1977, Icarus31, 277–288) are attempted. The conditions for transition and core-type destruction are derived from consideration of the side surface spallation, or central spallation, and the back surface spallation caused by the rarefaction pulses. In the derivation, the strengths of the original P-pulse at the crater rim and the bottom are given by application of the failure criterion. As the condition for complete destruction, an empirical rule is proposed. It is found that the critical sizes for these destructions vary as E0.40 and the previously reported EM-scaling is only an approximate rule (E, impact energy; M, target mass). The possibilities of extending of these results to larger bodies of any other shape are discussed.  相似文献   

4.
Observations of Saturn's satellites and external rings during the 1980 edge-on presentation were obtained with a focal coronograph. A faint satellite traveling in the orbit of Dione and leading it by 72° has been detected, together with the two inner satellites already suspected (cf. J. W. Fountain and S. M. Larson, 1978,Icarus36, 92–106). The external ring has been observed on both east and west sides; it may extend up to ?8.3 Saturn radii, and appears structured.  相似文献   

5.
6.
A three-dimensional numerical model was developed with the goal of studying limited dynamical problems relevant to the latest stage of planet growth in the accretion theory. A small number of large protoplanets (~ Moon size) of different masses, moving around the Sun, are considered. The dynamical evolution and growth of the population is studied under mutual gravitational perturbations, accretion, and collisional fragmentation processes. Gravitational encounters are treated exactly by numerical integration of the N-body problem. Outcomes of collisional fragmentation are modeled according to the results of R. Greenberg et al. (1978, Icarus, 35, 1–26). In the present work, we consider 25 protoplanets with uniform mass distribution in the range 2 × 1025?4 × 1026 g on heliocentric orbits in the Earth zone. These bodies are initially confined to a small volume of space to permit gravitational perturbations by close approaches and collisions within a finite length of integration time. The dynamical evolution of the swarm is followed for four different sets of initial ranges in semimajor axis, eccentricity, and inclination: Δa=0.01, 0.02, 0.04, 0.08 AU; Δe= 0.005, 0.01, 0.02, 0.04; Δi=0°3, 0°6, 1°2, 2°4. Among other results, it is found that average eccentricities and inclinations evolve toward a steady state such that i ? 12, e; it is also found that, whatever the initial conditions, the population evolves toward a quasi-equilibrium relative velocity distribution corresponding to a Safronov parameter value θ?10. Moreover, the growth process of the growing planet presents very similar behavior in the four cases considered, except for the time scale of evolution, which increases with the initial range of orbital elements. Earlier works of this kind have been presented by L.P. Cox and J.S. Lewis (1980, Icarus, 44, 706–721) and by G.N. Wetherill (1980b, In Geol. Soc. Canad. Spec. Publ., p. 20), although a number of differences exist between the three approaches.  相似文献   

7.
8.
9.
The total energy E of a star as a function of its angular momentum J and mass M in the Newtonian theory, E=E(J, M) [in general relativity, the gravitational mass of a star as a function of its angular momentum J and rest mass m, M=M(J, m)], is used to determine the remaining parameters (angular velocity, chemical potential, etc.) in the case of rigid rotation. Expressions are derived for the energy release during accretion onto a cool (with constant entropy), rapidly rotating neutron star (NS) in the Newtonian theory and in general relativity. A separate analysis is performed for the cases where the NS equatorial radius is larger and smaller than the radius of the marginally stable orbit in the disk plane. An approximate formula is proposed for the NS equatorial radius for an arbitrary equation of state, which matches the exact equation of state at J=0.  相似文献   

10.
P. Descamps  F. Marchis 《Icarus》2008,193(1):74-84
We describe in this work a thorough study of the physical and orbital characteristics of extensively observed main-belt and trojan binaries, mainly taken from the LAOSA (Large Adaptive Optics Survey of Asteroids [Marchis, F., Baek, M., Berthier, J., Descamps, P., Hestroffer, D., Kaasalainen, M., Vachier, F., 2006c. In: Workshop on Spacecraft Reconnaissance of Asteroid and Comet Interiors. Abstract #3042]) database, along with a selection of bifurcated objects. Dimensionless quantities, such as the specific angular momentum and the scaled primary spin rate, are computed and discussed for each system. They suggest that these asteroidal systems might be the outcome of rotational fission or mass shedding of a parent body presumably subjected to an external torque. One of the most striking features of separated binaries composed of a large primary (Rp>100 km) with a much smaller secondary (Rs<20 km) is that they all have total angular momentum of ∼0.27. This value is quite close to the Maclaurin-Jacobi bifurcation (0.308) of a spinning fluid body. Alternatively, contact binaries and tidally locked double asteroids, made of components of similar size, have an angular momentum larger than 0.48. They compare successfully with the fission equilibrium sequence of a rotating fluid mass. In conclusion, we find that total angular momentum is a useful proxy to assess the internal structure of such systems.  相似文献   

