首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The results of JHKLM photometry for Nova Delphini 2013 obtained in the first sixty days after its outburst are analyzed. Analysis of the energy distribution in a wide spectral range (0.36–5 µm) has shown that the source mimics the emission of normal supergiants of spectral types B5 and A0 for two dates near its optical brightness maximum, August 15.94 UT and August 16.86 UT, respectively. The distance to the nova has been estimated to be D ≈ 3 kpc. For these dates, the following parameters have been estimated: the source’s bolometric fluxes ~9 × 10?7 and ~7.2 × 10?7 erg s?1 cm?2, luminosities L ≈ 2.5 × 105 L and ≈2 × 105 L , and radii R ≈ 6.3 × 1012 and ≈1.2 × 1013 cm. The nova’s expansion velocity near its optical brightness maximum was ~700 km s?1. An infrared (IR) excess associated with the formation of a dust shell is shown to have appeared in the energy distribution one month after the optical brightness maximum. The parameters of the dust component have been estimated for two dates of observations, JD2456557.28 (September 21, 2013) and JD2456577.18 (October 11, 2013). For these dates, the dust shell parameters have been estimated: the color temperatures ≈1500 and ≈1200 K, radii ≈6.5 × 1013 and 1.7 × 1014 cm, luminosities ~4 × 103 L and ~1.1 × 104 L , and the dust mass ~1.6 × 1024 and ~1025 g. The total mass of the material ejected in twenty days (gas + dust) could reach ~1.1 × 10?6 M . The rate of dust supply to the nova shell was ~8 × 10?8 M yr?1. The expansion velocity of the dust shell was about 600 km s?1.  相似文献   

2.
Four surveys in which the geometrical parameters were suitable for observations on weak scattering objects were carried out by the Venera 9, 10 orbiters using 3000–8000 Å spectrometers. The results of one survey can be explained by a dust layer at the height of sighting h = 100–700 km. Its absence in other sessions suggests a ring structure. The spectrum of dust scattering is a power function of the wavelength with the index varying from ?2.1 at 100km to ?1.3 at 500km. A method is proposed for obtaining the optical thickness, density and size distribution of dust particles from the scattering spectra. For m > 10?14 g the number of dust particles with a mass higher than m is proportional to m?1.3. The radial optical thickness τ is 0.7 × 10?5 at 5000 Å assuming the geometric thickness δ to be 100 km. The maximum optical thickness along the normal to the plane of the ring is τn = 4 × 10?6. The mass of the ring is 20 tons or 5 × 10?3 g cm?1 per unit circumference length; the maximum mass in a column normal to the ring plane is 10?10g cm?2; the maximum density (for δ = 100 km) is 10?17 g cm?3. A satellite of Venus gradually destroyed by temperature effects and by meteorite streams and plasma fluxes is suggested as the source of dust in the ring. One of 1 km radius could sustain such a ring for a billion years. The zodiacal light intensity near Venus is estimated.  相似文献   

3.
V.A. Krasnopolsky 《Icarus》1979,37(1):182-189
Observations and model calculations of water vapor diffusion suggest that about half the amount of water vapor is distributed with constant mixing ratio in the Martian atmosphere, the other half is the excess water vapor in the lower troposphere. During 24 hr the total content of water vapor may vary by a factor of two. The eddy diffusion coefficient providing agreement between calculations and observations is K = (3–10) × 106 cm2 sec?1 in the troposphere. An analytical expression is derived for condensate density in the stratosphere in terms of the temperature profile, the particle radius r, and K. The calculations agree with the Mars 5 measurements for r = 1.5 μm, condensate density 5 × 10?12 g/cm3 in the layer maximum at 30 to 35 km, condensate column density 7 × 10?6 cm?2, K = (1?3) × 106 cm2 sec?1, and the temperature profile T = 185 ? 0.05z ? 0.01z2 at 20 to 40 km. Condensation conditions yield a temperature of 160°K at 60 km in the evening; the scale height for scattered radiation yields T = 110°k at 80 to 90 km. The Mars model atmosphere has been developed up to 125 km.  相似文献   