11.
The question of the collisional production of the β meteoroids is reexamined incorporating recent experimental results (A. Fugiwara, G. Kamimoto, A. Tsukamoto, 1977, Icarus31, 277–288). The collisional model yields a flux of fragments supported by the conservation of mass flux which does not account by far for the observed flux of submicron grains. Particles larger than about 100 μm will be destroyed by collisions inside 1 AU, well before they can get near the Sun. The existence of two independent populations of interplanetary dust grains as proposed by L. B. Le Sergeant and Ph. L. Lamy (1978, Nature266, 822–824; 1980, Icarus43, 350–372) appears reinforced. It is proposed that the bulk of submicron grains does not necessarily travel in hyperbolic orbits and that β meteoroids may be a phenomenon—possibly transitory—of limited importance.  相似文献   

12.
Takaaki Takeda  Keiji Ohtsuki 《Icarus》2007,189(1):256-273
We perform N-body simulations of impacts between initially non-rotating rubble-pile asteroids, and investigate mass dispersal and angular momentum transfer during such collisions. We find that the fraction of the dispersed mass (Mdisp) is approximately proportional to , where Qimp is the impact kinetic energy; the power index α is about unity when the impactor is much smaller than the target, and 0.5?α<1 for impacts with a larger impactor. Mdisp is found to be smaller for more dissipative impacts with small values of the restitution coefficient of the constituent particles. We also find that the efficiency of transfer of orbital angular momentum to the rotation of the largest remnant depends on the degree of disruption. In the case of disruptive oblique impacts where the mass of the largest remnant is about half of the target mass, most of the orbital angular momentum is carried away by the escaping fragments and the efficiency becomes very low (<0.05), while the largest remnant acquires a significant amount of spin angular momentum in moderately disruptive impacts. These results suggest that collisions likely played an important role in rotational evolution of small asteroids, in addition to the recoil force of thermal re-radiation.  相似文献   

13.
David R. Soderblom 《Icarus》1985,61(2):343-345
Knowledge of a star's rotation period and ν sin i can be used to select stars that are seen pole-on, and thus are well suited to planetary searches by astrometric or direct-imaging means. A table of such stars is presented. This method is not suitable for discriminating equator-on systems and so cannot be used to select candidates for the photometric method of W. J. Borucki and A. L. Summers (1984, Icarus58, 121–134).  相似文献   

14.
Using incoherent scatter data from Millstone Hill, we investigated the variations in the shape of the daytime, mid-latitude ionospheric electron density profile associated with changes in geomagnetic activity. The analysis performed was to deduce the dependence upon the 3-hr geomagnetic index Kp of h(Nm), h(0·7 Nm) above and below Nm, the plasma scale height HT in the range 500–1000 km, and the ratio N(1000)N(hm). The electron density data used spanned the solar maximum years 1968–1971. Daytime data from the period 1000 to 1600 LT were averaged separately for summer, winter and spring-fall. It is shown that the mean value M of the factor M = B cos θ sec χ used by Titheridge (1972) to relate the Faraday rotation Ω from a geostationary satellite to the total electron content NN up to 2000 km is practically the same (to within 1–2 per cent) as the M value used to relate the NT and Ω values both computed up to 1000 km. Taking advantage of this identity, we have used the linear relationship obtained between the ionospheric parameters and Kp to deduce the height at which M should be evaluated as a function of Kp.  相似文献   

15.
J. N. Spitale and R. Greenberg (2001, Icarus149, 222-234) developed a nonlinearized, finite-difference solution to the heat equation that yields orbital rates of change due to the Yarkovsky effect for small, spherical, bare-rock asteroids and used it to investigate changes in semimajor axis caused by the Yarkovsky effect. Here, we present results for changes in eccentricity and longitude of periapse. These results may be useful as benchmarks for simplified analytical solutions. Moreover, we explore a range of parameters, some of which are inaccessible to most other approaches. Instantaneous rates can be quite fast: For a 1-m scale body rotating with a 5-h period, de/dt can be as fast as 0.1 per million years (da/dt rates for similar test bodies were reported in J. N. Spitale and R. Greenberg (2001, Icarus149, 222-234)). For more typical rotation periods, these rates would be considerably slower. Output from our calculation method could be used in simulations of asteroid population evolution such as that by W. F. Bottke, D. P. Rubincam, and J. A. Burns (2000, Icarus145, 301-331). On long time scales, impacts would randomize the spin axis before significant orbital evolution could occur. Nevertheless, occasional favorable rotation states might persist long enough for substantial eccentricity changes to accumulate (1) if the body is decoupled from the main belt (e.g., many near-Earth asteroids), (2) if the population of very small (mm-scale) main-belt impactors is less than expected, or (3) if our numerical results are scaled up to km-size bodies.  相似文献   

16.
The rotation of fragments produced by catastrophic impacts into basalt targets was investigated using framing camera records taken by Fujiwara and Tsukamoto (1980, Icarus44, 142–153). Most of the cores have low rotation rates, of the order 1 rev · sec?1 or less. Many spall fragments have high rotation rates in the strong shear field produced in the target material by impact.  相似文献   