4.
W.G. Egan  T. Hilgeman  L.L. Smith 《Icarus》1978,35(2):209-226
Medium spectral resolution (20 cm?1) infrared measurements of the Martian disk made between 2900 and 5600 cm?1 from the NASA Lear Airborne Observatory have been successfully compared with predictions derived from a model of the Martian soil and atmosphere. Modeling of the Martian atmosphere permitted the extraction of Martian soil reflectance in the CO2 bands centered at 3657 cm?1. Three previously considered acceptable Martian soil analogs, limonite, montmorillonite, and basalt, were analyzed to determine the optical complex indices of refraction in the same range as the airborne observations, for mathematical modeling. A characteristic surface particle size ~1 to 3 μm diameter is indicated. It is concluded that the Martian soil surface near-infrared optical properties are consistent with a soil composition similar to montmorillonite or limonite, mixed with a basalt.  相似文献   

5.
F.P. Fanale 《Icarus》1976,28(2):179-202
Observations of Mars and cosmochemical considerations imply that the total inventory of degassed volatiles on Mars is 102 to 103 times that present in Mars' atmosphere and polar caps. The degassed volatiles have been physically and chemically incorporated into a layer of unconsolidated surface rubble (a “megaregolith”) up to 2km thick. Tentative lines of evidence suggest a high concentration (~5g/cm2) of 40 Ar in the atmosphere of Mars. If correct, this would be consistent with a degassing model for Mars in which the Martian “surface” volatile inventory is presumed identical to that of Earth but scaled to Mars' smaller mass and surface area. The implied inventory would be: (40Ar) = 4g/cm2, (H2O) = 1 × 105g/cm2, (CO2) = 7 × 103g/cm2, (N2) = 3 × 102g/cm2, (Cl) = 2 × 103g/cm2, and (S) = 2 × 102g/cm2. Such a model is useful for testing, but differences in composition and planetary energy history may be anticipated between Mars and Earth on theoretical grounds. Also, the model demands huge regolith sinks for the volatiles listed.If the regolith were in physical equilibrium with the atmosphere, as much as 2 × 104g/cm2 of H2O could be stored in it as hard-frozen permafrost, or 5 × 104g/cm2 if equilibrium with the atmosphere were inhibited. Spectral measurements of Martian regolith material and laboratory measurement of weathering kinetics on simulated regolith material suggest large amounts of hydrated iron oxides and clay minerals exist in the regolith; the amount of chemically bound H2O could be from 1 × 104 to 4 × 104g/cm2. In an Earth-analogous model, a 2 km mixed regolith must contain the following concentrations of other volatile-containing compounds by weight: carbonates = 1.5%, nitrates = 0·3%, chlorides = 0.6%, and sulfates = 0.1%. Such concentrations would be undetectable by current Earth-based spectral reflectance measurements, and (except the nitrates) formation of the “required” amounts of these compounds could result from interaction of adsorbed H2O and ice with primary silicates expected on Mars. Most of the CO2 could be physically adsorbed on the regolith.Thus, maximum amounts of H2O and other volatiles which could be stored in the Mars regolith are marginally compatible with those required by an Earth-analogous model, although a lower atmospheric 40Ar concentration and regolith volatile inventory would be easier to reconcile with observational constraints. Differences in the ratios of H2O and other volatiles to 40Ar between surface volatiles on the real Mars and on an Earth-analogous Mars could result from and reflect differences in bulk composition and time history of degassing between Mars and Earth. Models relating Viking-observable parameters, e.g., (40Ar) and (36Ar), to the time history and overall intensity of Mars degassing are given.  相似文献   

6.
Surface materials exposed throughout the equatorial region of Mars have been classified and mapped on the basis of spectral reflectance properties determined by the Viking II Orbiter vidicon cameras. Frames acquired at each of three wavelengths (0.45 ± 0.03 μm, 0.53 ± 0.05 μm, and 0.59 ± 0.05 μm) during the approach of Viking Orbiter II in Martian summer (Ls = 105°) were mosaicked by computer. The mosaics cover latitudes 30°N to 63°S for 360° of longitude and have resolutions between 10 and 20 km per line pair. Image processing included Mercator transformation and removal of an average Martian photometric function to produce albedo maps at three wavelengths. The classical dark region between the equator and ~30°S in the Martian highlands is composed of two units: (i) and ancient unit consisting of topographic highs (ridges, crater rims, and rugged plateaus riddled with small dendritic channels) which is among the reddest on the planet (0.59/0.45 μm ? 3); and (ii) intermediate age, smooth, intercrater volcanic plains displaying numerous mare ridges which are among the least red on Mars (0.59/0.45 μm ? 2). The relatively young shield volcanoes are, like the oldest unit, dark and very red. Two probable eolian deposits are recognized in the intermediate and high albedo regions. The stratigraphically lower unit is intermediate in both color (0.59/ 0.45 μm ? 2.5) and albedo. The upper unit has the highest albedo, is very red (0.59/0.45 μm ? 3), and is apparently the major constituent of the annual dust storms as its areal extent changes from year to year. The south polar ice cap and condensate clouds dominate the southernmost part of the mosaics.  相似文献   