17.
A large number of shock recovery experiments that address the ease of impact melt formation as a function of peak shock pressure lead to the conclusion that impacts at 5 km/sec into fragmental, porous surfaces will produce agglutinate-type glasses; no shock melts are produced at these velocities in dense silicate target rocks. While agglutinitic glasses dominate lunar surface soils, they are virtually absent in gas-rich, brecciated meteorites. This apparent paucity—if not complete lack—of agglutinate-type glasses is also inferred from remote IR-reflectance spectroscopy. The need to identify mechanisms that inhibit agglutinate formation on asteroidal sufaces was recognized previously and was predominantly attributed to lower projectile velocities and different gravitational environments.We will argue in this paper that additional mechanisms may be required. Specifically we propose that spall processes at a target's free surface play a major role in asteroidal surface evolution. At 5 km/sec collision velocity, a target (RT) to projectile (RP radius ratio of RTRP ≈ 100 delineates the boundary between an “infinite half-space” and a “finite”-sized target. In the first case, collisional energy is expended in a pure cratering regime; in the latter, additional displacement of target material in the form of spallation products occurs. The spall volume may exceed the crater volume by an order of magnitude. Therefore fragmental impact deposits on small planetary bodies may be entirely controlled by spall products, rather than crater ejecta. Because tensile failure occurs at <0.2 GPa stress, spall velocities are measured in meters per second (contrary to crater ejecta) and therefore spallation products are efficiently retained even in low gravitational environments. Spall products are also more coarse grained than crater ejecta; they are also highly biased toward petrographically “unshocked” (<0.2 GPa) rocks.Thus asteroidal surface deposits should be more coarse grained and less shocked than lunar ones—consistent with meteorite evidence and remote-sensing observations. Because spall volume exceeds crater ejecta volume, the total growth rate of asteroidal surface deposits is accelerated, leading to relatively short surface residence times of individual meteorite components, another significant difference between lunar and asteroidal surface materials.  相似文献   

18.
We have collected data on 241 galaxies from 13 sources and made a statistical analysis after reduction to a uniform system. We found that the Hubble sequence is one of increasing MHMT and MHLB, these mean values increasing monotonically from .0016 and .024 at E to .084 and .83 at Im, but the dispersion is large.The HI content in barred spiral is greater than that in ordinary spirals, and this is consistent with their statistics of angular momentum and colour.The HI content is related to colour; it is greater in bluer systems. The large dispersion suggests that it also depends on some other factors, but these are smoothed out when averaged over each type, resulting in a linear relation between 〈log(MMMT and 〈(B ? VOT)〉. Unlike the colour-colour diagram, the large dispersion on the log (MHLB) ? (B ? V0T) is not related to peculiar galaxies.  相似文献   

19.
A. Coradini  G. Magni 《Icarus》1984,59(3):376-391
A detailed computation on the equilibrium structure of an accretion disk around Saturn from which the regular satellites presumably originated is reported. Such a disk is the predecessor of the self-dissipating disk that is formed when the mass infall stops (Cassen and Moosman, 1981, Icarus48, 353–376). When determining the disk structure local energy balance was assumed. Convention was taken into account by introducing local energy dissipation and, in an approximate manner, sonic convection. Changes in the disk structure were investigated by varying the free parameters, i.e., the external flux from both the protosun and the protoplanet, the abundance of dust and the strength of turbulence. It has been verified that the external energy flux does not play an important role in the evolution of the disk structure. Models characterized by either longer times (?3 103 year) or a noticeable depletion of condensable elements (10?2 times less than the solar value) have a total mass of the order of 0.34?0.1 times the mass of the regular satellites increased by the mass of the light elements. Low turbulence models (Reynolds critical number Re1 = 150) are characterized approximately by a total mass twice as large the mass of the regular satellites. All the studied models present a temperature distribution that allows the condensation of iron, silicate, and, in the outer regions, ice grains. All models but the one with 10?2 of the solar value of condensable elements are characterized by a wide convective region that contains the formation zone of the regular satellites.  相似文献   

20.
Joel E. Tohline 《Icarus》1985,61(1):10-21
The scalar virial equation can be used to elucidate many interesting properties of equilibrium gas clouds when the effects of surface pressure, rotation, self-gravity, and internal isothermal gas pressure are considered simultaneously. Details regarding the internal structure of rotating isothermal gas clouds are ignored in order to obtain an analytical expression describing global cloud properties. Excellent agreement is obtained between the simple analytical model and other previously published, more detailed models in physical regimes where other models have been constructed. For the first time, a physical connection is drawn between the surface-pressure-dominated equilibrium models of S. W. Stahler (1983, Astrophys. J.268, 155–184) and the rotation-dominated models of C. Hayashi, S. Narita, and S. M. Miyama (1982, Prog. Theor. Phys.68, 1949–1966). Stable axisymmetric models of any mass and angular momentum can be constructed. Using the analytic expression for virial equilibrium as a foundation, all rotating, isothermal collapse calculations can now be well understood. Limiting properties of isothermal clouds are outlined, and realistic “starting” models for cloud collapse are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号