7.
Hubble Space Telescope/Wide Field and Planetary Camera 2 (HST/WFPC2) images of Io obtained between 1995 and 2007 between 0.24 and 0.42 μm led to the detection of the Pele plume in reflected sunlight in 1995 and 1999; imaging of the Pele plume via absorption of jovian light in 1996 and 1999; detection of the Prometheus-type Pillan plume in reflected sunlight in 1997; and detection of the 2007 Pele-type Tvashtar plume eruption in reflected sunlight and via absorption of jovian light. Based on a detailed analysis of these observations we characterize and compare the gas and dust properties of each of the detected plumes. In each case, the brightness of the plumes in reflected sunlight is less at 0.26 μm than at 0.33 μm. Mie scattering analysis of the wavelength dependence of each plume’s reflectance signature suggests that range of particle sizes within the plumes is quite narrow. Assuming a normal distribution of particle sizes, the range of mean particle sizes is ~0.035–0.12 μm for the 1997 Pillan eruption, ~0.05–0.08 μm for the 1999 Pele and 2007 Tvasthar plumes, and ~0.05–0.11 μm for the 1995 Pele plume, and in each case the standard deviation in the particle size distribution is <15%. The Mie analysis also suggests that the 2007 Tvashtar eruption released ~109 g of sulfur dust, the 1999 Pele eruption released ~109 g of SO2 dust, the 1997 Pillan eruption released ~1010 g of SO2 dust, and the 1995 Pele plume may have released ~1010 g of SO2 dust. Analysis of the plume absorption signatures recorded in the F255W filter bandpass (0.24–0.28 μm) indicates that the opacity of the 2007 Tvashtar plume was 2× that of the 1996 and 1999 Pele plume eruptions. While the sulfur dust density estimated for the Tvashtar from the reflected sunlight data could have produced 61% of the observed plume opacity, <10% of the 1999 Pele F255W plume opacity could have resulted from the SO2 dust detected in the eruption. Accounting for the remaining F255W opacity level of the Pele and Tvasthar plumes based on SO2 and S2 gas absorption, the SO2 and S2 gas density inferred for each plume is almost equivalent corresponding to ~2–6 × 1016 cm?2 and 3–5 × 1015 cm?2, respectively, producing SO2 and S2 gas resurfacing rates ~0.04–0.2 cm yr?1 and 0.007–0.01 cm yr?1; and SO2 and S2 gas masses ~1–4 × 1010 g and ~2–3 × 109 g; for a total dust to gas ratio in the plumes ~10?1–10?2. The 2007 Tvashtar plume was detected by HST at ~380 ± 40 km in both reflected sunlight and absorbed jovian light; in 1999, the detected Pele plume altitude was 500 km in absorbed jovian light, but in reflected sunlight the detected height was ~2× lower. Thus, for the 1999 Pele plume, similar to the 1979 Voyager Pele plume observations, the most efficient dust reflections occurred in the region closest to the plume vent. The 0.33–0.42 μm brightness of the 1997 Pillan plume was 10–20× greater than the Pele or Tvashtar plumes, exceeding by a factor of 3 the average brightness levels observed within 200 km of 1979 Loki eruption vent. But, the 0.26 μm brightness of the 1997 Pillan plume in reflected sunlight was significantly lower than would be predicted by the dust scattering model. Presuming that the 0.26 μm brightness of the 1997 Pillan plume was attenuated by the eruption plume’s gas component, then an SO2 gas density ~3–6 × 1018 cm?2 is inferred from the data (for S2/SO2 ratios ?4%), comparable to the 0.3–2 × 1018 cm?2 SO2 density detected at Loki in 1979 (Pearl, J.C. et al. [1979]. Nature 280, 755; Lellouch et al., 1992), and producing an SO2 gas mass ~3–8 × 1011 g and an SO2 resurfacing rate ~8–23 cm yr?1. These results confirm the connection between high (?1017 cm?2) SO2 gas content and plumes that scatter strongly at nearly blue wavelengths, and it validates the occurrence of high density SO2 gas eruptions on Io. Noting that the SO2 gas content inferred from a spectrum of the 2003 Pillan plume was significantly lower ~2 × 1016 cm?2 (Jessup, K.L., Spencer, J., Yelle, R. [2007]. Icarus 192, 24–40); and that the Pillan caldera was flooded with fresh SO2 frost/slush just prior to the 1997 Pillan plume eruption (Geissler, P., McEwen, A., Phillips, C., Keszthelyi, L., Spencer, J. [2004a]. Icarus 169, 29–64; Phillips, C.B. [2000]. Voyager and Galileo SSI Views of Volcanic Resurfacing on Io and the Search for Geologic Activity at Europa. Ph.D. Thesis, Univ. of Ariz., Tucson); we propose that the density of SO2 gas released by this volcano is directly linked to the local SO2 frost abundance at the time of eruption.  相似文献   

8.
Abstract– Distributions of organic functional groups as well as inorganic features were analyzed in the Bells (CM2) carbonaceous chondrite using near‐field infrared (NFIR) spectroscopy. NFIR spectroscopy has recently been developed to enable infrared spectral mapping beyond the optical diffraction limit of conventional Fourier transform infrared microspectroscopy. NFIR spectral mapping of the Bells 300 nm thick sections on Al plates for 7.5 × 7.5 μm2 areas showed some C‐H‐rich areas which were considered to represent the organic‐rich areas. Heterogeneous distributions of organic matter as well as those of inorganic phases such as silicates (Si‐O) were observed with 1 μm spatial resolution. The NFIR mappings of aliphatic C‐H (2960 and 2930 cm?1) and structural OH (3650 cm?1) confirm that organic matter is associated with phyllosilicates as previously suggested. The NFIR mapping method can provide 1 μm spatial distribution of organic functional groups and their association with minerals. High local sensitivity of NFIR enables us to find organic‐rich areas and to characterize them by their aliphatic CH2/CH3 ratios. The aliphatic CH2/CH3 ratio of Bells is slightly higher than Murchison, similar to Orgueil, and lower than literature values of IDPs and cometary dust particles.  相似文献   

9.
The existence of intergalactic dust has been proved by the following observational facts: the decrease of the numbers of distant galaxies and clusters of galaxies behind the central regions of near clusters of galaxies; the different distributions of RR Lyrae stars and galaxies near ι Microscopii (Hoffmeister's cloud); the dependence of colour excesses of galaxies on supergalactic coordinates as well as on the surface density of bright galaxies; the colour index vs redshift correlation of quasistellar objects. The densities of intergalactic dust are estimated to be between 5×10?30 g cm?3 (near the centers of clusters of galaxies) and 2×10?34 g cm?3 (in general intergalactic space). The grains may be formed either in the early phases of the Universe (25相似文献   

10.
The dust coma of Comet P/Churyumov-Gerasimenko was monitored in the infrared (1–20 μm) from September 1982 to March 1983. Maximum dust production rate of ~2 × 105 g/sec occured in December, 1 month postperihelion. The ratio of dust/gas production was higher than that in other short-period comets. No silicate feature was visible in the 8- to 13-μm spectrum on 23 October. The mean geometric albedo of the grains was ~0.04 at 1.25 μm and ~0.05 at 2.2 μm.  相似文献   

11.
Spectra of the central core and surrounding coma of Comet IRAS-Araki-Alcock (1983d) were obtained at 8–13 μm on 11 May and 2–4 μm on 12 May 1983. Spatially resolved measurements at 10 μm with a 4-arcsec beam showed that the central core was more than 100 times brighter than the inner coma only 8 arcsec away; for radially outflowing dust, the brightness ratio would be a factor of 8. The observations of the central core are consistent with direct detection of a nucleus having a radius of approximately 5 km. The temperature of the sunlit hemisphere was > 300 K. Spectra of the core are featureless, while spectra of the coma suggest weak silicate emission. The spectra show no evidence for icy grains. The dust producton rate on 11.4 May was ~ 105 g/sec, assuming that the gas flux from the dust-producing areas on the nucleus was ~ 10?5 g/cm2/sec.  相似文献   

12.
The HRSC (image 0037) and MOC imagery and MOLA altimetry were used to determine the following parameters of the lava flows typical of the southern slope of the Martian volcano Olympus: the length (13–35 km), the width (0.2–4.8 km), and the angles of ground slopes along which these flows advanced (3.4°–6.9°). To measure the thickness of the flows, we applied a method which had never been used before for Mars. In this method, the apparent thickness obtained from the MOC images and the slope steepness obtained from the MOLA data are used to determine the true thickness. The average estimates of the thickness of lava flows vary from 4 to 11 m and from 4 to 26 m for the volcano flanks and caldera scarps, respectively. These values are close to those of terrestrial basalt flows and to the lower limit found for the Martian flows by other researchers. Based on the performed measurements, we estimated the lava yield strength (0.9 × 103?3.6 × 104 Pa), the supply rate (24–137 m3/s), and the viscosity (1.4 × 103?2.8 × 107 kg/m s). These values are close to the estimates found for the Martian lavas by other researchers and to the characteristic values of these parameters for terrestrial lava flows with basalt and basalt-andesite composition.  相似文献   

13.
Simultaneous measurements of NO and NO2 in the stratosphere leading to an NOx determination have been performed by means of i.r. absorption spectrometry using the Sun as a source in the 5·2 μm band of NO and in the 6·2 μm band of NO2. The observed abundance of NOP peaks at 26 km where it is equal to (4·2 ± 1) × 109 cm?3. The volume mixing ratio of NOp was observed to vary from 1·3 × 10?9 at 20 km to 1·3 × 10?8 at 34 km.  相似文献   

14.
Infrared observations of the Io eclipse of 12 April 1980 in five broad bands from 3 to 30 μm define the thermal emission spectrum both during and after eclipse. A substantial fraction of the emitted radiation during eclipse arises from hot spots; the equivalent global average heat flow is 1.5 ± 0.3 W m?2, corresponding to an internal source of (6 ± 1) × 1013 W. The hot spot spectra can be matched by components with color temperatures of 200–600°K covering 1–2% of the surface. Comparison with observations over the past 8 years suggests that, while the flux at the hottest temperatures may be highly variable, there is no evidence for major changes in the total heat flow, which is emitted primarily in the spectral region 10–20 μm. The heating curves of the surface were observed at 10 and 20 μm; when corrected for the hot spot contribution they indicate a typical global thermal inertia for Io of (0.2 ± 0.1) × 10?3cal cm?2sec?12K?1, similar to that of the other Galilean satellites.  相似文献   

15.
Abstract— Photometric observations of the twilight sky were carried out during Leonids 1998. The obtained vertical distributions of aerosol between 20 and 140 km demonstrate the processes of the intrusion of fine meteor dust and its subsequent intra-atmospheric dynamics. The characteristic radii of two fractions of the meteor dust particles were estimated by their sedimentation velocities. They varied within rp = 0.006–0.06 μm and rp = 19–81 μm limits depending on an assumed particle density within ρp = 0.4–4.0 g cm?3. The assumption of ρp = 2.0 g cm?3 gave radii of the two fractions to be 0.01 and 30 μm, respectively.  相似文献   

16.
The relative intensities of FeXI-Fe XIII lines in the range 176–207 Å have been measured for various plasma structures of the solar corona using data from the XUV spectroheliograph of the SPIRIT instrumentation onboard the CORONAS-F satellite with an improved spectral sensitivity calibration. Electron density diagnostics of a plasma with temperatures 0.8–2.5 MK has been carried out in active regions, quiet-Sun and off-limb areas, and, for the first time, in extremely intense solar flares. The density range is (1.6–8) × 109 cm?3 for flares, (0.6–1.6) × 109 cm?3 for active regions, and ~5 × 108 cm?3 for quiet-Sun areas. The calibration accuracy of the spectral sensitivity for the spectroheliograph has been analyzed based on spectral lines with density-independent intensity ratios.  相似文献   

17.
We observed Saturn at far-infrared and submillimeter wavelengths during the Earth's March 1980 passage through the plane of Saturn's rings. Comparison with earlier spectroscopic observations by D. B. Ward [Icarus32, 437–442 (1977)], obtained at a time when the tilt angle of the rings was 21.8°, permits separation of the disk and ring contributions to the flux observed in this wavelength range. We present two main results: (1) The observed emission of the disk between 60 and 180 μm corresponds to a brightness temperature of 104 ± 2°K; (2) the brightness temperature of the rings drops approximately 20°K between 60 and 80 μm. Our data, in conjunction with the data obtained by other observers between 1 μm and 1 mm, permit us to derive an improved estimate for the total Saturnian surface brightness of (4.84 ± 0.32) × 10?4W cm?2 corresponding to an effective temperature of 96.1 ± 1.6°K. The ratio of radiated to incident power, PR/PI, is (1.46 ± 0.08)/(1 - A), where A is the Bond albedo. For A = 0.337 ± 0.029, PR/PI = 2.20 ± 0.15 and Saturn's intrinsic luminosity is LS = (2.9 ± 0.5) × 10?10L.  相似文献   

18.
The impact light flash produced by electrostatically accelerated iron particles with diameters meters ranging from 5 to 0.05 μm and velocities lying between 1 km/sec and 30 km/sec has been investigated by means of photomultipliers. As target materials mainly gold and tungsten were used. The pulse of the multiplier was registered directly and after electronic integration. The pulse height of the multiplier signal, the amplitude of the integrated signal as well as its rise time were found to be unique functions of the mass and velocity of the impacting particle. For the pulse height of the differential signal the relation I = c1 × m1.25 × v5 was obtained, and for the integrated signal the relation I = c2 × m1.25 × v3.8, with only c1 and C2 depending on the target material. The rise time of the integrated signal follows the relation T = 2.2 × 102 × v?0.4 using gold as target, and in the case of tungsten material follows the relation T = 9.8 × 102 × v?1.2, where v is expressed in km/sec and T in μsec. Using the spectral distribution of the light intensity, measured by means of calibrated photomultipliers, the total amount of light energy emitted in the visible range could be calculated. As a result we obtained that for v = 4 km/sec and m = 10?11 g about 3 × 10?4 of the kinetic energy of the particle was converted into light energy. The variation of the impact flash intensity with the target material and the measured spectral distribution allowed the temperature of the crater after the impact to be estimated as between 2000 and 3000 K.  相似文献   

19.
Dale W. Smith 《Icarus》1980,44(1):116-133
The Galilean satellite eclipse technique for measuring the aerosol distribution in the Jovian lower stratosphere and upper troposphere is described and applied using 30 color observations of 12 natural satellite eclipses obtained with the 200-in Hale telescope. These events probe the North and South Polar Regions, the North Temperate Belt, the South Equatorial Belt, the South Tropical Zone, the South Temperate Zone, and the Great Red Spot. Aerosol is found above the visible cloud tops in all locations. It is very tenuous and varies with altitude, increasing rapidly with downward passage through the tropopause. The aerosol extinction coefficient at 1.05 μm is 1.0 ± 0.05 × 10?8 cm?1 at the tropopause and the mass density is a few times 10?13 g cm?3. The observations require some aerosol above the tropopause but do not clearly determine its structure. The present analysis emphasizes an extended haze distribution, but the alternate possibility that the stratospheric aerosol resides in a thin layer is not excluded. The vertical aerosol optical depth above the tropopause at 1.05 μm exceeds 0.04 in the NPR, SPR, NTB, SEB, and StrZ, is ~0.006 ± 0.003 in the STZ, and is ~ 0.003 ± 0.001 above the GRS. The aerosol extinction increases with decreasing wavelength in the STZ and NTB and indicates a particle radius of 0.2–0.5 μm; a radius of ~0.9 μm is indicated in the STrZ.  相似文献   

20.
The Mariner 9 infrared spectrometer obtained data over a large part of Mars for almost a year beginning late in 1971. Mars' infrared emission spectrum was measured from 200 to 2000 cm?1 with an apodized resolution of 2.4 cm?1. No significant deviation from terrestrial ratios of carbon (12C/13C) or oxygen (16O/18O; 16O/17O) isotopes was observed on Mars. The 12C/13C isotopic ratio was found to be terrestrial with an uncertainty of 15%. Upper limits have been calculated for several minor constituents. With an effective noise equivalent radiance of 1.2 × 10?9 W cm?2 sr?1/cm?1, new upper limits in centimeter-atmospheres of 2 × 10?5 for C2H2, 4 × 10?3 for C2H4, 3 × 10?3 for C2H6, 2 × 10?4 for CH4, 1 × 10?3 for N2O, 1 × 10?4 for NO2, 4 × 10?5 for NH3, 1 × 10?3 for PH3, 7 × 10?4 for SO2, and 1 × 10?4 for OCS have been derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号